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Abstract

Purpose: Manually segmenting mammograms is time-consuming and subjective. Therefore, automatic
segmentation of breast masses is necessary but poses significant challenges due to factors such as low signal-to-
noise ratio, diverse mass shapes and sizes, varying contrast levels, and high false positive rates. To address these
challenges, we have developed an automatic image segmentation method based on a comprehensive pre-
processing pipeline.

Materials and Methods: Our proposed method consists of two phases: 1) the pre-processing phase, which
includes denoising, contrast enhancement, image cropping, resizing, and augmentation of mammograms, and 2)
the model design phase, where UNet++ is employed as an encoder-decoder-based network for segmenting breast
masses. The encoder captures relevant information from various regions in the input image, while the decoder
reconstructs the spatial location of the target region. We conducted extensive experiments on publicly available
CBIS-DDSM and INbreast datasets to evaluate the performance of our proposed method. For a comprehensive
assessment, we utilized evaluation metrics including Precision, True Positive Rate, Dice Score Coefficient, and
Jaccard Index. Additionally, a confusion matrix was employed to evaluate segmentation accuracy, while violin
plots depicted the distribution of results across different BI-RADS and ACR categories.

Results: Based on our findings, our proposed method demonstrates promising results with a precision rate of
92.33%, a True Positive Rate of 93.83%, a Dice Score Coefficient measuring 92.92%, and a Jaccard Index of
87.05% in the CBIS-DDSM dataset. Furthermore, to assess the generalizability of our proposed method, the
INbreast dataset was used as an unseen test set. The results demonstrate a precision rate of 91.15%, a True positive
rate 0of 91.15%, a Dice Score coefficient of 92.53%, and a Jaccard Index of 87.25%, indicating robust performance
on data outside the training distribution.

Conclusion: The integration of UNet++ with a pre-processing pipeline in digital mammography has shown
promising results in accurately segmenting breast masses. This method has the potential to significantly improve
early breast cancer detection and reduce diagnostic errors in clinical practice while employing a relatively
lightweight model.
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1. Introduction

Breast cancer stands as a significant concern for
women globally, with high rates of diagnosis and
mortality [1]. Effective treatment and a reduction in
mortality rates are associated with the early detection
of breast cancer through the screening stage [2].

Mammography, MRI, CT, and PET are commonly
used imaging techniques for breast cancer screening
and diagnosis [3]. However, mammography is the
primary screening method in clinical practice as it
effectively detects suspicious lumps and abnormalities
[4]. In mammography, the breast is compressed to
reduce thickness, enhancing image clarity by
minimizing tissue overlap and scatter radiation.
Images are usually taken from multiple angles to
ensure that all areas of the breast are examined.
Mediolateral Oblique (MLO) and Cranio-Caudal (CC)
Radiologists
typically rely on both views to ensure accurate
diagnosis and assessment. The MLO view captures the
breast from the center of the chest outward, while the
CC view is taken from above the breast. The CC view

are two common imaging views.

provides a comprehensive depiction of the entire
breast. In contrast, the MLO view focuses on the
upper-outer quadrant, offering the best visualization of
the breast's lateral side, statistically the most common
area for pathological changes.

Manual investigation of mammograms can lead to
false diagnoses due to factors such as complex breast
tissue composition, image noise, artifacts, variations
in breast density, and the high volume of screening
performed daily. Dense tissues can obscure tumors,
particularly smaller ones, increasing the risk of false
negatives in mammograms and reducing the early
detection of cancer diagnosis. Recent research
indicates that the sensitivity of mammography can
decline to 62-68% in women with extremely dense
breasts, considerably lower than in those with fatty
breasts [5]. Therefore, there is a growing demand to
automatically analyze mammograms, particularly for
women with dense breast tissue, where manual
interpretation often falls short [6]. It enhances the
accuracy of mammogram examinations by precisely
identifying the location and boundaries of tumors,
thereby enabling effective treatment planning in
clinical practice.
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Therefore, Artificial Intelligence (Al)-based
algorithms have been developed [7], [8], which
demonstrated significant potential in accurately
delineating suspicious tumor regions, providing
valuable insights into diagnosis findings. One of the
most effective Al techniques in this field is deep
learning, a subset of machine learning that utilizes
artificial neural networks with multiple hidden layers
to learn complex patterns and representations from
data. Deep learning algorithms, particularly those
based on convolutional neural networks (CNNs), have
achieved state-of-the-art performance in various
image analysis tasks, including medical image
segmentation [9]. Therefore, this has led to the
development of computer-aided detection (CAD)
that assist radiologists in interpreting
mammograms [10], which effectively reduces false
positives. Furthermore, these methods have the
potential to significantly reduce patient examination
time and alleviate the workload of radiologists [11].

systems

In medical imaging, segmentation is used to
identify and extract Regions of Interest (Rol) for
further analysis. One prominent approach is the U-
Net, which integrates high-level features from the
decoder with low-level features from the encoder
through skip connections [12]. Inspired by the success
of U-Net, UNet++ was introduced to enhance
performance by incorporating skip connections at
different depths [13]. This model has demonstrated a
high capacity for extracting deep and semantic
features, leading to precise and detailed segmentation
of masses. In recent years, many researchers have
focused on breast tumor segmentation. This summary
highlights some of the notable works in this domain.

Sun et al. [14] proposed an attention-guided dense-
upsampling network (AUNet) for breast tumor
segmentation in mammograms, achieving an average
Dice Score Coefficient of 81.8% for CBIS-DDSM and
79.1% for INbreast. Rajalakshmi et al. [15] proposed
the Deeply Supervised U-Net model (DS U-Net).
Their method enhanced image contrast using the
Contrast-Limited Adaptive Histogram Equalization
(CLAHE) technique. It was evaluated on CBIS-
DDSM and INbreast, which achieved a Dice Score
Coefficient of 82.9% for CBIS-DDSM and 79% for
INbreast.

Zeiser et al. [16] employed the U-Net model for
mass segmentation in mammograms, achieving a
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sensitivity of 92.32%, a specificity of 80.47%, and a
Dice Score Coefficient of 79.39%. Baccouche et al.
[17] introduced the Connected-UNet model,
connecting two U-Nets with modified skip
connections, which was evaluated on CBIS-DDSM
and INbreast, and a private dataset. It has achieved
Dice Score Coefficient of 89.52%, 95.28%, and
95.88% and Intersection over Union (IoU) of 80.02%,
91.03%, and 92.27%, respectively, on CBIS-DDSM,
INbreast, and private datasets.

Min et al. [18] developed a Mask R-CNN model for
mass segmentation. They applied Multi-scale
Morphological Sifting (MMS) to convert grayscale
mammograms into pseudo-color images. Then, they
evaluated their model on the INbreast dataset, yielding
an average Dice Score Coefficient of 0.88 for mass
segmentation. Many existing approaches rely on
increasingly complex and computationally intensive
models to obtain accurate mass boundary information.
In contrast, the primary goal of our study is to
demonstrate that by leveraging advanced pre-
processing techniques, it is possible to achieve high-
quality segmentation of mammograms using a
relatively lightweight segmentation model. The
significant contributions of our study can be
summarized as follows:

1. We underscore the importance of advanced pre-
processing techniques in enhancing mammogram
quality for segmentation.

2. We demonstrate that a lightweight

segmentation model, when coupled with effective pre-

e e e e B e T e ST

(c)

processing, can achieve competitive performance
compared to more complex models.

3. We used image augmentation techniques to
expand the dataset and mitigate overfitting.

4. We provide a comprehensive analysis
comparing our model's performance against existing
complex models on the CBIS-DDSM and [Nbreast
datasets.

The subsequent sections of this paper are organized
as follows: Section 2 introduces the proposed method
for breast tumor segmentation. Section 3 outlines the
experimental results, including detailed analysis and
evaluation. Furthermore, section 4 presents a
discussion of our method. Finally, Section 5 concludes
this paper, outlining key insights and potential
directions for future investigation.

2. Materials and Methods

In this section, we describe the datasets and our
framework, which consists of two main phases, pre-
processing and the mass segmentation model. Figure
1 shows the workflow of the proposed framework.

2.1. Dataset Description

We evaluated our proposed framework on the two
publicly available datasets of INbreast [19] and CBIS-
DDSM. The CBIS-DDSM (Curated Breast Imaging
Subset of DDSM) dataset [20] is an enhanced version
of the DDSM (Digital Database for Screening

.......... ‘
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Figure 1. The overview of the proposed system. a) raw mammogram and ground truth, b) pre-processing pipeline, c) pre-
processed mammogram and corresponding ground truth, d) UNet++ architecture 12, ¢) predicted mask
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Mammography) dataset, including full mammograms,
cropped images, and masks for masses and
calcifications in DICOM format. In this paper, we
utilized 1577 mammograms to implement our
proposed framework, while calcifications were left for
future investigation. The samples were divided into
three subsets: 80% for training, 10% for validation,
and 10% for testing, as outlined in Table 1. This
dataset encompasses detailed metadata, including
ACR (American College of Radiology) breast density,
BI-RADS (Breast Imaging Reporting and Data
System) categories, and pathology findings that
facilitate validating the proposed algorithm. The BI-
RADS is a standardized system for classifying report
findings in breast imaging to enhance -clinical
management decisions. It assigns a category from 0 to
6 to describe the findings, where higher values
indicate a greater probability of malignancy. Figure 2a
shows the distribution of BI-RADS categories in the
CBIS-DDSM dataset. Moreover, breast density is
classified into four different groups according to the
American College of Radiology (ACR) standards:
entirely fatty (ACR A), scattered fibroglandular (ACR
B), heterogeneously dense (ACR C), and extremely
dense (ACR D). Figure 2b depicts the prevalence of
ACR categories in the CBIS-DDSM dataset. As
represented in Figure 3a and 3b, the CBIS-DDSM
dataset is obtained from two different views: the
Mediolateral Oblique (MLO) view and the Cranial-

Caudal (CC) view. The MLO view captures the breast
from the center of the chest outward, while the CC
view is taken from above the breast. The CC view
provides a comprehensive depiction of the entire
breast. In contrast, the MLO view focuses on the
upper-outer quadrant, offering the best visualization of
the breast's lateral side, statistically the most common
area for pathological changes.

The INbreast dataset is a publicly available
repository of Full-Field Digital Mammography
(FFDM) images, collected from the Breast Centre at
Centro Hospitalar de S. Jodo in Porto, Portugal. This
dataset comprises 410 full-resolution mammograms
from 115 patients, including 90 cases from women
with both breasts affected (four images per case) and
25 cases from mastectomy patients (two images per
case). It covers four types of breast abnormalities,
including mass, calcification, symmetry, and
distortions. The images are provided in DICOM
format, with corresponding ground truth annotation
available in XML format. For this study, a subset of
107 mammogram-containing masses was selected to
assess the proposed framework. The dataset includes
both MLO and CC views, and samples of these views
are represented in Figures 3¢ and 3d. Furthermore, the
distribution of BI-RADS and ACR categories within
the dataset is presented in Figure 4a and 4b, providing
valuable insights into its clinical diversity.

Table 1. The number of samples before and after lesion-based Rol extraction and augmentation in the CDIS-DDSM dataset

Raw ROIs Training ROIs Validation ROIs Testing ROIs Augmented
mammograms (80%) (10%) (10%) Training ROIs
1577 1681 1360 152 169 4080

BI-RADS 3

ACR Category B

ACR Category C

(a)

ACR Category A

ACR Category D

BI-RADS 2

BI-RADS 0

BI-RADS 4

BI-RADS 5

®

Figure 2. The distribution of a) ACR and b) BI-RADS categories in the CBIS-DDSM dataset
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(a) ®)

ACR Category A

ACR Category B 19%
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= ACR Category C
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ACR Category D
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Figure 3. MLO and CC views of mammograms from the CBIS-DDSM dataset (a, b) and INbreast dataset (c, d)

BI-RADS 3

BI-RADS 2

BI-RADS 4

BI-RADS 6

BI-RADS 5 (b)

Figure 4. The distribution of a) ACR and b) BI-RADS categories in the INbreast dataset

2.2.  Pre-processing Pipeline

The pre-processing phase plays a vital role in
achieving accurate segmentation of mammography
images, primarily due to challenges such as low
signal-to-noise ratio (SNR) and low contrast [21]. To
address this challenge, our proposed method
incorporates a range of essential pre-processing steps
to prepare the images for segmentation. The pre-
processing steps employed in this study align with our
previous paper [21], as depicted in Figure 5.

2.2.1. Denoising Techniques

Various types of noise, such as salt and pepper,
speckle, Gaussian, and Poisson, can significantly
degrade image quality, making it difficult to analyze

816

and interpret mammograms accurately [22]. To
mitigate this issue, a range of denoising approaches
has been developed. In this study, we employed the
Wiener filter [23], [24], a spatial domain linear filter,
to optimize image quality by reducing noise while
preserving the essential image details and structures.
Figure 5b shows the result of the Wiener filter on the
mammogram. To evaluate the effectiveness of the
Wiener filter, it was compared with other denoising
methods, such as Gaussian denoising, median
filtering, and the Non-Local Means (NLMeans) filter.
The Gaussian denoising assumes the noise is
Gaussian-distributed and applies simple filtering to
reduce its effect on the image. The median filter
replaces each pixel with the median value from its
neighborhood, preserving edges better than mean
filters. NLMeans [25] utilizes a non-local averaging

FBT, Vol. 12, No. 4 (Autumn 2025) 812-829
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method that assesses the similarity between pixels
over a larger area, effectively reducing noise while
maintaining the structural integrity of the image. The
comparative analysis of these denoising techniques
reveals that Wiener excels in terms of performance
metrics, including the Peak signal-to-noise
ratio(PSNR), and Mean Square Error (MSE) [26].
Five random samples were selected, and denoising
techniques were employed. As detailed in Table 2, the
Wiener filter exhibits higher PSNR values and lower
MSE compared to other approaches in all images,
highlighting its effectiveness in removing noise while
preserving detailed information in mammograms.

2.2.2. CLAHE Technique

Enhancing image quality is essential for revealing
subtle features within images. The Contrast-Limited
Adaptive Histogram Equalization (CLAHE) approach
[27] is a powerful technique to improve image
contrast, particularly for highlighting features such as
tumors and other abnormalities [23], [24]. Unlike
traditional histogram equalization, CLAHE operates
on smaller image sections, referred to as tiles, enabling
localized contrast enhancement. Bilinear interpolation

Wiener filter

is employed to prevent the appearance of false
boundaries between adjacent tiles. Figure 6 illustrates
the effectiveness of the localized approach in CLAHE
compared to histogram equalization, which processes
the entire image and can lead to undesirable effects
such as over-brightening and saturation. To further
assess the efficacy of CLAHE in comparison to
histogram equalization, the Contrast-to-Noise Ratio
(CNR) is calculated, presenting the clarity of an image
by comparing the contrast of the region of interest to
the background noise. Five random samples were
selected and enhanced using CLAHE and traditional
histogram equalization. As presented in Table 3, the
CNR of images enhanced by CLAHE was superior to
images processed with traditional histogram
equalization. These findings, along with Figure 5Sc,
highlight the effectiveness of CLAHE in improving
image quality for detecting breast abnormalities.

2.2.3. ROI Extraction

In this study, it is assumed that the positions of
masses in the mammograms have been identified
before the segmentation process. The primary
objective is to refine the segmentation technique to

CLAHE contrast
enhancement

[Lesion-based ROI Extraction]

@

Figure 3. The pre-processing pipeline for mammogram inputs in the CBIS-DDSM dataset
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Table 3. A comparison of various denoising methods by calculating PSNR and MSE using 5 mammograms in the CBIS-
DDSM dataset

Image PSNR MSE

Denoising . . . NL- . . Median NL- .
Method Gaussian Median Filter Means Wiener Gaussian Filter Means Wiener
P 00209 36.11 44.00 42.84 44.82 15.9 2.58 3.37 2.14
P 01423 42.14 48.91 46.21 49.18 3.96 0.83 1.55 0.785
P 01151 37.05 43.98 4343 45.01 12.80 2.59 2.94 2.04
P 00947 38.92 43.36 42.05 43.57 8.32 2.99 4.05 2.85
P 00160 35.84 41.26 40.33 41.55 16.93 4.86 6.02 4.54

(@) ® (©

Figure 4. A comparison of contrast enhancement techniques on a sample from the CBIS-DDSM dataset (P_01423), a) input
image, b) the input mammogram enhanced using CLAHE, c) Histogram Equalization

Table 2. Performance comparison of two contrast enhancement techniques using the CNR metric in the CBIS-DDSM
dataset

Contrast to Noise Ratio (CNR)

Image CLAHE Histogram Equalization
P_00209 1.04 0.96
P 01423 0.959 0.801
P 01151 0.826 0.695
P_00947 1.21 0.991
P 00160 1.07 0.90

1solate and analyze lesions accurately. Therefore, . ..
. Y . Y : 2.2.4. Resize and Normalization
the entire mammogram is cropped around the lesion
to ensure that subsequent analyses are focused
solely on the region of interest (ROI). The number

of ROI samples after this extraction step is

In the subsequent processing steps, the Regions of
Interest (ROIs) undergo resizing and normalization to

; . ) ) standardize their dimensions and pixel values for
presented in Table 1. In cases involving multiple

tumors, this method is applied to each tumor
individually, thereby increasing the number of
samples. Figure 5d shows the cropped ROIs for

consistent analysis. ROIs are resized to a spatial
resolution of 224224 pixels. Min-max normalization
is then applied to rescale the pixel intensities,
: standardizing the range of pixel values.

each lesion.
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2.2.5. Data Augmentation

To improve the robustness and generalization
ability of the model, data augmentation plays a crucial
role, especially when working with limited or
imbalanced datasets [28]. By generating additional
data variations, the model becomes less prone to
overfitting and can better generalize to unseen data. In
this paper, we employed common data augmentation
methods, including 90-degree image rotation and
random flips, as shown in Figure 5e. These techniques
preserve the original content while introducing diverse
perspectives, enriching the training process. The
number of samples after data augmentation is
presented in Table 1. Notably, only the training set
undergoes augmentation; the validation and test sets
remain unchanged to ensure reliable evaluation,
enhance model generalization, and prevent data
leakage.

2.3. Semantic Segmentation

Semantic segmentation is a fundamental computer
vision technique employed to partition an image into
multiple meaningful segments, with each segment
corresponding to a particular object or region in the
image [29]. In this technique, every pixel in an image
is classified into a specific category or class. The
prediction is a pixel-level map where each pixel is
labeled with one of the predefined Cclasses,
representing the objects or Regions of Interest (Rol).
Semantic segmentation models are relatively
lightweight compared to more complex approaches,
such as panoptic and instance segmentation. These
models focus on pixel-level classification without the
added complexity of distinguishing individual object
instances, which leads to fewer parameters and
quicker inference times. For instance, UNet++
typically has around 9 million parameters,
significantly lower than many instance or panoptic
segmentation models that often exceed 30 million
parameters (e.g., Mark R-CNN with ~44M parameters
or Panoptic FPN with ~50M parameters). The reduced
computational cost of semantic segmentation allows
for practical deployment in clinical environments with
limited hardware resources [30].

In this paper, we used the UNet++ model
architecture [13] for breast mass segmentation. The
UNet++ [13] network, an enhanced version of the

FBT, Vol. 12, No. 4 (Autumn 2025) 812-829

original U-Net [12], has consistently achieved
superior results due to a novel skip connection and
deep supervision. UNet++ employs a deeper network
architecture and utilizes convolutional layers or
additional blocks to enhance the model's learning
capacity. Similar to U-Net, this model architecture
consists of two main components: an encoder and a
decoder, where the encoder and decoder sub-networks
are connected through a series of nested, dense skip
pathways, allowing for the efficient extraction of
features from both high-level and low-level image
details. The encoder stacks convolutional layers that
consistently down-sample the image to extract
information from it, while the decoder reconstructs the
image features using the process of deconvolution.
The redesigned skip pathways aim to reduce the
semantic gap between the feature maps of the encoder
and decoder subnetworks. Moreover, UNet++
incorporates mechanisms to capture multi-scale
context information, enabling the model to understand
objects and structures at different scales. To enhance
the ability to handle objects of various sizes, dilated
convolutions are used without increasing the number
of parameters.

For additional exploration, we also employed the U-
Net, Pyramid Scene Parsing Network (PSPNet) [31],
and LinkNet [32] for breast mass segmentation. The
PSPNet model incorporates a pyramid pooling
module, aggregating contextual information from
multiple regions of an image at different scales. This
approach enhances the model’s ability to discern
complex structures and boundaries by capturing
global and local dependencies. The LinkNet model,
known for its computational efficiency, follows an
encoder-decoder framework while preserving spatial
information through skip connections. These
connections enable the model to retain fine-grained
details during the down-sampling process, thereby
mitigating the loss of crucial anatomical features.

3. Results

In this section, we conduct extensive experiments to
highlight the effectiveness of the suggested method in
mass mammogram segmentation. First, we introduce
essential evaluation criteria for assessing the semantic
segmentation model's performance. The evaluation
settings are explained in the following section. The
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experimental results obtained from the proposed
model and its analysis are described at the end of this
section.

3.1. Evaluation Metrics

To evaluate the performance of the semantic
segmentation model, we utilized various evaluation
metrics, including the Jaccard Index, precision, True
Positive Rate (TPR), Dice Score Coefficient [33], and
Confusion Matrix. The Jaccard Index, also referred to
as Intersection over Union (IoU), evaluates the
similarity between the predicted mask and the ground
truth. It computes the ratio of the intersection of the
predicted and ground truth regions to the union of
these regions as detailed as follows (Equation 1):

TP

_ 1
TP + FP + FN M

Jaccard Index =

Where TP is true positive, TN is true negative, FP

is false positive, and FN is false negative. A Jaccard

Index value of 1 indicates a perfect overlap between

the predicted mask and ground truth, while 0 indicates
no overlap.

The precision represents the model’s capability to
accurately identify positive pixels (correctly
segmented pixels) among all pixels predicted as
positive. A high precision value indicates effective
minimization of false positives, accurately
distinguishing positive from negative pixels (Equation
2).

TP

TP+FP 2)

Precision =

True Positive Rate (TPR), also known as sensitivity
or recall, is defined as the ratio of true positives to the
sum of true positives and false negatives, as depicted
in Equation 3. It indicates the model's accuracy in
identifying positive pixels.

TP
TPR = oo 3)

The Dice Score Coefficient (DSC), also known as
the Fl-score, is a harmonic mean of precision and
recall. This metric proves especially advantageous in
scenarios involving imbalanced positive and negative
pixels within an image (Equation 4):

2TP
DS = TP rFP PN @

In addition, the Confusion Matrix is a visual metric
for evaluating the performance of semantic
segmentation models. In this matrix, the rows depict
the actual labels, whereas the columns represent the
predicted labels. The values within each cell indicate
the number of pixels that were correctly or incorrectly
classified.

3.2. Experiment Configuration

In this section, we outline the experimental
configuration used to evaluate the proposed method.
The Adam optimizer and Dice loss function [34] were
employed to enhance model training. Additionally, we
tested five different batch sizes and learning rates to
evaluate their effects on the loss function and the dice
score during the training and validation stages. As
summarized in Table 4, a batch size of 16 and a
learning rate of 1e yielded the highest dice scores and

Table 4. Tuning hyperparameters by changing different learning rates and batch size values using the CBIS-DDSM dataset

Hyperparameter Value Train Loss Valid loss Train DSC Valid DSC

le-2 0.081 0.086 91.8% 91.54%

le-3 0.068 0.080 93.15% 92.07%

Learning Rate le-4 0.070 0.083 92.98% 91.85

Se-2 0.093 0.101 90.65% 90.06%

5e-3 0.456 0.462 40.54% 39.62%

4 0.072 0.081 92.78% 91.96%

8 0.069 0.077 93.09% 92.34%

Batch Size 16 0.065 0.079 93.50% 92.19%
32 0.064 0.080 93.49% 92.08%

64 0.064 0.081 93.64% 92.01%
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lowest loss value across training and validation.
Therefore, we selected these parameters for our final
model configuration. Moreover, the model was trained
for 100 epochs on a system equipped with an A100
GPU, utilizing the Python 3.7 and the PyTorch
framework.

3.3. Results
3.3.1. Quantitative Evaluation of Models

In this section, we provide a comprehensive
comparison between the UNet++ model and several
baseline models for breast mass segmentation on the
CBIS-DDSM dataset, using performance metrics such
as TPR, Dice similarity coefficient (DSC), and the
Jaccard index (Table 5). Furthermore, we assessed the
efficacy of our method using the INbreast dataset as a
testing cohort. It is important to note that the model
was exclusively trained on the CBIS-DDSM dataset,
and the INbreast dataset was reserved for evaluation
purposes. The results are detailed in Table 6.

Table 5. The results of our proposed method on the
INbreast dataset

.. Jaccard
Dataset  Precision TPR DSC Index
INbreast 92.83%  88.33% 89.92% 82.00%

3.3.2.Effect of Pre-processing on Model
Performance

To investigate the impact of pre-processing
techniques on model performance, we designed an
experiment with four distinct groups: One group
involved no Wiener and CLAHE techniques. Another
group focused on using CLAHE, while a third group
utilized only the Wiener filter. The final group
incorporated both the CLAHE technique and the
Wiener filter. The results of this experiment are

detailed in Table 7, highlighting how each pre-
processing approach affects the model’s performance.

3.3.3.Cross-Fold Validation
To assess the robustness and generalization
capability of the proposed method, we performed
cross-fold validation on the CBIS-DDSM dataset. The
outcomes of this validation process, presented in Table

8, demonstrate the consistency of the model's
performance across different folds.

3.3.4.Confusion Matrix Analysis

Figures 7 and 8 depict the normalized confusion
matrices for the CBIS-DDSM and INbreast datasets.
These matrices provide insights into the model's
ability to correctly identify non-mass regions (True
Negatives) and mass regions (True Positives) while
maintaining low rates of False Positives and False
Negatives.

3.3.5.Performance Based on Metadata
Categories

We further evaluated the UNet++ model's
performance by analyzing metadata categories,
including BI-RADS assessment, and ACR density,
which are crucial for clinical applications. To visualize
the distribution of segmentation performance across
these categories, we employed Violin Plots [35],
combining features of box and density plots. In these
plots, the X-axis represents clinical categories,
including BI-RADS and ACR, while the Y-axis
corresponds to the segmentation Dise Score
Coefficient. For each violin, the dots along the line
represent different samples in the testing set. A wider
section of a violin plot indicates a higher concentration
of data points, implying that more instances fall within
that range of values. The median line marks the central
tendency of the model’s performance, while outliers

Table 6. The performance comparison between different model networks using the CBIS-DDSM dataset

Dice Score Coefficient

Model Precision TPR (DSC) Jaccard Index
UNet++ 92.33% + 0.5 93.83% + 0.51 92.92% + 0.03 87.05% + 0.049
U-Net 92.09% £ 0.51 93.67% £+ 0.15 92.71% £+ 0.25 86.67% =+ 0.45
PSPNet 92.29% + 0.22 93.68% + 0.24 92.83% £+ 0.10 86.88% £ 0.17
LinkNet 92.29% + 0.37 93.68% + 0.49 92.83% + 0.09 86.87% £ 0.15
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Table 7. Results of 5-fold cross-validation in the CBIS-DDSM dataset

Metric Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Avera&
Dice score 92.79% 94.89% 94.92% 94.44% 94.76% 94.36%
Jaccard index 86.63% 90.23% 90.27% 89.42% 90.03% 89.32%
precision 92.66% 94.18% 93.93% 93.39% 94.21% 93.67%
recall 92.91% 95.60% 95.93% 95.53% 95.31% 95.06%

Table 8. The comparison results between the input images with pre-processing and without pre-processing using the

CBIS-DDSM dataset

Category Precision Recall DSC Jaccard Index

w/o CLAHE and Wiener 91.71% £ 0.29  93.46% + 0.25 92.4% +0.05 86.23% + 0.09
Wiener 91.86% +£0.36  93.62% + 0.38 92.58% + 0.1 86.49% + 0.17
CLAHE 92.11%+0.36  93.09% + 0.46 92.43% + 0.05 86.27% + 0.08

Full pre-processing 92.33% = 0.5 93.83% = 0.51 92.92% = 0.03 87.05% = 0.04
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Figure 5. Confusion matrix of the proposed framework on
the INbreast dataset

appear as dots outside the main distribution. Figures 9
and 10 illustrate the Dice score coefficient results
across different BI-RADS and ACR categories in
CBIS-DDSM and INbreast datasets, respectively.

3.3.6.Qualitative and Visual Analysis of
Segmentation Metrics

Figure 11 showcases qualitative examples of
segmentation masks generated by the UNet++ model,
compared with baseline models, such as U-Net,

LinkNet, and PSPNet, using the CBIS-DDSM dataset.

Moreover, Figure 12 demonstrates the prediction
results on the INbreast dataset, which was used as an
unseen dataset. This visual comparison highlights the
differences in segmentation quality among the models.
To present a more effective evaluation, the
corresponding DSC value is included for each
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Figure 6. Confusion matrix of the proposed framework
on the test set of the CBIS-DDSM dataset

prediction. Four samples with the lowest performance
were selected to further evaluate the limitations of our
proposed method, as depicted in Figure 13.

3.3.7.Convergence of the Training Process

The convergence of a deep learning model is
typically determined by monitoring changes in loss
and accuracy throughout the training process. Figures
14 and 15 show the curves of the training and
validation loss and accuracy of the UNet++ as the
number of iterations increases during the training
process.
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Figure 9. Result analysis in the CBIS-DDSM dataset based on (a) ACR, and (b) BI-RADS
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Figure 7. Result analysis in the INbreast dataset based on (a) ACR, and (b) BI-RADS

(b) Ground Truth (c) UNet++ (d) U-Net (e) PSPNet (f) LinkNet

Figure 11. Qualitative predictions of 4 mammogram samples from the CBIS-DDSM dataset. a) pre-processed
mammography images, b) ground truths, the outputs of ¢) UNet++, d) U-Net, ) PSPNet, f) LinkNet
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(a) Input

(b) Ground Truth

(¢) UNet++

Figure 8. Qualitative predictions of 3 mammogram samples from the INbreast dataset. a) pre-processed mammography

images, b) ground truths, c) the outputs of UNet++

4. Discussion

The comparative analysis presented in Table 5
highlights the superior performance of the UNet++
model compared to baseline models, such as U-Net,
LinkNet, and PSPNet, in breast mass segmentation
tasks on the CBIS-DDSM dataset. This superiority is
evident across all evaluation metrics, including
precision, TPR, DSC, and Jaccard index. Furthermore,
testing on the INbreast dataset shows that the model
maintains consistent performance despite being
trained on a different dataset, as outlined in Table 6.
This result highlights the model’s generalization
capability, an essential factor for real-world clinical
applications where models must handle diverse

824

imaging conditions.

The experimental results summarized in Table 7
demonstrate the impact of various pre-processing
techniques on the performance of the UNet++ model.
The combination of CLAHE and Wiener filtering
yielded the highest improvement in segmentation
metrics, while the absence of pre-processing resulted
in comparatively lower performance. To ensure the
reliability and generalization capability of our
framework, we utilized cross-fold validation across
datasets. The results in Table & indicate a consistent
performance of the UNet++ model across all folds.
The normalized confusion matrices illustrated in

FBT, Vol. 12, No. 4 (Autumn 2025) 812-829
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(a) Input

(b) Ground Truth

(c) UNet++

Figure 10. Qualitative predictions of the 4 samples with the lowest performance from the CBIS-DDSM dataset. a) Pre-
processed mammography images, b) ground truths, c) the outputs of the UNet++
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Figure 9. The training and validation loss curves of our
proposed method.

Figures 7 and 8 demonstrate that the model is reliable
and effectively distinguishes between mass and non-
mass regions. This reliable performance is vital for
clinical applications to minimize diagnostic errors,
improve patient outcomes, and enhance trust in Al-
assisted diagnostic tools. Our analysis, depicted in
Figure 9b and Figure 10b, demonstrates that the
proposed method maintains acceptable DSC values

FBT, Vol. 12, No. 4 (Autumn 2025) 812-829
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Figure 15. The training and validation accuracy curves
of our proposed method

across different BI-RADS categories. Accurate
segmentation in higher BI-RADS categories, which
are associated with a greater likelihood of malignancy,
can aid radiologists in making informed decisions
regarding biopsy recommendations and treatment
planning. Additionally, breast density is a significant
factor influencing the risk of breast cancer and the
sensitivity of mammographic detection. Figure 9a and
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Figure 10a show that ACR category 2 demonstrates
the highest variability in segmentation accuracy across
both datasets, whereas ACR categories 3 and 4 exhibit
more stable and reliable performance. Although
CBIS-DDSM and INbreast show similar performance
trends, slight differences are observed due to dataset-
specific characteristics.

Figure 11 presents qualitative comparisons of
segmentation outputs from UNet++ and other baseline
models. The visual analysis reveals that UNet++
produces segmentation masks that closely match the
ground truth, achieving a high DSC value. Figure 13
presents four representative samples exhibiting low
segmentation performance (DSC 0.70-0.83), as
identified by the violin plot in Figure 9. The first row
(P_106_LEFT_MLO) corresponds to a benign lesion
(BI-RADS 2) with a circumscribed margin and clear
boundaries, as confirmed by pathological assessment
[36]. However, the ground truth annotation
inaccurately depicts the lesion with a spiculated and
irregular shape. The second row (P_1834 Right CC)
involves an oval mass with an obscured margin and an
incomplete pathological examination (BI-RADS 0),
suggesting diagnostic uncertainty. The images in the
third (P_432 LEFT MLO) and fourth
(P_1394 LEFT MLO) rows, categorized as BI-
RADS 4 and 5, respectively, represent a spiculated
mass with irregular margins. Spiculated lesions
present significant challenges in mammographic

analysis due to their complex morphology and
interaction with surrounding breast tissue [37].

The training and validation loss and accuracy
curves shown in Figures 14 and 15 indicate that the
UNet++ model is learning effectively from the data,
achieving a balance between bias and variance. The
absence of overfitting implies that the model captures
the underlying data distribution well, generalizing
effectively to unseen data.

To further validate the effectiveness of our method,
Table 9 compares the proposed method against several
state-of-the-art segmentation methods reported in
recent literature. The results demonstrate that our
method consistently outperforms existing methods
across all key evaluation metrics, including DSC,
precision, and the Jaccard index.

5. Conclusion

In this study, we have introduced a breast mass
segmentation method that utilizes an optimized pre-
processing pipeline and the UNet++ deep learning
method. Although more complex models may achieve
marginally better results, our method offers a balance
between high segmentation accuracy and lower
computational cost. This balance makes it more
suitable for real-world clinical applications, where
efficiency and scalability are essential. Extensive
experiments on the CBIS-DDSM and INbreast

Table 9. Performance comparison of the proposed system and state-of-the-art methods on the CBIS-DDSM dataset

Jaccard

Reference Pre-processing Model DSC Index Recall/Sensitivity
Sun et al. Removing artifacts, Attention 81.8% ) i
[14] normalization U-Net o7
Deeply
Rajalakshmi supervised o
et al. [15] CLAHE U-Net (DS~ 529% - )
U-Net)
ROI extraction, denoising,
Baccouche et CLAHE, normalization, Connected- 89.52% 80.02% .
al. [17] . UNet
augmentation
Tsochatzidis ROI extraction, augmentation UNet+ 72.2% 56.5% -
et al. [38]
Su et al. [39] Removing artifacts, CLAHE {816%_ 74.5% 64% -
El-Banby Remqvmg artifacts, CLAHE, U-Net 87.98% ) 90.58%
[40] normalization, and augmentation
Wiener denoising, CLAHE,
removing artifacts, 92.92% =+ 87.05% = o
Ours normalization, ROI extraction, UNet++ 0.03 0.04 93.83% £0.51

augmentation
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datasets demonstrated that our proposed method
consistently outperforms traditional segmentation
models, including U-Net, LinkNet, and PSPNet,
across evaluation metrics such as precision, TPR,
DSC, and Jaccard index. Notably, our findings
highlight the model’s generalization ability, as it
maintains high performance on an independent dataset
despite being trained on a different one. This
robustness is essential for ensuring reliability in
diverse clinical where imaging
conditions may vary significantly. Mammograms are
known for their low contrast and low SNR ratio,
making them challenging to analyze. To overcome
these challenges, we have applied a combination of
CLAHE and Wiener filtering, which enhances the
quality of mammogram images. These advancements

environments

have the potential to greatly improve the accuracy and
efficiency of breast cancer screening and diagnosis,
ultimately leading to better patient outcomes. Our
comparative analysis confirmed that pre-processing
plays a crucial role in enhancing model performance.

Notably, the highest segmentation accuracy was
achieved when both contrast enhancement and noise
reduction techniques were applied, highlighting the
effectiveness of combining these methods. The
qualitative comparisons with baseline models revealed
that UNet++ produces segmentation masks that are
more closely aligned with ground truth annotations,
further reinforcing its effectiveness. By analyzing
segmentation performance across different BI-RADS
and ACR categories, our method maintains acceptable
DSC values across varying risk levels and breast
density categories. It can aid radiologists in making
informed decisions regarding biopsy
recommendations and treatment planning. Despite the
promising results of this study, several limitations
need to be addressed in future research. One key
limitation is the lack of diversity and clinical balance
in the used datasets. Increasing dataset diversity,
especially in terms of BI-RADS categories and ACR
classifications, will enable a more comprehensive
evaluation of the model’s performance across
different clinical scenarios. To enhance the model's
generalizability, future studies should incorporate
larger and more diverse datasets, particularly those
including real-world hospital data and expert
annotations from radiologists.

FBT, Vol. 12, No. 4 (Autumn 2025) 812-829

Future research should also focus on extending the
segmentation capabilities of UNet++ by integrating
additional modules for lesion classification, risk
assessment, pathology information, patient history,
and decision support. Furthermore, improving model
adaptability to various imaging conditions and
optimizing computational efficiency will be essential
for broader clinical adoption, particularly in resource-
limited and remote healthcare settings.
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