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Abstract 

Purpose: The objective of this paper is to study the feasibility of using effective connectivity (Granger Causality) 

(GC) obtained from resting-state functional Magnetic Resonance Imaging (rs-fMRI) data and stacked 

autoencoder for diagnosing Autism Spectrum Disorder (ASD) and comparing the results with those obtained 

using functional connectivity (Pearson Correlation Coefficient) (PCC). ASD affects the normal development of 

the brain in the field of social interactions and communication skills. Because diagnosing ASD using behavioral 

symptoms is a time-consuming subjective process that needs the exact collaboration of the ASD subject or his/her 

relatives, in recent years diagnosing ASD using resting-state functional neuroimaging modalities like rs-fMRI, 

has been taken into consideration.  

Materials and Methods: We used rs-fMRI data and compared the use of functional and effective connectivity 

features using an autoencoder to classify people with ASD from healthy subjects. We used ABIDE dataset and 

divided the brain into 100 regions using the Harvard-Oxford (HO) Atlas. We calculated the PCC in classification 

using functional connectivity, and we calculated the GC in classification using effective connectivity. We used a 

stacked autoencoder to reduce the dimension of feature-space and a multi-layered perceptron (MLP) neural 

network as a classifier in both classifications. 

Results: We achieved an accuracy of 67.8%, a sensitivity of 68.5%, and a specificity of 66.6% in classification 

using functional connectivity, and we achieved an accuracy of 67.6%, a sensitivity of 73.1%, and a specificity of 

60.8% in classification using effective connectivity.  

Conclusion: Although the accuracy obtained using functional and effective connectivity are almost similar, the 

sensitivity is notably higher using effective connectivity. Since sensitivity is more important than specificity in 

the medical diagnosis, it seems that using effective connectivity features may outperform the ASD diagnosis in 

practice. The purpose of this paper is to diagnose ASD using effective connectivity measures and deep neural 

network by rs-fMRI data, but we compare its results with functional connectivity measures. As far as we know, 

this is the first time that Granger Causality (GC) and stacked autoencoder have been used to diagnose ASD 

together. 

Keywords: Autism Spectrum Disorder; Resting-State functional Magnetic Resonance Imaging; Functional and 

Effective Brain Connectivity; Pearson Correlation Coefficient; Granger Causality; Stacked Autoencoder. 
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1. Introduction  

Autism Spectrum Disorder (ASD) disrupts the 

normal development of the brain in terms of social 

interactions and communication skills [1]. A 

comprehensive systematic review and meta-analysis 

of 74 articles published from 2008 to 2021 reported 

the high global prevalence of ASD. The prevalence of 

ASD in the world is reported to be 0.6% (95% 

confidence interval: 0.4–1%). Subgroup analyses 

indicated that the prevalence of ASD in Asia, 

America, Europe, Africa, and Australia was 0.4% 

(95% CI: 0.1–1), 1% (95% CI: 0.8–1.1), 0.5% (95% 

CI: 0.2–1), 1% (95% CI: 0.3–3.1), 1.7% (95% CI: 0.5–

6.1), respectively [2]. The current diagnosis of ASD is 

mainly based on an assessment of a person’s social 

interactions, communication, and behavioral 

characteristics. A recent hypothesis suggests that the 

abnormal condition in people with ASD is due to 

impaired connections between brain regions, which 

ultimately affects the global network of the brain; 

therefore, in recent years, functional neuroimaging 

techniques have been used to study and diagnose 

ASD. Among them, functional Magnetic Resonance 

Imaging (fMRI) has been widely used to assess the 

functional network of the brain [3]. There are 

generally two types of fMRI data. The first type is 

resting-state fMRI (rs-fMRI) data, and the second type 

is called task-based fMRI in which a person is required 

to perform a specific mental or physical activity during 

imaging. Rs-fMRI data compared with task-based 

fMRI data is preferable for children or patients who 

may not collaborate properly in performing the 

required tasks. Various studies also show that the 

Signal-to-Noise Ratio (SNR) of rs-fMRI data is better 

than that of task-based data [4]. Since people with 

ASD find it difficult to collaborate on acquiring task-

based fMRI data, in this study we use rs-fMRI data. 

Numerous studies have been conducted on ASD 

subjects using rs-fMRI data in the recent decade. 

According to these studies, abnormal 

functional/effective connectivity between brain areas 

has been reported in ASD subjects. Most studies on 

functional or effective connectivity of ASD 

individuals corroborate the underconnectivity theory 

in ASD which is based on the long-range 

underconnectivity and sometimes short-range 

overconnectivity. According to the underconnectivity 

theory in ASD, different areas of the brain are not 

properly connected to each other and this causes them 

to function asynchronously and uncoordinated [5]. 

Since ASD affects brain functional and effective 

connectivities, we have extracted features based on the 

functional and effective connectivities to classify ASD 

subjects from healthy individuals. Deep learning is a 

field of machine learning in which the features are 

automatically extracted from data. Unlike 

conventional artificial neural networks, which are 

shallow feature learning methods, deep learning 

methods employ multiple deep layers of perceptrons 

that capture both low-level and high-level 

representations of data, enabling them to learn richer 

abstractions of inputs. This obviates the need for 

manual engineering of features and allows deep 

learning models to naturally uncover previously 

unknown patterns and generalize better to new data 

[6]. We will extract low-level features of brain 

functional and effective connectivities and 

subsequently the high-level features are extracted 

using a stacked autoencoder neural network. Finally, 

we will classify the extracted high-level features by 

using a Multi-Layered Perceptron (MLP) neural 

network. 

1.1. Related Works 

We briefly review some recent studies on ASD 

diagnosis using rs-fMRI data and deep learning 

methods in the recent three years (after 2020) in this 

section. Some previous studiesthat have used deep 

neural networks for diagnosing ASD using rs-fMRIare 

depicted in Table 1.  

Our main question in this paper is whether we can 

diagnose ASD using effective connectivity measures 

and stacked autoencoder which is a type of deep neural 

networks? If the answer is positive, will our results 

improve compared to functional connectivity 

measures or not? 

The purpose of this paper is to diagnose ASD using 

effective connectivity measures, stacked autoencoder, 

and rs-fMRI data, and to compare its results with those 

obtained using functional connectivity measures. As 

far as we know, this is the first time that Granger 

Causality (GC) and stacked autoencoder have been 

used to diagnose ASD together. 

 



 Diagnosing ASD by Connectivity and Autoencoders 

FBT, Vol. 12, No. 4 (Autumn 2025) 830-843 832 

  

Table 1. Some previous studies that used deep neural networks for diagnosing ASD using rs-fMRI  

Reference 
The number 

of subjects 
Features Classification 

Accuracy% 

Sensitivity% 

Specificity% 

[7] 

ABIDE I 

403 ASD 

468 TC 

116 regions 

Automated Anatomical 

Labeling atlas  

Pearson Correlation 

Coefficient (PCC) 

 

Fully Connected Neural 

Network (FCNN) 

69.81% 

63.05% 

75.63% 

[8] 

ABIDE 

GU 

51 ASD 

55 TC 

Fusion of functional 

connectivity (FC) 

And amplitude of low 

frequency fluctuation (ALFF) 

Convolutional Neural network 

(CNN) 

68.54% 

69.49% 

67.58% 

NYU 

48 ASD 

30 TC 

 

65.46% 

67.75% 

63.14% 

[9] 

ABIDE 

403 ASD 

468 TC 

construction of the brain 

networks from 

brain fMRI images, and 

defining the raw features based 

on such brain networks, and 

employing an AE to learn the 

advanced features from the raw 

features 

DNN 

76.2% 

___ 

____ 

 

[10] 

 

ABIDE 

505 ASD 

530 TC 

200 regions 

Craddock 200 

PCC 

Sparse Autoencoder is used for 

feature reduction 

 

Two hidden layers deep-neural 

networks with Softmax 

function as output layer 

70.8% 

62.2% 

79.1% 

[11] 

ABIDE 

432 ASD 

556 TC 

200 regions 

Craddock 200 

PCC 

ANN 

65.99% 

0.593 

0.712 

71.35% 

0.595 

0.806 

 

Random Forest 

60.93% 

0.247 

0.890 

60.63% 

0.245 

0.886 

Autoencoders 

67.61 

0.787 

0.532 

69.93% 

0.750 

0.634 

[12] 

ABIDE I 

403 ASD 

468 TC 

264 regions 

PCC 
semi-supervised autoencoder 

87.2% 

89.9% 

80.3% 

[13] 

ABIDE 

505 ASD 

530 TC 

200 regions 

Craddock 200 

PCC 

F-score 

Autoencoder 

and 

Single Layer Perceptron (SLP) 

average accuracy 

64.53% 

___ 

___ 

[14] 

ABIDE I 

505 ASD 

530 TC 

392 regions 

Craddock 400 

PCC 

a deep learning model with two 

procedures – simplified VAE 

pretraining and MLP fine-

tuning 

78.12% 

77.88% 

78.34% 

[15] 

ABIDE 

505 ASD 

530 TC 

400 regions 

CC400 

PCC 

generalized end-to-end CNN, a 

deep learning (DL)-based 

model referred to as ASDC-

Net. 

76.72% 

76.68% 

76.79% 

 

https://www.sciencedirect.com/science/article/pii/S1053811919307803
https://www.sciencedirect.com/science/article/pii/S1053811919307803
https://www.sciencedirect.com/science/article/pii/S1053811919307803
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2. Materials and Methods  

The proposed approach is introduced in this section. 

This approach consists of data acquisition, data 

preprocessing, brain parcellation using the Harvard-

Oxford (HO) atlas, feature extraction, feature 

reduction, and finally classification. The block 

diagram of this study is depicted in Figure 1. 

2.1. Data Acquisition 

The Autism Brain Imaging Data Exchange (ABIDE 

I) provided ASD brain imaging data. ABIDE I 

contains 17 international sites that shares rs-fMRI 

data. It contains 1112 subjects which are composed of 

539 ASD subjects and 573 healthy individuals. This 

dataset has been acquired from people between ages 7 

and 64 years and was published in August 2012. We  

conducted our analyses on a publicly accessible, 

preprocessed version of this dataset provided by the 

Preprocessed Connectome Project initiative. 

Specifically, we used the data processed with the 

Configurable Pipeline for the Analysis of 

Connectomes (C-PAC). The data were chosen based 

on quality visual inspection results by three human 

experts who checked for incomplete brain coverage, 

high movement peaks, ghosting, and other scanner 

artifacts. This resulted in 871 subjects from the initial 

1112. These 871 data include 403 data samples of 

ASD people and 468 data samples of healthy people. 

We explored pipelines that extract neurophenotypes 

from aggregate rs-fMRI datasets.  

You can freely access the above data using the 

http://fcon_1000.projects.nitrc.org/indi/abide/ link to 

see the full details of the ABIDE I dataset.  

2.2. Data Preprocessing: 

The preprocessed rs-fMRI data using the C-PAC 

pipeline has been downloaded from 

http://preprocessed-connectomes-

project.org/abide/cpac.html 

Preprocessing of the ABIDE data was done with 

version X of the Configurable Pipeline for the 

Analysis of Connectomes (C-PAC, http://fcp-

indi.github.com). This Python-based pipeline tool 

makes use of AFNI, ANTs, FSL, and custom Python 

code. Below, some of the structural and functional 

preprocessing steps are explained: 

2.2.1. Structural Preprocessing 

1. Skull-stripping by using AFNI’s 3dSkullStrip 

tool 

2. Parcellating the brain into three tissue types by 

using FSL’s FAST  

Figure 1. The block diagram of this study 

 

 

data 

preprocessing 

brain parcellation using 

Harvard-Oxford  

(HO) Atlas 

 

feature extraction based 

on the brain’s functional 

and effective 

connectivities  

reducing  dimesions of the 

extracted features using a 

stacked autoencoder  

Classification using 

Multilayer Perceptron 

(MLP) 

data 

acquisition 

Deep 

Neural 

Network 

 

http://fcon_1000.projects.nitrc.org/indi/abide/
http://preprocessed-connectomes-project.org/abide/cpac.html
http://preprocessed-connectomes-project.org/abide/cpac.html
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3. Restricting the segmentation of individual 

tissues by using tissue priors from the standard 

space provided by using FSL 

4. Normalizing individual skull-stripped brains to 

Montreal Neurological Institute (MNI)152 

stereotactic space (1 mm^3 isotropic) by using 

linear and non-linear registration methods by 

ANTs. 

2.2.2. Functional Preprocessing 

1. Slice timing correction by using 

AFNI’s 3dTshift 

2. Motion correction to the average image by 

using AFNI’s 3dvolreg (two iterations) 

3. Skull-striping by using AFNI’s 3dAutomask 

4. Normalizing global mean intensity to 10,000 

5. Applying nuisance signal regression 

6. Applying band-pass filter (0.01-0.1Hz)  

2.3. Classification using Functional 

Connectivity 

2.3.1. Low-Level Feature Extraction by 

Calculating the PCC 

The functional magnetic resonance imaging 

technique records three-dimensional 𝑇2
∗ weighted 

images of the whole brain in short  time intervals of 𝑇𝑅. 

If we consider the volume unit called voxel as a 

sample in these consecutive three-dimensional 

images, according to the neural activity in the area 

where the desired voxel is located, the intensity of the 

blood flow and the amount of oxygen in the blood will 

change, and the desired voxel will have different 

intensity at different times. If we model the intensity 

of a voxel as a signal, we will have a time series that 

is called the blood-oxygen-level-dependent (BOLD) 

signal of that voxel which is shown in Figure 2. 

Brain parcellation was done using the Harvard-

Oxford (HO) atlas in FSL software. This atlas includes 

96 cortical regions and 16 subcortical regions, so it 

includes a total of 112 brain regions.  

Each voxel has different intensities in the imaging 

sequence of the total brain volume due to the changes 

in the neural activities in that voxel; thus, each voxel 

will have a BOLD time series. Since each brain region 

comprises a large number of voxels, each brain region 

has a large number of time series. If we average all the 

time series of the voxels of each region, each region 

will have one time series. For low-level feature 

extraction, the relationship between these time series 

is calculated by two different methods. Since Pearson 

correlation coefficient (PCC) is the most widely used 

functional connectivity measure of fMRI data, the first 

method is to calculate the PCC between the time series 

of one region and the average time series of other 

regions and the second method is to calculate the 

Granger Causality (GC) as the most widely used 

effective connectivity measure. 

The brain is parcellated to 112 regions using the 

Harvard-Oxford (HO) atlas. Because in some subjects 

and some of these 112 regions the total value of the 

time series is zero, the PCC value is not defined. We 

ignore all of these regions which are a total of 12 

regions to solve the problem. Since there are 100 brain 

regions for each subject, computing all pairwise 

correlations generates a correlation matrix M100×100. 

Because this matrix is symmetric, 4950 unrepeated 

features are obtained. Since we examine 870 subjects 

in this study, we have a representation vector with 

dimensions of 4950×870, which is the input of the 

stacked autoencoder. 

2.3.2. High-Level Feature Extraction and 

Classification 

High-level feature extraction is performed using a 

stacked autoencoder neural network and classification 

is done using a Multi-Layered Perceptron (MLP) 

neural network. Various methods have been used for 

feature extraction and supervised selection of the 

 

Figure 2. BOLD time series resulting from the neural 

activity corresponding to one voxel [16] 
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feature in various studies as mentioned in the related 

works section, and  in all mentioned references using 

different methods to extract and reduce the dimension 

of feature space are strengthened and less effective 

features are removed; therefore, in addition to reducing 

the amount of calculations, the performance of 

classification methods is improved. However, 

supervised selection of the features from the feature 

space avoids exploration of new discriminative patterns. 

Deep learning explores complex structures in huge 

databases. Deep learning methods can learn features 

hierarchically. In this process, the features of each level 

are made from the combination of the features at their 

lower level that leads to features learning at different 

levels of abstraction which helps the system to learn 

complex functions. These functions convert inputs to 

outputs directly and by passing through this chain.  

We have a representation vector with dimensions of 

4950×870 as mentioned before, which is the input of 

the neural network. In order to design the neural 

network, we use a stacked autoencoder consisting of 

seven autoencoders and an MLP network with two 

hidden layers as a classifier. We extract the linear and 

non-linear relationships of the obtained features using 

a stacked autoencoder deep neural network and reduce 

the dimension using the compression capability of the 

autoencoders, simultaneously. 

Figure 3 shows a general diagram of the use of a 

stacked autoencoder and MLP classifier. The data set 

was divided into training, validation, and test sets, 

which contained 70%, 15%, and 15% of data, 

respectively. The number of neurons in the encoder 

layer in the first, second, third, fourth, fifth, sixth, and 

seventh auto-encoder is 4700, 4000, 2000, 1000, 500, 

200, and 100, respectively. The number of neurons in 

the encoder layer and the number of autoencoders are 

obtained by trial and error. Using trial and error is due 

to the different nature of the different datasets because 

each dataset has its own properties and there is not a 

standard method to determine the optimal number of 

hidden layers, and the number of neurons in these 

layers.  

Regarding the MLP neural network structure, the 

number of neurons in the first and second hidden 

layers is 60 and 30, respectively. The number of 

neurons in the output layer is two. The activation 

function of the MLP neural network and the 

autoencoder neural network is the softsine function, 

which has a linear region, a non-linear region, a 

positive region, and a negative region. 

Seven autoencoders are used to reduce the 

dimension and extract high-level features as can be 

seen from Figure 3. First, the weights are selected 

randomly in all autoencoders, and then they are 

trained. The desired output in the first autoencoder is 

the input vector X (low-level features); therefore, we 

compare the output with the input and form the 

reconstruction error. The weights of this autoencoder 

are trained through the back-propagation method of 

the reconstruction error. 

The main part of an autoencoder is the middle 

hidden layer (encoder layer) which has 4700 neurons 

in the first autoencoder. This middle layer is the input 

of the next autoencoder, whose weights are trained 

similarly. This process continues until the seventh 

autoencoder. All these seven autoencoders are trained 

in an unsupervised manner using the back-propagation 

method of the reconstruction error, and their weights 

are adjusted. Finally, the neurons of the middle layer 

of the seventh autoencoder, which has 100 neurons, 

are given to the MLP network as the extracted high-

level features. The MLP network consists of two 

hidden layers. The learning in the MLP network, 

unlike autoencoders, is supervised. The training of the 

weights of the MLP is done using the error 

backpropagation method. When the output is 

compared with the desired value in the last layer and 

the error is returned back using the backpropagation 

method, it not only trains the MLP’s weights but also 

adjusts the weights of up to three layers of the previous 

autoencoder. The reason why it does not go further is 

that the value of the derivative of the error is very 

small and the weights of other layers are not updated. 

 

Figure 3. General diagram of the proposed network 
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2.4. Classification using Effective 

Connectivity 

2.4.1. Low-level Feature Extraction by 

Calculating the Granger Causality (GC) 

Low-level feature extraction is done by calculating 

the GC between each pair of time series (brain region). 

GC is a tool to estimate effective linear relationships 

between two variables. GC is used to analyze the flow 

of information between time series.  

The brain parcellation using the Harvard-Oxford 

(HO) atlas created 100 regions. If we want to calculate 

the GC between each pair of time series (brain region), 

we will have a 100×100 G matrix which is not 

symmetrical; therefore, we have a representation 

vector with dimensions of 9900×870. Since the 

number of features is very large, we try to reduce the 

dimensions of the features to 9900/2=4450 for 

reducing the computational cost. Since the value of gij 

is different from the value of gji in the GC matrix. We 

obtain the ratio of the difference of gij and gji to their 

sum according to Equation 1: 

𝑔𝑑 =
𝑔𝑖𝑗 − 𝑔𝑗𝑖

𝑔𝑖𝑗 + 𝑔𝑗𝑖
 (1) 

The sign of gd shows the dominant direction of 

information flow between the ith and jth brain regions. 

Using gd instead of gij and gji, the number of features 

of the Granger causality matrix is halved and will be 

the same as the number of features of the correlation 

coefficient matrix. 

2.4.2. High-Level Feature Extraction and 

Classification: 

High-level feature extraction is performed using a 

stacked autoencoder and classification is performed 

using a Multi-Layered Perceptron (MLP) neural 

network in this section. The number of the 

autoencoders in the stacked autoencoder is 7. The 

number of neurons in the encoder layer in the first, 

second, third, fourth, fifth, sixth, and seventh 

autoencoder are 4700, 4000, 2000, 1000, 500, 200, and 

100, respectively. The number of hidden layers in the 

MLP neural network is 2. The number of neurons in 

the first and second hidden layers is 50 and 25, 

respectively. The number of neurons in the output 

layer is 2. 

3. Results  

3.1. Results of Classification using Functional 

Connectivity 

Here, the reported results are related to low-level 

feature extraction by calculating the Pearson 

Correlation Coefficient (PCC) and high-level feature 

extraction using a stacked autoencoder neural network 

and classification using a Multi-Layered Perceptron 

(MLP) neural network. These results are shown in the 

form of a diagram of reconstruction error of training 

and validation data in autoencoders, in the form of 

input and output (reconstructed input) in 

autoencoders.  

Figures 4a, 4b, 4c, 4d, 4e, 4f, and 4g show the 

diagram of reconstruction error of training and 

validation data in the first, second, third, fourth, fifth, 

sixth, and seventh autoencoders, respectively. When 

the reconstruction error of the training and validation 

data in each autoencoder is minimized and the input 

and output diagrams almost coincide, we stop training 

the autoencoders.  

The dimensions of the autoencoder’s input in the 

first, second, third, fourth, fifth, sixth, and seventh 

autoencoders, are 870×4950, 870×4700, 870×4000, 

870×2000, 870×1000, 870×500, and 870×200, 

respectively. The number of neurons in the encoder 

layer in the first, second, third, fourth, fifth, sixth, and 

seventh autoencoders are 4700, 4000, 2000,1000, 500, 

200, and 100, respectively. Due to the small number 

of representation vectors and to prevent overfitting, 

validation error have a direct relationship with the sum 

of the weights, the diagrams of this stage have 

fluctuated. The dropout rate or α and the training rate 

or η in the first, second, third, fourth, fifth, sixth, and 

seventh autoencoders, are (α=0.2, η=0.001), (α=0.1, 

η=0.001), (α=0.05, η=0.001), (α=0, η=0.005), (α=0.1, 

η=0.01), (α=0.1, η=0.01), and (α=0, η=0.05), 

respectively. 

Results of classification using functional 

connectivity are reported in Table 2. 
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  sixth, and seventh autoencoders are (α=0.2, . 

  
a                                                                                     b 

  
c                                                                                        d 

 
                                                       e                                                                          f   

 
g 

Figure 4. Training and validation errors in the first, second, third, fourth, fifth, sixth, and seventh autoencoders in 

stacked autoencoder are shown in Figures a, b, c, d, e, f, and g, respectively 
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3.2. Results of Classification using Effective 

Connectivity 

Here, the reported results are related to low-level 

feature extraction by calculating the Granger 

Causality (GC) using model order 1, high-level feature 

extraction using a stacked autoencoder neural 

network, and classification using a multilayer 

perceptron neural network. These results are shown in 

the form of a diagram of reconstruction error of 

training and validation data in autoencoders, in the 

form of input and output (reconstructed input) in 

autoencoders.  

Figures 5h, 5i, 5j, 5k, 5l, 5m, and 5n show the 

diagram of training and validation error in the first, 

second, third, fourth, fifth, sixth, and seventh 

autoencoders, respectively.  

The dimensions of the autoencoder’s input in the 

first, second, third, fourth, fifth, sixth, and seventh 

autoencoders are 870×4950, 870×4700, 870×4000, 

870×2000, 870×1000, 870×500, and 870×200, 

respectively. The number of neurons in the encoder 

layer in the first, second, third, fourth, fifth, sixth, and 

seventh autoencoders, are 4700, 4000, 2000, 1000, 

500, 200, and 100, respectively. The dropout rate or α 

and the training rate or η in the first, second, third, 

fourth, fifth, sixth, and seventh autoencoders are 

(α=0.2, η=0.001), (α=0.1, η=0.001), (α=0.1, η=0.005), 

(α=0.1, η=0.01), (α=0.1, η=0.01), (α=0, η=0.05), and 

(α=0, η=0.02), respectively. 

Results of classification using effective 

connectivity are reported in Table 3. 

4. Discussion 

We implemented diagnosing ASD using rs-fMRI 

data and features based on (functional and effective) 

brain connectivities and deep autoencoders in this 

paper. When we used functional connectivity features 

for ASD diagnosis, low-level feature extraction was 

done by calculating the Pearson Correlation 

Coefficient (PCC), and high-level feature extraction 

was performed using a stacked autoencoder and 

classification was done using a multi-layered 

perceptron (MLP) neural which achieved an accuracy 

of 67.8%, sensitivity of 68.5%, and specificity of 

66.6%. When we used effective connectivity features 

for ASD diagnosis, low-level feature extraction was 

done by calculating the Granger Causality (GC) with 

model order one and the next steps were the same as 

those for functional connectivity features which 

achieved an accuracy of 67.6%, sensitivity of 71.3%, 

and specificity of 60.8%. Although in some previous 

studies, diagnosing ASD has been done using 

functional brain connectivity and autoencoders, it has 

not been done using effective brain connectivity and 

autoencoders; therefore, in this study for the first time, 

diagnosing ASD has been done by extracting brain-

effective connectivity features by calculating the GC, 

reducing feature space using an autoencoder, and 

performing the classification using an MLP. 

Comparing the obtained results, although the 

classification accuracy using functional and effective 

connectivity was almost similar, the sensitivity using 

effective connectivity was notably higher than that 

obtained using functional connectivity. Since 

sensitivity is more important in medical diagnosis, 

these results are remarkable. If the patient is wrongly 

classified as healthy, the rehabilitation and treatment 

process of the patient will not be done, and the 

patient's golden time for treatment may be lost. If a 

healthy person is wrongly diagnosed as a patient, after 

more complete diagnostic procedures, he will be 

diagnosed as healthy.  

Since the obtained sensitivity using effective 

connectivity was higher than that obtained using 

functional connectivity, and considering that in 

diagnosing ASD, sensitivity is more important than 

 

Table 2. Results of classification using functional 

connectivity 

 Accuracy Sensitivity 
specificity 

 

Results 

for test 

data 

67.8% 68.5% 66.6% 

 

Table 3. Results of classification using effective 

connectivity 

 Accuracy Sensitivity 
specificity 

 

Results 

for test 

data 

67.6% 73.1% 60.8% 
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Figure 5. Training and validation errors in the first, second, third, fourth, fifth, sixth, and seventh autoencoders in a stacked 

autoencoder are shown in Figures h, i, j, k, l, m, and n, respectively 
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specificity, using effective connectivity may be 

preferable to using functional connectivity for ASD 

diagnosis. This may be because the direction of 

information flow is considered in effective 

connectivity but this is not the case for functional 

connectivity. In fact, ASD may distort the direction of 

some brain information flows which cannot be 

detected using the functional connectivity measures. 

In this section, we compare the results of some 

similar studies reported in Table 1 with the results of 

our study. 

In [7], Hu et al. conducted their analysis on the 

same data that we have used in our paper. Although 

the accuracy achieved by their method is slightly 

higher than that by our method, the sensitivity 

obtained by our method is significantly higher than the 

sensitivity obtained by their method. Since sensitivity 

is more important in medical diagnosis, overall, the 

results of our study are more favorable compared to 

theirs. 

In [8], You et al. analyzed the data of 184 subjects 

from the ABIDE dataset. The number of subjects in 

their study is significantly less than ours; however, the 

accuracy achieved in our paper is close to the accuracy 

achieved in their paper, and the sensitivity obtained 

using effective connectivity in our study is higher than 

theirs. 

In [10], Almuqhim and Saeed analyzed the data of 

1035 subjects from the ABIDE dataset. Although the 

accuracy achieved in their study is slightly higher than 

ours, the sensitivity obtained in their study is 

significantly lower than ours. 

In [11], Ingalhalikar et al. analyzed the data of 988 

subjects from the ABIDE dataset. The accuracy 

obtained in their method is almost equal to ours. The 

sensitivity achieved in their method is higher than 

ours, but their specificity is significantly lower than 

ours. Consequently, low specificity reduces the 

credibility of their results. 

In [13], Zhang et al. analyzed the data of 1035 

subjects from the ABIDE dataset. Although the 

number of subjects in their study is higher than ours, 

their accuracy is lower than ours. 

The limitations of our method are categorized as 

follows: 

1- Our method isn’t practical yet because it needs 

more experiments before it can be used in the clinic. It 

should be trained on larger data to generalize to new 

people and lead to higher accuracy levels. Also, to 

make this method more practical, early diagnosis 

should be considered. Although the ABIDE data is 

large compared to most fMRI datasets, it is still not 

much for deep neural networks. Since deep neural 

networks need a lot of data to be trained well, larger 

datasets should become available. The data 

augmentation methods or transfer learning also be 

used to lead to better results. Synthetic data can be 

generated using Generative Adversarial Network 

(GAN) and added to the training data. Methods that 

enable learning from very limited labeled data can be 

used, such as one-shot learning. 

2- The Golden standard age for diagnosing ASD is 

under 3 years old, so a dataset should be recorded from 

children under 3 years old to let us design a computer-

aided diagnosis system for early diagnosis. It is very 

difficult to record fMRI data from children under 3 

years old, and we do not have access to such data now. 

Because the age range of the used dataset in this study 

is reported from 7 to 64 years old, the used dataset is 

not suitable for early diagnosis. The method of this 

study can have a favorable result on the obtained data 

and on the same specifications. If the age range is 

much higher or lower than the age range of 7 to 64 

years, the desired result may not be achieved. 

3- Since gender affects the symptoms of ASD in the 

brain and the brain disorders of an autistic female may 

be different from those of an autistic male, the 

biomarkers of ASD may be gender-dependent. The 

number of autistic females is less than the number of 

autistic males and in ASD there is a 4:1 male-to-

female prevalence rate. Since the female gender is 

much less than the male gender in the ABIDE dataset, 

this dataset is actually more suitable for diagnosing 

ASD in males. To get accurate results, we have to take 

data from a large number of females and a large 

number of males and we have to train the classifier on 

the data of each gender separately; therefore, the 

results are expected to be better than when the 

classifier is trained on the entire data of both genders. 

By doing this, we will have a sex-dependent diagnosis 

system for ASD. 

4- Because PCC and GC are both linear criteria, 

they can only detect linear connectivities. If ASD 
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leads to dissonances in non-linear connectivities, these 

dissonances may not be visible in the matrix of linear 

connectivities and some valuable diagnostic 

information may be lost.  

Some suggestions for future studies are as follows:                                                            

1- In Table 1, [12], [14], and [15] have achieved high 

results in diagnosing ASD using functional brain 

connectivity and deep neural networks. Because in our 

method, the achieved sensitivity using effective 

connectivity is notably higher than the achieved 

sensitivity using functional connectivity for ASD 

diagnosis, it is suggested to investigate the use of 

effective connectivity instead of functional 

connectivity in the methods of [12], [14], and [15]. 

2- It is suggested to provide a computer-aided 

diagnosis (CAD) system that can diagnose ASD in 

different age groups and gender groups of this data set. 

3- More complex functional and effective 

connectivity measures can be used to extract more 

complex connectivity features, for example, criteria 

that measure non-linear or multivariate connectivities 

can be used. 

4- Various classifiers can be applied to the output 

of the autoencoder instead of MLP  

5- Functional brain atlases can be used instead of 

structural ones. 

6- Different types of deep neural networks can be 

used instead of autoencoder. 

5. Conclusion 

When we used functional connectivity for Autism 

Spectrum Disorder (ASD) diagnosis using a stacked 

autoencoder and a multi-layered perceptron (MLP) 

classifier, we achieved an accuracy of 67.8%, 

sensitivity of 68.5%, and specificity of 66.6%, and in 

classification using effective connectivity, we 

achieved an accuracy of 67.6%, sensitivity of 71.3%, 

and specificity of 60.8%. Considering the main 

objective of this paper, which is to evaluate the 

feasibility of using effective connectivity measures 

and a stacked autoencoder in the diagnosis of ASD by 

rs-fMRI data and to compare the results with 

functional connectivity measures, the results obtained 

using effective connectivity in our study were better 

than the results obtained using functional connectivity 

in many studies. In some studies that had better results 

in terms of accuracy and sensitivity, they used a larger 

feature space as input for deep neural networks; in 

other words, they conducted their analysis with atlases 

that had more brain regions. Nonetheless, their results 

were slightly better than ours. Our findings indicate 

that although the accuracy obtained using functional 

and effective connectivity are almost similar, the 

sensitivity is notably higher using effective 

connectivity. Since sensitivity is more important than 

specificity in the medical diagnosis, it seems that using 

effective connectivity features may outperform the 

ASD diagnosis in practice. 

In [7], Hu et al. conducted their analysis on the 

same data that we have used in our paper. Although 

the accuracy achieved by their method is slightly 

higher than that by our method, the sensitivity 

obtained by our method is significantly higher than the 

sensitivity obtained by their method. Since sensitivity 

is more important in medical diagnosis, overall, the 

results of our study are more favorable compared to 

theirs. 

In [8], You et al. analyzed the data of 184 subjects 

from the ABIDE dataset. The number of subjects in 

their study is significantly less than ours; however, the 

accuracy achieved in our paper is close to the accuracy 

achieved in their paper, and the sensitivity obtained 

using effective connectivity in our study is higher than 

theirs. 

In [10], Almuqhim and Saeed analyzed the data of 

1035 subjects from the ABIDE dataset. Although the 

accuracy achieved in their study is slightly higher than 

ours, the sensitivity obtained in their study is 

significantly lower than ours. 

In [11], Ingalhalikar et al. analyzed the data of 988 

subjects from the ABIDE dataset. The accuracy 

obtained in their method is almost equal to ours. The 

sensitivity achieved in their method is higher than 

ours, but their specificity is significantly lower than 

ours. Consequently, low specificity reduces the 

credibility of their results. 

In [13], Zhang et al. analyzed the data of 1035 

subjects from the ABIDE dataset. Although the 

number of subjects in their study is higher than ours, 

their accuracy is lower than ours. 

The number of brain regions in the atlas which has 

been used in the [14] and [15] is four times greater than 



 Diagnosing ASD by Connectivity and Autoencoders 

FBT, Vol. 12, No. 4 (Autumn 2025) 830-843 842 

the number of brain regions in the atlas used in our 

paper, thus the aforementioned studies have provided 

more rich information as input to the neural network. 

Additionally, the number of subjects in [14] and [15] 

is 16% higher than the number of subjects in our 

paper. These factors may have led to the results of 

these studies being better in terms of accuracy 

compared to the results of our paper. The results of 

[14] and [15] have been slightly improved in terms of 

sensitivity compared to the results of our paper. If we 

apply our method to the atlas used in the [14] and [15] 

with the same number of brain regions, we can then 

compare our results with theirs. However, in the 

current format, an accurate quantitative comparison 

between our method and their methods is not possible. 

A quantitative comparison of our method with the 

methods in [14] and [15] is only possible if we 

reimplement and evaluate our method using the atlas 

from those papers. In the current format, this 

comparison is not reliable. 

Diagnosing ASD has not been done using effective 

brain connectivity and autoencoder before. In this 

study, diagnosing ASD has been done using effective 

brain connectivity by calculating the Granger 

Causality (GC), autoencoder for feature reduction, and 

MLP as a classifier.     

In this section, we aim to explain the merits of using 

Granger Causality (GC) and stacked autoencoder 

together. For diagnosing ASD using rs-fMRI, the 

correlation coefficient, which is a measure of 

functional connectivity, has often been used in past 

studies. Effective connectivity measures, such as 

Granger causality have been rarely used in this field. 

Since effective connectivity measures quantify 

information flow, they provide distinct information 

compared to functional connectivity measures. In fact, 

although the correlation coefficient is an undirected 

connectivity measure, Granger causality is a directed 

one. In addition, an autoencoder is a filter-based 

nonlinear dimension reduction method that can 

compress the feature space nonlinearly, allowing for 

the reconstruction of the feature space from the 

compressed features. Consequently, the simultaneous 

use of these two tools enables the utilization of 

information flow between brain regions for the 

diagnosis of ASD. 

Some suggestions for future studies are as follows: 

1- Increasing the amount of data 

2- Providing a Computer-Aided Diagnosis (CAD) 

system for diagnosing ASD across different age and 

gender groups   

3- Using more complex functional and effective 

connectivity measures to extract advanced 

connectivity features  

4- Applying and comparing various classifiers on 

the output of autoencoder instead of MLP 

5- Utilizing functional brain atlases instead of 

structural ones  

6- Implementing different types of deep neural 

networks instead of autoencoder. 
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