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Abstract

Purpose: This study aimed to estimate the rate of temperature rise during the radiofrequency capacitive heating
(13.56 MHz, 300 watts) to defined geometries including 6 simple geometric models, a virtual phantom, and a real
section of the human pelvis obtained by CT-scan. The importance of this study is in the process of Hyperthermia
Treatment Planning (HTP).

Materials and Methods: In this research, COMSOL software has been used to numerical model and simulate the
three-dimensional (3D). First, six models with simple cylindrical geometry were developed to simulate the
Radiofrequency (RF) capacitive hyperthermia treatment sessions. The diameter of the capacitor plates used was
25 cm, which was placed on a layer of water. To perform hyperthermia treatment planning with real geometry
based on CT images, the pelvic area was downloaded from the slicer software and the generated mesh was
transferred to COMSOL. Finally, a virtual phantom was used to validate the simulation, which means that the
results of this simulation have been confirmed by experimental studies in the literature.

Results: The findings of this study indicated that capacitive hyperthermia is an effective deep treatment method
especially for lean patients, so that for all models, an increase in temperature to a depth of 12 cm was observed.
The thermometric data obtained from the simulation method showed a good agreement with the results obtained
from the clinical and tissue equivalent phantom thermometry. The results showed that the simulation can predict
temperature changes during capacitive hyperthermia for lean patients with greater accuracy than obese patients.

Conclusion: The results of comparing temperature profiles of the models taken from the platform provided with
the experimental studies, showed relatively good simulation accuracy, that can be used to develop software for
capacitive heating treatment planning.

Keywords: Locoregional Hyperthermia; Capacitive Hyperthermia; Finite Element Method; Numerical Modeling;
COMSOL Multiphysics.
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COMSOL Simulation in Capacitive Hyperthermia Treatment Planning

1. Introduction

Hyperthermia, as a non-invasive mechanism of
local heating of the tumor up to 41-45 °C, maintaining
this temperature for 1 hour, has proven to be a potent
adjuvant  therapy  for  chemotherapy  and
radiotherapyslicer [1-3]. Superficial hyperthermia is
applied to tumors infiltrating up to a depth of 4 cm in
the tissue. Recurrent and metastatic melanoma and
recurrent breast cancer are examples of superficial
tumor sites where the effectiveness of combined
radiotherapy and hyperthermia in a clinical trial has
been demonstrated [4]. Studies have shown that when
hyperthermia was added to radiation therapy, the
overall response to recurrent breast cancer increased
from 41% to 59%. For malignant tumors, a two-year
calculated local tumor control rate of 28% has been
reported for radiotherapy alone, increasing to days 46
plus hyperthermia. These studies highlight the
importance of shedding hyperthermia in cancer
treatment modalities [5, 6]. In order to improve the
outcomes of cancer treatment, according to the reports
of clinical studies, considering the existing challenges,
the development of new combination therapies for
cancer therapy will be very helpful, among these
non-invasive

potent adjuvant treatments is

radiofrequency hyperthermia [7, 8]. The most
important challenge in hyperthermia is how to non-
invasively measure the deep tissue temperature and
the lack of transparency in the temperature distribution
in the tissue [9, 10]. Especially for the treatment of RF
capacitive hyperthermia or coil due to the mechanism
of heat production, the use of appropriate deep
thermometry methods is very important [11-13].
Surface temperature can be determined with
conventional thermometry methods such as IR
cameras, but deep temperatures are complex, and
simulation studies can largely remove this ambiguity
[9, 14]. Due to the differences and research gaps in this
field, we can refer to the recent study of Kok et al.,
of applying
radiofrequency each of which had
advantages and disadvantages [ 15]. The results of their

who examined different methods
exposure,

simulations, which used the developed Plan2Heat
hyperthermia treatment planning software based on
voxel-based finite difference calculations, compared
with the clinical results showed that therapeutic
temperatures for capacitive hyperthermia in patients
with deep-seated pelvic tumors can be predicted with
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high accuracy [15, 16]. Various studies have
confirmed that treatment by hyperthermia processes
offers a favorable result, however, there is still
controversy [17-19]. Due to a lack of enough data in
the field of locoregional hyperthermia with capacitive
heating, in this study, our aim is to simulate capacitive
heating based on various models with COMSOL
multiphysics software [20].

2. Materials and Methods

2.1. Design of Research Strategy

For this purpose, studies have been conducted in
three steps: a) Defining the parameters of capacitive
heating systems; b) phantom design; c) simulation

2.2. Capacitive Heating Systems

In this study, we used some models that are used to
investigate possible situations in the design of
hyperthermia treatment with a capacitor consisting of
two electrodes. For capacitive heating systems, the
size of the electrodes was 25 cm in diameter. The two
electrodes were the same size and the operating
frequency was 13.56 MHz. The device voltages were
applied with a power of 150 watts. For capacitive
heating, two electrodes were placed above and bottom
of the patient's limbs. Locoregional hyperthermia for
pelvic tumor locations was applied: cervix, prostate,
bladder, and rectum. Small fatless, and large patient
models were derived from standard clinical CT data
sets. IR cameras and thermocouples were used during
the treatment to monitor the temperature for
simulation.

2.3. Simulation for the Phantom Study

The material between the two electrodes is
equivalent to body tissue, which acts as a dielectric
and is heated by the application of voltage. These
voltages are applied with a power of 150 watts. For
COMSOL
environment to create the simple geometry. For this
purpose, the body is first made of a cylinder with an
oval base, which for a fat person has a large diameter
of 40 cm and a small diameter of 22.5 ¢m, and for a
thin person its large diameter is 30 cm and its small
diameter is 20 cm. Two discs with a diameter of 25 cm

simulation, we use the software
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were used to simulate capacitive electrodes. In the
next step, to perform finite element simulation, the
geometry created in the previous section was meshed
into interconnected components called free tetrahedral
meshes, with a maximum mesh element size of 2.2 cm
and a minimum mesh size of 0.44. The most important
step in performing hyperthermia simulation is to make
a mesh based on defined geometry. If the number of
meshes created is not optimal or their number is not
enough, the simulation will encounter an error.
Therefore, the type of mesh we want to perform for
simulation is the free tetrahedral type. In order to
obtain the temperature profile in one section of the
model made for the two groups of obese and lean
samples, the geometries defined below have been
used, so that a point starts from the bottom and ends at
the top of the model's abdomen. Figure 1 shows the
simple geometries in detail.

S | &S

Figure 1. Different geometries based on the location of the
hypothetical tumor as well as the extent of obesity and
thinness. The red Iline indicates the temperature
measurement path along the red line from bottom to top

2.4. Simulation for Human Model

Patient simulations were performed through
structural CT scan images, that are taken from the
abdomen of a patient treated with RF hyperthermia.

Figure 2A is related to the axial view of a patient's
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pelvic/abdomen region obtained from the slicer
software [21]. It is obtained by combining the
following shapes of 2-dimensional geometry. Using
the open-source slicer software, we entered the
captured images into the software, and by introducing
the intensity threshold on the Hounsfield unit, we
determined the different parts of the tissue, including
muscle, fat, and skin, and took a 3-dimensional output
in STL image format (Figure 2B). In the last step, we
selected a section of the CT images that includes the
hypothetical part of the individual tumor, and entered
it into COMSOL software, and by entering the
physical parameters (Table 1) such as tissue density,
tissue conduction, etc., we performed the simulation
in COMSOL software and obtained the necessary
outputs (Figure 2C). This output included time curves
in terms of temperature and heat distribution generated
in the real physical model.

2.5. Treatment Planning and Theoretical
Model

To model the hyperthermia process, we entered
input parameters including the power of the
radiotherapy device, the frequency of the radiator
(usually a constant value), electrical conductivity, and
the density of tumor and healthy tissue including; fat,
muscle, and bone. Using the RF modules and the bi-
density distribution of power density, we obtained the
temperature distribution with the RF module of
COMSOL software [22], which is designed based on
solving Maxwell equations. The radiofrequency
module of COMSOL software uses low equations,
including the Maxwell equations and the last equation

which ends in the Laplace Equations 1-6:

Vsz—aa—f and V-E =0 (1)
VxH=j+aa—lt) ;V-D=p ()
V:[o(—VV) + jwe(—=VV)] =0 3)
0, =0 + we 4)
€=¢é—je (5)
V- [-(0 + we + jwé)VV] =0 (6)
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CT image

STL image

Body simulation

Phantom simulation

Figure 2. A) Human abdomen/pelvis CT images (coronal, sagittal, axial), B) Reconstruction of STL format images
by introducing Hounsfield unit by slicer software, C) Simulation of body images by introducing physical parameters
by COMSOL software, D) Simulation of human phantom by COMSOL software

After determining the QRF parameter using the RF
module with the heat transfer of heat pliers, the
temperature distribution created by the radiation of RF
waves to the tissue was obtained by [23]:

0T(x,y,7,t)
e 7

P i = V(kV(r,©)) + Qp + Qm )

+ Qrr
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with p (the density, ¢ the specific heat capacity of
the tissue), T (the temperature in all three dimensions
of the coordinate system), t (the time), (k the thermal
conductivity), Qp (the effect of heat due to blood
perfusion), Qm (metabolic heat), and finally, the last
parameter (Qrr) represents heat from actions.

2.6. Validation

By comparing the simulation results with the
experimental studies of Sahinbas et al., we used a
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Table 1. List of Parameters With Numerical Values and Their Units Used for Simulation

Parameters Tumor Water Muscle Bone Air Fat
Density [ kg/m?] 1090 1000 1090 1908 1.29 911
Specific heat capacity
[ J/kgK] 3421 4180 3421 1313 1000 2348
Thermal conductivity
[W/m°C] 0.49 6.0 0.49 0.32 0.024 0.21
Volumetric perfusion rate [
kg.ms1] 1.8 - 3.6 0.12 - 1.1
Conductivity [S/m] 0.63 9.4e-5 0.63 0.05 0 0.03
Relative permittivity [-] 87.7 138.4 138.4 30.6 1 11.8

phantom that met the conditions applied in the
simulation [6]. Accordingly, if the simulation results
were correct, it would be expected that the temperature
obtained by the simulation would correspond to the
temperature measured by the thermometer (Figure 3).

3. Results

3.1. Phantom Simulations

Figure 4 (A-F) shows the heating of an equivalent
phantom for an obese and lean individual in tumor-
free, superficial tumors (tumor with a diameter of 3
cm), and deep-seated tumors with capacitive
electrodes located at the top and bottom of the
phantom. For a fair comparison between the top and
bottom electrodes, both electrodes were 25 cm in
diameter. The maximum temperature in the phantom
was 43 degrees. In smaller samples, the temperature
distribution was more uniform. The simulation results

showed better heating for superficial tumors that were
close to the electrodes. By increasing the distance
from the electrodes to deep tumors, especially for
obese specimens, the heat distribution was somewhat
reduced. Figure 5 (A & B) shows the thermal
distribution map of the phantom when it has been in
the capacitor for 20 minutes. In this figure, the thermal
data obtained from the simulation and measurement of
heat by thermocouples are shown for the points near
the electrodes with a red line and for the central points
of the phantom with a blue line. A comparison of the
results a high correlation between the
simulation data and the experimental data.

shows

3.2. Human Results

In this part, in order to upgrade the previous simple
models and obtain accurate and reliable temperature
distribution, CT scan images were used. CT scans will
show the patient's body geometry and the location of
the tumor. As mentioned, in the previous geometric

A B
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Figure 3. A) simulated model of experimental phantom, B) Position of measuring points at 5 and 10 cm, respectively
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Figure 4. Heat map temperature distribution in various cases: A) Large size without tumor, B) Large size with
superficial tumor, C) Large size with deep-seated tumor, D) Small size without tumor, E) Small size with superficial

tumor, and F) Small size with deep seated tumor

model, simple geometric shapes were used to
determine the patient's body and the area of the tumor,
and this simplification increases the error in the
simulation calculations. Therefore, using CT scan
images can compensate for this error. In Figure 6, a
scan is selected from a CT scan image and irradiated
with 150 watts of capacitive hyperthermia for one
hour. In Figure 6A, according to the application of
electrical properties of the tissues, the rate of
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temperature increase of those tissues is placed. As the
Figure 6 shows, adipose tissue has the highest rate of
temperature rise. Then the bone tumor tissue is in the
next step and these is related to physical parameters
such as the thermal conductivity of the mentioned
tissues. In addition, according to Figure 6D, the
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Figure 5. A) Simulation of temperature distribution in experimental phantom, B) Comparison of the results of
simulation of temperature distribution in the specified points (work done in this study) with the data obtained from
the thermometry of the study conducted by Sahinbas ef al. [4]
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Figure 6. A) The rate of increase in temperature over time for different tissues, B) The temperature distribution map
for the real model that has been exposed to capacitive heating for one hour, C) The red line indicates the temperature
measurement path, and D) Temperature variation during irradiation for one hour from the patient's back to the patient's
abdomen (red line in C panel)

clinical thermal map also showed that large patients simulations, better target heating was simulated for

are difficult to warm up and as for phantom smaller patients with capacitors hyperthermia.
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4. Discussion

Today, the potent adjunctive treatment for cancer,
along with radiotherapy and chemotherapy, is
hyperthermia [7, 24]. Among the types of
hyperthermia methods, as a non-invasive and deep
method, we can mention radio frequency wave
hyperthermia [17, 25]. Among the challenges in this
method are the lack of uniform heat distribution as
well as heat measurement and temperature control
during treatment [5, 26]. One of the most important
challenges of this method is the non-uniform
distribution of heat as well as heat measurement and
temperature control during treatment [19, 27]. For
pelvic cancer, the efficacy of hyperthermia has been
clinically demonstrated in a number of clinical trials.
Unfortunately, the technology used in these studies
only provides limited thermal dose control, and the
devices used only help treat target areas close to the
skin.

Our strategy involves providing a three-
dimensional model for numerical modeling using the
finite element method to estimate the temperature
distribution in the patient's body and the tumor caused
by electromagnetic waves generated by two capacitive
applicators. This 3D model is based on CT images,
which allows the patient's tumor shape to be
accurately entered into simulation calculations so that
we can achieve a suitable treatment model. In this
study, a comparison of temperature distributions in
small and large fat tissue phantoms as well as obese
and lean patients showed that capacitive hyperthermia
is generally more effective in heating deep-seated
pelvic tumors for small samples than large samples,
where simulation had similar results. Studies by Kok
et al. on the treatment of patients with deep-seated
tumors such as pelvic and prostate cancers by
capacitive and radiative hyperthermia have shown
similar results [7, 8]. However, their studies showed
that the treatment of radiofrequency hyperthermia
with antennae is more effective than capacitive
hyperthermia and has a better effect on increasing the
depth temperature of the tumor. In addition, their
studies showed that placing electrodes at the top and
bottom of the phantom was clearly more effective than
heating with electrodes on either side, which could be
similar to heating a smaller phantom due to the shorter
distance to the target. This is confirmed by the results
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of our experimental and simulation experiments
(Figures 5 & 6D). Similar results have been reported
by Kroeze et al. for a patient with prostate cancer in
heat treatment [28]. Also, studies by Sahinbas et al. on
phantom agar have also shown that for very thin and
almost fat-free patients, capacitive hyperthermia can
be an effective loco-regional therapy for deep tumors

[6].

There are several challenges to verifying the
temperature distribution in the phantom [29, 30]. For
experimental instruments, the measurement error of
the thermocouple or the uncertainty of the frequency
of the radiant radio waves must be considered. On the
other hand, simplifications in solving the equations of
bio-thermal heat and electric current are among the
factors that affect the simulation errors. Therefore, for
the reasons mentioned, a simulation is not without free
and many parameters are involved in the study. In
Figure 5, the data related to the comparison of the two
simulation and experimental studies are presented.
The error rate of the above method causes a sudden
increase in temperature. On the other hand, after the
temperature equilibrates,
decreases and at higher times, the accuracy of the

this temperature slope

models is very promising. This simulation method
makes it possible to predict possible temperature
changes of the tumor and the careful selection of
heating equipment for patients.

5. Conclusion

The results obtained from the experimental
measurement are in good agreement with the
theoretical phantom simulation. The simulation results
showed that therapeutic temperatures for capacitive
hyperthermia are more predictable in lean patients
than in obese patients. Therefore, developing the
simulation methods can be used to predict temperature
changes during the treatment of

hyperthermia.

capacitive
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