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Abstract

Purpose: The objective of this paper is to study the feasibility of using effective connectivity (Granger Causality)
(GC) obtained from resting-state functional Magnetic Resonance Imaging (rs-fMRI) data and stacked
autoencoder for diagnosing Autism Spectrum Disorder (ASD) and comparing the results with those obtained
using functional connectivity (Pearson Correlation Coefficient) (PCC). ASD affects the normal development of
the brain in the field of social interactions and communication skills. Because diagnosing ASD using behavioral
symptoms is a time-consuming subjective process that needs the exact collaboration of the ASD subject or his/her
relatives, in recent years diagnosing ASD using resting-state functional neuroimaging modalities like rs-fMRI,
has been taken into consideration.

Materials and Methods: We used rs-fMRI data and compared the use of functional and effective connectivity
features using an autoencoder to classify people with ASD from healthy subjects. We used ABIDE dataset and
divided the brain into 100 regions using the Harvard-Oxford (HO) Atlas. We calculated the PCC in classification
using functional connectivity, and we calculated the GC in classification using effective connectivity. We used a
stacked autoencoder to reduce the dimension of feature-space and a multi-layered perceptron (MLP) neural
network as a classifier in both classifications.

Results: We achieved an accuracy of 67.8%, a sensitivity of 68.5%, and a specificity of 66.6% in classification
using functional connectivity, and we achieved an accuracy of 67.6%, a sensitivity of 73.1%, and a specificity of
60.8% in classification using effective connectivity.

Conclusion: Although the accuracy obtained using functional and effective connectivity are almost similar, the
sensitivity is notably higher using effective connectivity. Since sensitivity is more important than specificity in
the medical diagnosis, it seems that using effective connectivity features may outperform the ASD diagnosis in
practice. The purpose of this paper is to diagnose ASD using effective connectivity measures and deep neural
network by rs-fMRI data, but we compare its results with functional connectivity measures. As far as we know,
this is the first time that Granger Causality (GC) and stacked autoencoder have been used to diagnose ASD
together.

Keywords: Autism Spectrum Disorder; Resting-State functional Magnetic Resonance Imaging; Functional and
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1. Introduction

Autism Spectrum Disorder (ASD) disrupts the
normal development of the brain in terms of social
skills [1]. A
comprehensive systematic review and meta-analysis
of 74 articles published from 2008 to 2021 reported
the high global prevalence of ASD. The prevalence of
ASD in the world is reported to be 0.6% (95%
confidence interval: 0.4-1%). Subgroup analyses
indicated that the prevalence of ASD in Asia,
America, Europe, Africa, and Australia was 0.4%
(95% CI: 0.1-1), 1% (95% CI: 0.8-1.1), 0.5% (95%
CIL: 0.2-1), 1% (95% CI: 0.3-3.1), 1.7% (95% CI: 0.5—
6.1), respectively [2]. The current diagnosis of ASD is
mainly based on an assessment of a person’s social
interactions, = communication, and  behavioral
characteristics. A recent hypothesis suggests that the
abnormal condition in people with ASD is due to
impaired connections between brain regions, which
ultimately affects the global network of the brain;
therefore, in recent years, functional neuroimaging

interactions and communication

techniques have been used to study and diagnose
ASD. Among them, functional Magnetic Resonance
Imaging (fMRI) has been widely used to assess the
functional network of the brain [3]. There are
generally two types of fMRI data. The first type is
resting-state fMRI (rs-fMRI) data, and the second type
is called task-based fMRI in which a person is required
to perform a specific mental or physical activity during
imaging. Rs-fMRI data compared with task-based
fMRI data is preferable for children or patients who
may not collaborate properly in performing the
required tasks. Various studies also show that the
Signal-to-Noise Ratio (SNR) of rs-fMRI data is better
than that of task-based data [4]. Since people with
ASD find it difficult to collaborate on acquiring task-
based fMRI data, in this study we use rs-fMRI data.
Numerous studies have been conducted on ASD
subjects using rs-fMRI data in the recent decade.
According to these studies, abnormal
functional/effective connectivity between brain areas
has been reported in ASD subjects. Most studies on
functional or effective connectivity of ASD
individuals corroborate the underconnectivity theory
in ASD which is based on the Ilong-range
underconnectivity and sometimes short-range
overconnectivity. According to the underconnectivity

theory in ASD, different areas of the brain are not
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properly connected to each other and this causes them
to function asynchronously and uncoordinated [5].
Since ASD affects brain functional and effective
connectivities, we have extracted features based on the
functional and effective connectivities to classify ASD
subjects from healthy individuals. Deep learning is a
field of machine learning in which the features are
automatically  extracted from data. Unlike
conventional artificial neural networks, which are
shallow feature learning methods, deep learning
methods employ multiple deep layers of perceptrons
that capture both and high-level
representations of data, enabling them to learn richer
abstractions of inputs. This obviates the need for
manual engineering of features and allows deep
learning models to naturally uncover previously

low-level

unknown patterns and generalize better to new data
[6]. We will extract low-level features of brain
functional and effective connectivities and
subsequently the high-level features are extracted
using a stacked autoencoder neural network. Finally,
we will classify the extracted high-level features by
using a Multi-Layered Perceptron (MLP) neural
network.

1.1. Related Works

We briefly review some recent studies on ASD
diagnosis using rs-fMRI data and deep learning
methods in the recent three years (after 2020) in this
section. Some previous studiesthat have used deep
neural networks for diagnosing ASD using rs-fMRlare
depicted in Table 1.

Our main question in this paper is whether we can
diagnose ASD using effective connectivity measures
and stacked autoencoder which is a type of deep neural
networks? If the answer is positive, will our results
compared to functional

improve connectivity

measures or not?

The purpose of this paper is to diagnose ASD using
effective connectivity measures, stacked autoencoder,
and rs-fMRI data, and to compare its results with those
obtained using functional connectivity measures. As
far as we know, this is the first time that Granger
Causality (GC) and stacked autoencoder have been
used to diagnose ASD together.
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Table 1. Some previous studies that used deep neural networks for diagnosing ASD using rs-fMRI

The number . . Accl.n:a.cy“oﬁj
Reference of subjects Features Classification Sensitivity %
Specificity %
116 regions
Automated Anatomical o
7] ﬁglil;]; Labeling atlas Fully Connected Neural gggé(;z
468 TC Pearson Correlation Network (FCNN) 7 5' 63%
Coefficient (PCC) '
ASDE 68.54%
o
51 ASD Fusion of functional 2345‘302
[8] 55 TC connectivity (FC) Convolutional Neural network ’
NYU And amplitude of low (CNN) 65.46%
48 ASD frequency fluctuation (ALFF) 67. 759,
30 TC )
63.14%
construction of the brain
networks from
brain fMRI images, and 76.2%
ABIDE defining the raw features based .
[9] 403 ASD : DNN
468 TC on such brain networks, and _
employing an AE to learn the
advanced features from the raw
features
200 regions
[10] ABIDE Cradggcck 200 Two hidden layers deep-neural 70.8%
505 ASD . networks with Softmax 62.2%
Sparse Autoencoder is used for )
530 TC feature reduction function as output layer 79.1%
0
ooy 7135
ANN 0.593 0' 206
0.712 ’
ABIDE 200 regions
[11] 432 ASD Craddock 200 60.93%  60.63%
556 TC PCC Random Forest 0.247 0.245
0.890 0.886
67.61 69.93%
Autoencoders 0.787 0.750
0.532 0.634
ABIDE 1 264 regions 87.2%
[12] 403 ASD PCC semi-supervised autoencoder 89.9%
468 TC 80.3%
200 regions average accuracy
13 5[3]53235% Cradggcé( 200 A“toaer?g"der 64.53%
530 TC Foscore Single Layer Perceptron (SLP) S
ABIDE I 392 regions a deep learning 'mod.el with two 78.12%
[14] 505 ASD Craddock 400 procedures —simplified VAE 77.88%
530 TC PCC pretraining ar'.nd MLP fine- 78.34%
tuning
ABIDE 400 regions generalized end-to-end CNN, a 76.72%
[15] 505 ASD CC400 deep learning (DL)-based 76.68%
530 TC PCC model referred to as ASDC- 76.79%

Net.

FBT, Vol. 12, No. 4 (Autumn 2025) 830-843

832


https://www.sciencedirect.com/science/article/pii/S1053811919307803
https://www.sciencedirect.com/science/article/pii/S1053811919307803
https://www.sciencedirect.com/science/article/pii/S1053811919307803

P. Navaei, et al.

2. Materials and Methods

The proposed approach is introduced in this section.
This approach consists of data acquisition, data
preprocessing, brain parcellation using the Harvard-
Oxford (HO) atlas, feature extraction, feature
reduction, and finally classification. The block
diagram of this study is depicted in Figure 1.

Deep

=
=
=

Neural ] l
N -

Figure 1. The block diagram of this study
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2.1. Data Acquisition

The Autism Brain Imaging Data Exchange (ABIDE
I) provided ASD brain imaging data. ABIDE I
contains 17 international sites that shares rs-fMRI
data. It contains 1112 subjects which are composed of
539 ASD subjects and 573 healthy individuals. This
dataset has been acquired from people between ages 7
and 64 years and was published in August 2012. We
conducted our analyses on a publicly accessible,
preprocessed version of this dataset provided by the
Preprocessed  Connectome  Project initiative.
Specifically, we used the data processed with the
Configurable Pipeline for the Analysis of
Connectomes (C-PAC). The data were chosen based
on quality visual inspection results by three human
experts who checked for incomplete brain coverage,
high movement peaks, ghosting, and other scanner
artifacts. This resulted in 871 subjects from the initial
1112. These 871 data include 403 data samples of
ASD people and 468 data samples of healthy people.
We explored pipelines that extract neurophenotypes
from aggregate rs-fMRI datasets.

You can freely access the above data using the
http://fcon_1000.projects.nitrc.org/indi/abide/ link to
see the full details of the ABIDE I dataset.

2.2. Data Preprocessing:

The preprocessed rs-fMRI data using the C-PAC
pipeline has been downloaded from
http://preprocessed-connectomes-
project.org/abide/cpac.html

Preprocessing of the ABIDE data was done with
version X of the Configurable Pipeline for the
Analysis of Connectomes (C-PAC, http:/fcp-
indi.github.com). This Python-based pipeline tool
makes use of AFNI, ANTs, FSL, and custom Python
code. Below, some of the structural and functional
preprocessing steps are explained:

2.2.1. Structural Preprocessing

1. Skull-stripping by using AFNI’s 3dSkullStrip
tool

2. Parcellating the brain into three tissue types by
using FSL’s FAST
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3. Restricting the segmentation of individual
tissues by using tissue priors from the standard
space provided by using FSL

4. Normalizing individual skull-stripped brains to
Montreal Neurological Institute (MNI)152
stereotactic space (1 mm”3 isotropic) by using
linear and non-linear registration methods by
ANTs.

2.2.2. Functional Preprocessing

1. Slice  timing
AFNI’s 3dTshift

correction by  using

2. Motion correction to the average image by
using AFNI’s 3dvolreg (two iterations)

Skull-striping by using AFNI’s 3dAutomask
Normalizing global mean intensity to 10,000

Applying nuisance signal regression

AR

Applying band-pass filter (0.01-0.1Hz)

2.3. Classification using Functional
Connectivity

2.3.1.Low-Level Feature Extraction by
Calculating the PCC

The functional magnetic resonance imaging
technique records three-dimensional T, weighted
images of the whole brain in short time intervals of Ty.
If we consider the volume unit called voxel as a
sample in these consecutive three-dimensional
images, according to the neural activity in the area
where the desired voxel is located, the intensity of the
blood flow and the amount of oxygen in the blood will
change, and the desired voxel will have different
intensity at different times. If we model the intensity
of a voxel as a signal, we will have a time series that
is called the blood-oxygen-level-dependent (BOLD)

signal of that voxel which is shown in Figure 2.

Brain parcellation was done using the Harvard-
Oxford (HO) atlas in FSL software. This atlas includes
96 cortical regions and 16 subcortical regions, so it
includes a total of 112 brain regions.

Each voxel has different intensities in the imaging
sequence of the total brain volume due to the changes
in the neural activities in that voxel; thus, each voxel
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will have a BOLD time series. Since each brain region
comprises a large number of voxels, each brain region
has a large number of time series. If we average all the
time series of the voxels of each region, each region
will have one time series. For low-level feature
extraction, the relationship between these time series
is calculated by two different methods. Since Pearson
correlation coefficient (PCC) is the most widely used
functional connectivity measure of fMRI data, the first
method is to calculate the PCC between the time series
of one region and the average time series of other
regions and the second method is to calculate the
Granger Causality (GC) as the most widely used
effective connectivity measure.

The brain is parcellated to 112 regions using the
Harvard-Oxford (HO) atlas. Because in some subjects
and some of these 112 regions the total value of the
time series is zero, the PCC value is not defined. We
ignore all of these regions which are a total of 12
regions to solve the problem. Since there are 100 brain
regions for each subject, computing all pairwise
correlations generates a correlation matrix Migoxi0o.
Because this matrix is symmetric, 4950 unrepeated
features are obtained. Since we examine 870 subjects
in this study, we have a representation vector with
dimensions of 4950x870, which is the input of the
stacked autoencoder.

Repetition time (TR) Voxel Volume (image)

Time series from one voxel

Figure 2. BOLD time series resulting from the neural
activity corresponding to one voxel [16]

2.3.2.High-Level Feature Extraction and
Classification

High-level feature extraction is performed using a
stacked autoencoder neural network and classification
is done using a Multi-Layered Perceptron (MLP)
neural network. Various methods have been used for
feature extraction and supervised selection of the
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feature in various studies as mentioned in the related
works section, and in all mentioned references using
different methods to extract and reduce the dimension
of feature space are strengthened and less effective
features are removed; therefore, in addition to reducing
the amount of calculations, the performance of
classification methods is improved. However,
supervised selection of the features from the feature
space avoids exploration of new discriminative patterns.
Deep learning explores complex structures in huge
databases. Deep learning methods can learn features
hierarchically. In this process, the features of each level
are made from the combination of the features at their
lower level that leads to features learning at different
levels of abstraction which helps the system to learn
complex functions. These functions convert inputs to
outputs directly and by passing through this chain.

We have a representation vector with dimensions of
4950x870 as mentioned before, which is the input of
the neural network. In order to design the neural
network, we use a stacked autoencoder consisting of
seven autoencoders and an MLP network with two
hidden layers as a classifier. We extract the linear and
non-linear relationships of the obtained features using
a stacked autoencoder deep neural network and reduce
the dimension using the compression capability of the
autoencoders, simultaneously.

Figure 3 shows a general diagram of the use of a
stacked autoencoder and MLP classifier. The data set
was divided into training, validation, and test sets,
which contained 70%, 15%, and 15% of data,
respectively. The number of neurons in the encoder
layer in the first, second, third, fourth, fifth, sixth, and
seventh auto-encoder is 4700, 4000, 2000, 1000, 500,
200, and 100, respectively. The number of neurons in
the encoder layer and the number of autoencoders are
obtained by trial and error. Using trial and error is due
to the different nature of the different datasets because
each dataset has its own properties and there is not a
standard method to determine the optimal number of
hidden layers, and the number of neurons in these
layers.

Regarding the MLP neural network structure, the
number of neurons in the first and second hidden
layers is 60 and 30, respectively. The number of
neurons in the output layer is two. The activation
function of the MLP neural network and the
autoencoder neural network is the softsine function,
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which has a linear region, a non-linear region, a
positive region, and a negative region.

Seven autoencoders are used to reduce the
dimension and extract high-level features as can be
seen from Figure 3. First, the weights are selected
randomly in all autoencoders, and then they are
trained. The desired output in the first autoencoder is
the input vector X (low-level features); therefore, we
compare the output with the input and form the
reconstruction error. The weights of this autoencoder
are trained through the back-propagation method of
the reconstruction error.

MLP Classifier

Figure 3. General diagram of the proposed network

The main part of an autoencoder is the middle
hidden layer (encoder layer) which has 4700 neurons
in the first autoencoder. This middle layer is the input
of the next autoencoder, whose weights are trained
similarly. This process continues until the seventh
autoencoder. All these seven autoencoders are trained
in an unsupervised manner using the back-propagation
method of the reconstruction error, and their weights
are adjusted. Finally, the neurons of the middle layer
of the seventh autoencoder, which has 100 neurons,
are given to the MLP network as the extracted high-
level features. The MLP network consists of two
hidden layers. The learning in the MLP network,
unlike autoencoders, is supervised. The training of the
weights of the MLP is done using the error
backpropagation method. When the output is
compared with the desired value in the last layer and
the error is returned back using the backpropagation
method, it not only trains the MLP’s weights but also
adjusts the weights of up to three layers of the previous
autoencoder. The reason why it does not go further is
that the value of the derivative of the error is very
small and the weights of other layers are not updated.

FBT, Vol. 12, No. 4 (Autumn 2025) 830-843
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2.4. Classification using Effective
Connectivity

2.4.1.Low-level Feature Extraction by
Calculating the Granger Causality (GC)

Low-level feature extraction is done by calculating
the GC between each pair of time series (brain region).
GC is a tool to estimate effective linear relationships
between two variables. GC is used to analyze the flow
of information between time series.

The brain parcellation using the Harvard-Oxford
(HO) atlas created 100 regions. If we want to calculate
the GC between each pair of time series (brain region),
we will have a 100100 G matrix which is not
symmetrical; therefore, we have a representation
vector with dimensions of 9900x870. Since the
number of features is very large, we try to reduce the
dimensions of the features to 9900/2=4450 for
reducing the computational cost. Since the value of g;;
is different from the value of g;ji in the GC matrix. We
obtain the ratio of the difference of g; and g; to their
sum according to Equation 1:

_9ij — Yji
ga 9+ 95 0

The sign of gq shows the dominant direction of
information flow between the i™ and j brain regions.
Using gq instead of g; and g;j, the number of features
of the Granger causality matrix is halved and will be
the same as the number of features of the correlation
coefficient matrix.

2.4.2_High-Level Feature Extraction and
Classification:

High-level feature extraction is performed using a
stacked autoencoder and classification is performed
using a Multi-Layered Perceptron (MLP) neural
network in this section. The number of the
autoencoders in the stacked autoencoder is 7. The
number of neurons in the encoder layer in the first,
second, third, fourth, fifth, sixth, and seventh
autoencoder are 4700, 4000, 2000, 1000, 500, 200, and
100, respectively. The number of hidden layers in the
MLP neural network is 2. The number of neurons in
the first and second hidden layers is 50 and 25,

FBT, Vol. 12, No. 4 (Autumn 2025) 830-843

respectively. The number of neurons in the output
layer is 2.

3. Results

3.1. Results of Classification using Functional
Connectivity

Here, the reported results are related to low-level
feature extraction by calculating the Pearson
Correlation Coefficient (PCC) and high-level feature
extraction using a stacked autoencoder neural network
and classification using a Multi-Layered Perceptron
(MLP) neural network. These results are shown in the
form of a diagram of reconstruction error of training
and validation data in autoencoders, in the form of
(reconstructed

input and input) in

autoencoders.

output

Figures 4a, 4b, 4c, 4d, 4e, 4f, and 4g show the
diagram of reconstruction error of training and
validation data in the first, second, third, fourth, fifth,
sixth, and seventh autoencoders, respectively. When
the reconstruction error of the training and validation
data in each autoencoder is minimized and the input
and output diagrams almost coincide, we stop training
the autoencoders.

The dimensions of the autoencoder’s input in the
first, second, third, fourth, fifth, sixth, and seventh
autoencoders, are 870x4950, 870x4700, 870x4000,
870%x2000, 870x1000, 870x500, and 870%200,
respectively. The number of neurons in the encoder
layer in the first, second, third, fourth, fifth, sixth, and
seventh autoencoders are 4700, 4000, 2000,1000, 500,
200, and 100, respectively. Due to the small number
of representation vectors and to prevent overfitting,
validation error have a direct relationship with the sum
of the weights, the diagrams of this stage have
fluctuated. The dropout rate or a and the training rate
or n in the first, second, third, fourth, fifth, sixth, and
seventh autoencoders, are (0=0.2, 1=0.001), (¢=0.1,
1n=0.001), (a¢=0.05, n=0.001), (a=0, n=0.005), (¢=0.1,

n=0.01), (0=0.1, n=0.01), and (a=0, m=0.05),
respectively.
Results of classification using functional
connectivity are reported in Table 2.
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MSE loss function Diagrams
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Figure 4. Training and validation errors in the first, second, third, fourth,

stacked autoencoder are shown in Figures a, b, c, d, ¢, f, and g, respectively
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Table 2. Results of classification using functional
connectivity

Accuracy  Sensitivity specificity
Results
for test 67.8% 68.5% 66.6%
data

3.2. Results of Classification using Effective
Connectivity

Here, the reported results are related to low-level
feature extraction by calculating the Granger
Causality (GC) using model order 1, high-level feature
extraction using a stacked autoencoder neural
network, and classification using a multilayer
perceptron neural network. These results are shown in
the form of a diagram of reconstruction error of
training and validation data in autoencoders, in the
form of input and output (reconstructed input) in
autoencoders.

Figures 5h, 5i, 5j, 5k, 51, 5Sm, and 5n show the
diagram of training and validation error in the first,
second, third, fourth, fifth, sixth, and seventh
autoencoders, respectively.

The dimensions of the autoencoder’s input in the
first, second, third, fourth, fifth, sixth, and seventh
autoencoders are 870%x4950, 870x4700, 870x4000,
870x2000, 870x1000, 870x500, and 870x%200,
respectively. The number of neurons in the encoder
layer in the first, second, third, fourth, fifth, sixth, and
seventh autoencoders, are 4700, 4000, 2000, 1000,
500, 200, and 100, respectively. The dropout rate or a
and the training rate or 1 in the first, second, third,
fourth, fifth, sixth, and seventh autoencoders are
(0=0.2,11=0.001), (¢=0.1,7=0.001), (0=0.1,1=0.005),
(a=0.1, n=0.01), (0=0.1, n=0.01), (a=0, n=0.05), and
(0=0, n=0.02), respectively.

Results of classification using effective

connectivity are reported in Table 3.

4. Discussion

We implemented diagnosing ASD using rs-fMRI
data and features based on (functional and effective)
brain connectivities and deep autoencoders in this

FBT, Vol. 12, No. 4 (Autumn 2025) 830-843

paper. When we used functional connectivity features
for ASD diagnosis, low-level feature extraction was
done by calculating the Pearson Correlation
Coefficient (PCC), and high-level feature extraction
was performed using a stacked autoencoder and
classification was done wusing a multi-layered
perceptron (MLP) neural which achieved an accuracy
of 67.8%, sensitivity of 68.5%, and specificity of
66.6%. When we used effective connectivity features
for ASD diagnosis, low-level feature extraction was
done by calculating the Granger Causality (GC) with
model order one and the next steps were the same as
those for functional connectivity features which
achieved an accuracy of 67.6%, sensitivity of 71.3%,
and specificity of 60.8%. Although in some previous
studies, diagnosing ASD has been done using
functional brain connectivity and autoencoders, it has
not been done using effective brain connectivity and
autoencoders; therefore, in this study for the first time,
diagnosing ASD has been done by extracting brain-
effective connectivity features by calculating the GC,
reducing feature space using an autoencoder, and
classification using an MLP.
although the
classification accuracy using functional and effective

performing the
Comparing the obtained results,

connectivity was almost similar, the sensitivity using
effective connectivity was notably higher than that
obtained using functional connectivity. Since
sensitivity is more important in medical diagnosis,
these results are remarkable. If the patient is wrongly
classified as healthy, the rehabilitation and treatment
process of the patient will not be done, and the
patient's golden time for treatment may be lost. If a
healthy person is wrongly diagnosed as a patient, after
more complete diagnostic procedures, he will be
diagnosed as healthy.

the obtained
connectivity was higher than that obtained using
functional connectivity, and considering that in

Since sensitivity using effective

diagnosing ASD, sensitivity is more important than

Table 3. Results of classification using effective

connectivity
Accuracy  Sensitivity specificity
Results
for test 67.6% 73.1% 60.8%
data
838
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Figure 5. Training and validation errors in the first, second, third, fourth, fifth, sixth, and seventh autoencoders in a stacked

autoencoder are shown in Figures h, 1, j, k, |, m, and n, respectively
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specificity, using effective connectivity may be
preferable to using functional connectivity for ASD
diagnosis. This may be because the direction of
information flow is considered in effective
connectivity but this is not the case for functional
connectivity. In fact, ASD may distort the direction of
some brain information flows which cannot be
detected using the functional connectivity measures.

In this section, we compare the results of some
similar studies reported in Table 1 with the results of
our study.

In [7], Hu et al. conducted their analysis on the
same data that we have used in our paper. Although
the accuracy achieved by their method is slightly
higher than that by our method, the sensitivity
obtained by our method is significantly higher than the
sensitivity obtained by their method. Since sensitivity
is more important in medical diagnosis, overall, the
results of our study are more favorable compared to
theirs.

In [8], You et al. analyzed the data of 184 subjects
from the ABIDE dataset. The number of subjects in
their study is significantly less than ours; however, the
accuracy achieved in our paper is close to the accuracy
achieved in their paper, and the sensitivity obtained
using effective connectivity in our study is higher than
theirs.

In [10], Almughim and Saeed analyzed the data of
1035 subjects from the ABIDE dataset. Although the
accuracy achieved in their study is slightly higher than
ours, the sensitivity obtained in their study is
significantly lower than ours.

In [11], Ingalhalikar et al. analyzed the data of 988
subjects from the ABIDE dataset. The accuracy
obtained in their method is almost equal to ours. The
sensitivity achieved in their method is higher than
ours, but their specificity is significantly lower than
ours. Consequently, low specificity reduces the
credibility of their results.

In [13], Zhang et al. analyzed the data of 1035
subjects from the ABIDE dataset. Although the
number of subjects in their study is higher than ours,
their accuracy is lower than ours.

The limitations of our method are categorized as
follows:

FBT, Vol. 12, No. 4 (Autumn 2025) 830-843

1- Our method isn’t practical yet because it needs
more experiments before it can be used in the clinic. It
should be trained on larger data to generalize to new
people and lead to higher accuracy levels. Also, to
make this method more practical, early diagnosis
should be considered. Although the ABIDE data is
large compared to most fMRI datasets, it is still not
much for deep neural networks. Since deep neural
networks need a lot of data to be trained well, larger
datasets should become available. The data
augmentation methods or transfer learning also be
used to lead to better results. Synthetic data can be
generated using Generative Adversarial Network
(GAN) and added to the training data. Methods that
enable learning from very limited labeled data can be
used, such as one-shot learning.

2- The Golden standard age for diagnosing ASD is
under 3 years old, so a dataset should be recorded from
children under 3 years old to let us design a computer-
aided diagnosis system for early diagnosis. It is very
difficult to record fMRI data from children under 3
years old, and we do not have access to such data now.
Because the age range of the used dataset in this study
is reported from 7 to 64 years old, the used dataset is
not suitable for early diagnosis. The method of this
study can have a favorable result on the obtained data
and on the same specifications. If the age range is
much higher or lower than the age range of 7 to 64
years, the desired result may not be achieved.

3- Since gender affects the symptoms of ASD in the
brain and the brain disorders of an autistic female may
be different from those of an autistic male, the
biomarkers of ASD may be gender-dependent. The
number of autistic females is less than the number of
autistic males and in ASD there is a 4:1 male-to-
female prevalence rate. Since the female gender is
much less than the male gender in the ABIDE dataset,
this dataset is actually more suitable for diagnosing
ASD in males. To get accurate results, we have to take
data from a large number of females and a large
number of males and we have to train the classifier on
the data of each gender separately; therefore, the
results are expected to be better than when the
classifier is trained on the entire data of both genders.
By doing this, we will have a sex-dependent diagnosis
system for ASD.

4- Because PCC and GC are both linear criteria,
they can only detect linear connectivities. If ASD
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leads to dissonances in non-linear connectivities, these
dissonances may not be visible in the matrix of linear
connectivities and some valuable diagnostic
information may be lost.

Some suggestions for future studies are as follows:
1- In Table 1, [12], [14], and [15] have achieved high
results in diagnosing ASD using functional brain
connectivity and deep neural networks. Because in our
method, the achieved sensitivity using effective
connectivity is notably higher than the achieved
sensitivity using functional connectivity for ASD
diagnosis, it is suggested to investigate the use of
effective  connectivity instead of functional
connectivity in the methods of [12], [14], and [15].

2- It is suggested to provide a computer-aided
diagnosis (CAD) system that can diagnose ASD in
different age groups and gender groups of this data set.

3- More complex functional and effective
connectivity measures can be used to extract more
complex connectivity features, for example, criteria
that measure non-linear or multivariate connectivities

can be used.

4- Various classifiers can be applied to the output
of the autoencoder instead of MLP

5- Functional brain atlases can be used instead of
structural ones.

6- Different types of deep neural networks can be
used instead of autoencoder.

5. Conclusion

When we used functional connectivity for Autism
Spectrum Disorder (ASD) diagnosis using a stacked
autoencoder and a multi-layered perceptron (MLP)
classifier, we achieved an accuracy of 67.8%,
sensitivity of 68.5%, and specificity of 66.6%, and in
classification using effective connectivity, we
achieved an accuracy of 67.6%, sensitivity of 71.3%,
and specificity of 60.8%. Considering the main
objective of this paper, which is to evaluate the
feasibility of using effective connectivity measures
and a stacked autoencoder in the diagnosis of ASD by
rs-fMRI data and to compare the results with
functional connectivity measures, the results obtained
using effective connectivity in our study were better
than the results obtained using functional connectivity
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in many studies. In some studies that had better results
in terms of accuracy and sensitivity, they used a larger
feature space as input for deep neural networks; in
other words, they conducted their analysis with atlases
that had more brain regions. Nonetheless, their results
were slightly better than ours. Our findings indicate
that although the accuracy obtained using functional
and effective connectivity are almost similar, the
sensitivity is notably higher using effective
connectivity. Since sensitivity is more important than
specificity in the medical diagnosis, it seems that using
effective connectivity features may outperform the
ASD diagnosis in practice.

In [7], Hu et al. conducted their analysis on the
same data that we have used in our paper. Although
the accuracy achieved by their method is slightly
higher than that by our method, the sensitivity
obtained by our method is significantly higher than the
sensitivity obtained by their method. Since sensitivity
is more important in medical diagnosis, overall, the
results of our study are more favorable compared to
theirs.

In [8], You ef al. analyzed the data of 184 subjects
from the ABIDE dataset. The number of subjects in
their study is significantly less than ours; however, the
accuracy achieved in our paper is close to the accuracy
achieved in their paper, and the sensitivity obtained
using effective connectivity in our study is higher than
theirs.

In [10], Almughim and Saeed analyzed the data of
1035 subjects from the ABIDE dataset. Although the
accuracy achieved in their study is slightly higher than
ours, the sensitivity obtained in their study is
significantly lower than ours.

In [11], Ingalhalikar et al. analyzed the data of 988
subjects from the ABIDE dataset. The accuracy
obtained in their method is almost equal to ours. The
sensitivity achieved in their method is higher than
ours, but their specificity is significantly lower than
ours. Consequently, low specificity reduces the
credibility of their results.

In [13], Zhang et al. analyzed the data of 1035
subjects from the ABIDE dataset. Although the
number of subjects in their study is higher than ours,
their accuracy is lower than ours.

The number of brain regions in the atlas which has
been used in the [14] and [15] is four times greater than
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the number of brain regions in the atlas used in our
paper, thus the aforementioned studies have provided
more rich information as input to the neural network.
Additionally, the number of subjects in [14] and [15]
is 16% higher than the number of subjects in our
paper. These factors may have led to the results of
these studies being better in terms of accuracy
compared to the results of our paper. The results of
[14] and [15] have been slightly improved in terms of
sensitivity compared to the results of our paper. If we
apply our method to the atlas used in the [14] and [15]
with the same number of brain regions, we can then
compare our results with theirs. However, in the
current format, an accurate quantitative comparison
between our method and their methods is not possible.
A quantitative comparison of our method with the
methods in [14] and [15] is only possible if we
reimplement and evaluate our method using the atlas
from those papers. In the current format, this
comparison is not reliable.

Diagnosing ASD has not been done using effective
brain connectivity and autoencoder before. In this
study, diagnosing ASD has been done using effective
brain connectivity by calculating the Granger
Causality (GC), autoencoder for feature reduction, and
MLP as a classifier.

In this section, we aim to explain the merits of using
Granger Causality (GC) and stacked autoencoder
together. For diagnosing ASD using rs-fMRI, the
correlation coefficient, which is a measure of
functional connectivity, has often been used in past
studies. Effective connectivity measures, such as
Granger causality have been rarely used in this field.
Since effective connectivity measures quantify
information flow, they provide distinct information
compared to functional connectivity measures. In fact,
although the correlation coefficient is an undirected
connectivity measure, Granger causality is a directed
one. In addition, an autoencoder is a filter-based
nonlinear dimension reduction method that can
compress the feature space nonlinearly, allowing for
the reconstruction of the feature space from the
compressed features. Consequently, the simultaneous
use of these two tools enables the utilization of
information flow between brain regions for the
diagnosis of ASD.

Some suggestions for future studies are as follows:

FBT, Vol. 12, No. 4 (Autumn 2025) 830-843

1- Increasing the amount of data

2- Providing a Computer-Aided Diagnosis (CAD)
system for diagnosing ASD across different age and
gender groups

3- Using more complex functional and effective
connectivity = measures to extract advanced
connectivity features

4- Applying and comparing various classifiers on
the output of autoencoder instead of MLP

5- Utilizing functional brain atlases instead of
structural ones

6- Implementing different types of deep neural
networks instead of autoencoder.
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