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Abstract

Purpose: Lung cancer is a deadly disease that has high occurrence and death rates, worldwide. Clinicians are
widely using computed tomography imaging for the detection of lung cancer. Radiomics extracted from medical
images together with a machine learning platform has given encouraging results in lung cancer diagnosis.
Therefore, this study is proposed with the aim of efficiently applyingand evaluatingradiomicsand ML techniques
to classify pulmonary nodules in CT images.

Materials and Methods: Lung Image Data Consortium is utilized in which nodules are given malignancy scores
1 through 5 i.e. benign through malignant. Three scenarios are created using these scores: G54 Vs G12, G543 Vs
G12, and G54 Vs G123. Radiomics is extracted using Shape, Gray Level Co-occurrence Method, Gray Level
Difference Method, and Gray Level Run Length Matrix along with Wavelet Packet Transform. To select a
relevant set of features, four techniques i.e. Chi-square test, Analysis of variance, boosted ensemble classification
tree and bagged ensemble classification tree are applied. The classification of nodules into benign or malignant
is evaluated by using six models of support vector machine.

Results: The results, in Scenario 1, show that CGSVM+Chi-square yields the best sensitivity of 81.4%. In
Scenario 2, LSVM+ANOVA yields the best sensitivity of 80.5% compared to the rest of the models, and in
Scenario 3, FGSVM+BACET gives the best sensitivity of 72.3% compared to the rest of the models.

Conclusion: Overall, the study demonstrates that the radiomics and feature selection methods employed in
combination with the different support vector classifiers performed significantly and achieved decent results for
the classification of CT pulmonary nodules. The outcome thuscan help the clinicians to diagnose, and make better
decisions and treatments.

Keywords: Lung Cancer; Lung Image Data Consortium; Radiomics; Support Vector Machine; Feature Selection;
Machine Learning.
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1. Introduction

Lung Cancer (LC) is adisease impactingboth male and
female populations worldwide. It has occupied the second
most places among all the types of cancers, having 2.21
million cases and the rate is gradually increasing, The
condition in which there is an uncontrollable abnormal
growth of the cells in lung tissues is referred to as nodule
and slowly it spreads to other organs, too. Many factors
including smoking, drug intake, and inhalation of harmful
substances produced by industries and vehicles are the
main cause of LC [1]. The major impactof LC is seen in
people with age over 70 years while a small number of
people detected with this disease age less than 45 [2]. Ina
report provided by the World Health Organization (WHO)
[3], about 1.80 million deaths are caused just because of
LC. A report on USA statistics from the period (2011-
2015)revealed that 439.2 per 100,000 cases, on average,
were recognized and 163.5 per 100,000 persons lost their
lives each year due to LC. In the UK also, every year,
approximately, 44,500 cases are diagnosed with LC [4].

For early detection of LC, Pulmonary Nodules (PNs)
are primarily focused as they provide a direct picture of
cancer spread. A lung nodule comprises a round lesion
having a diameter of > 3 cm. It can be benign which is
non-cancerous or malignant which is often referred to as
cancerous | 2]. High mortality increases dramatically in the
presence of malignant lung nodules whereas the patient’s
survival rate is high with benign lung nodules. The early
and accurate diagnosis of LC requires proper
differentiation between benign and malignant nodules [5].
One of the crucial hurdles in the detection of LC is that it
doesn’tshow any symptoms in the early stages. Many of
the cases come into knowledge or are discovered by
doctors when LC reaches its advanced stage and curing
the disease becomes very difficult at that time. Several
clinical techniques are available to detect LC such as
radiology and blood tests, endoscopy, biopsies, X-ray
imaging, etc. Among these, the Computed Tomography
(CT) technique is a highly adopted modality used for LC
diagnosis as it provides fastresults without any pain and
provides in-depth details about tumorlocation, size, shape,
etc. [4]. However, these clinical measures are effective but
perform only subjective analysis and have a high risk of
occurrence of human error due to manual evaluation by
radiologists [6]. Hence, using the capabilities of
Computer-Aided Diagnosis (CAD) s crucial in assisting
medical practitioners with the detection of tumors and the
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proper classification of lung nodules as either benign or
malignant.

The utilization of radiomics has proven its efficacy in
LC diagnosis as it can extract a large number of
quantitative image features [7]. Radiomics is a
quantitative approach that applies data-characterization
algorithms whose purpose is to improve the already
available data using mathematical analysis [5, 8]
Radiomics and advanced leaming approaches can be used
in combination to perform an accurate diagnosis of LC.
The introduction of Machine Learning (ML) in healthcare
has changed the face of disease diagnosis. ML algorithms
have the greater capability to deal with different types of
data and produce classification output with high accuracy.
Parmatasari et al. [9] applied a Support Vector Machine
(SVM) to classify LC and yielded an accuracy of 85.63%.
In another study, Abbas ez al. [10] proposed an automated
system to classify LC into benign and malignant and the
implication of SVM achieved the highest accuracy.

In radiomics, we can get features from 2D Regions of
Interest (ROI) and/or 3D Voxels of Interest (VOI). The
proposed study aims to evaluate the performance of
diagnostic systems by applying 2D radiomics and ML
approaches for the diagnosis of cancer from lung nodules
using CT images. The approach employs the selection of
the most suitable radiomics features for classification.
Various versions of SVM are evaluated through various
feature selection methods under different scenarios. The
performance of the model is evaluated using metrics to
find the best one. The presented framework is useful and
reliable in the successful classification of lung tumors as
benign or malignant.

1.1. Related Work

Shakiretal. [8]developed radiomics-driven models
to classify lung, colon, neck, and head cancerusing CT
images. Analytical radiomics signatures from lung
nodules were extracted and derived from 105 3-D
features. These signatures were incorporated into the
regression model for tumor classification. Validation
on 265 public datasets demonstrated high
classification rates, indicating the robustness of the
models. The study suggested the
development of diagnostic mathematical functions for
cancer diagnosis based on general tumor phenotype.
Belfiore ef al. [11] examined Non-Small Cell Lung
Cancer (NSCLC) CT scan radiomics characteristics'

successful
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resilience among segmentation approaches. Expert
radiologists segmented three 3D-ROIs to analyze
radiomics characteristics in 48 NSCLC patients. The
Intra-class Correlation Coefficient (ICC) measured
feature agreement and calculation parameter
sensitivity. 'Shape' characteristics demonstrated good
agreement (ICC>0.9) and little parameter sensitivity.
A subset of ‘'first-order' and ‘'second-order
characteristics showed good agreement. The study
found that certain radiomics properties can
significantly improve NSCLC CT scan repeatability.
Padmakumari ef al. [12] tested CT radiomics for its
ability to discriminate LC from Tuberculosis (TB) in
low-income nations without lung biopsies. Radiomics
characteristics were derived from 3D segmented CT
images of histologically proven TB or LC patients'
chests. Clinical andradiomicsdifferences between LC
and TB were significant. Radiomics may enhance
resource-limited oncological patient treatment by
identifying these illnesses non-invasively. However,
prospective studies are needed to confirm these
findings.

Radiomics [5] was used in cancer diagnosis,
prognosis, and therapy response prediction by Chen et
al. A 4-feature signature was used to classify lung
nodules using radiomics and CT images. In 72
individuals with 75 PNs, benign and malignant lesions
differed in 76 out of 750 imaging characteristics. The
radiomics signature classified benign or malignant
nodules with 84% accuracy, 92.85% sensitivity, and
72.73% specificity. The study found that radiomics
can enhance lung nodule categorization non-
invasively. The study in [13] developed a radiomics
nomogram using wavelet characteristics to
differentiate between malignant and benign early-
stage lung nodules for high-risk screening purposes.
The training set (N = 70) and validation set (N = 46)
of 116 patients were considered with early-stage
solitary PNs of size 3 cm. Standard CT pictures were
used to extracteach patient's radiomics characteristics.
Using a multivariate logistic regression model, the
researchers generated a radiomics nomogram with an
Area Under the Curve (AUC) of 0.9406, accuracy
0f 95%, and Confidence Interval (CI) of (0.8831-
0.9982) in the training set, and an AUC of 0.8454,
accuracy of 95% CI: 0.7196-0.9712) in the validation
set. Donga et al. [3] used modified gradient boosting
ML to classify pulmonary nodules in CT images.
They preprocess CT images, segment nodule borders,
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extract intensity and texture data, and train/test the
modified gradient boost classifier to discriminate
benign from malignant nodules. The suggested
framework achieves good precision, recall, F1 score,
and validation accuracy on the LIDC-IDRI dataset
(0.957%, 0.91, 0.941, and 95.67%). Comparative
research shows that suggested technique classifies
benign or malignant lung nodules better.

The study in [14] designed a computerized system
trained on samples of Colorectal Cancer (CRC) tissue
to distinguish between eight distinct types of CRC.
Visual descriptors such as local binary pattems,
wavelet transforms, and Gabor filters were used to
generate 532 pathomics characteristics incorporated
into the system. Scale affects CRC tissue
differentiation, as shown by a thorough analysis of
wavelet families and characteristics. With tenfold
cross-validation, the model outperformed previous
research with an accuracy of 95.3%. Importantly, the
research confirmed that classification performance
was preserved when applying wavelet approximations
at the first and second levels. Khehrah et al. [6]
automate lung nodule identification using CT scans.
Grayscale histograms and morphological techniques
isolate lung regions and extract interior features. A
threshold-based method isolates candidate nodules.
Statistical and shape-based characteristics from
nodule candidates produce feature vectors categorized
by SVM. The method's 93.75% sensitivity on a large
lung CT dataset (LIDC) outperforms comparable
approaches. The framework improved lung nodule
identification and diagnosis. SVM classification using
GLCM and RLM features is used to identify lung
cancer by Permatasari et al. [8]. The study classifies
500 Cancer Imaging Archive Database CT pictures
into normal and LC clusters. The study
investigated image preprocessing, region of interest
(ROI) segmentation, and feature extraction. Default
SVM classification accuracy is 85.63%.

Torres et al. [15] experimented Feed forward
networks generalized radiomic CT scan nodule
features. They suggested incorporating statistically
important radiomic features for malignancy detection
to improve repeatability with limited training data.
The best model identified malignancies with 100%
sensitivity and 83% specificity (AUC = 0.94) in an
independent patient population. Alzubaidi et al. [4]
developed a comprehensive and comparative
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methodology for LC diagnosis utilizing CT scan
images, covering global and local aspects. 1000 CT
scan pictures were preprocessed by warping and
cropping. Global and local features' training and
testing make up the framework. Global features from
ten image feature categories are extracted to provide
feature vectors for six machine-learning algoritim
detection models. Gabor Filter, Haar Wavelet feature,
and Histogram of Oriented Gradients (HOG)
outperform others, while SVM outperforms leaming
techniques. SVM with Haar Wavelet, HOG, and
Gabor Filter features achieves 90% accuracy, 88%
sensitivity, and 97% specificity, outperforming global
approaches.

2. Materials and Methods

2.1. Data Set

This research work is proposed to execute the
classification of lung nodules in CT images as benign
or malignant using radiomics, feature selection, and
SVM. The strategy comprises different stages
includingdataset collection, feature extraction, feature
selection, classification, and performance assessment.
Firstly, the dataset is acquired from an online
repository of CT images, and preprocessing is done to
improve the quality ofthe image. Thenthe featuresare
extracted from images using shape and texture
analysis on images directly and on multi-spectral
images as well. Fourthly, filter and embedded-type
feature selection methods are employed to select
relevant features. At last, classifiers are used and the
performance of each model is analyzed using various
evaluation measures.

A dataset plays a vital role in the diagnostic system.
In this work, CT images from the Lung Image Data
Consortium (LIDC) database are utilized. This LIDC

database has 1018 CT patient cases along with four
experienced radiologists' ground truth reports. The
Malignancy Score (MS), 1 through 5, of nodules >
3mm and the annotations accorded by radiologists are
described in detail in [16, 17, 18]. In this study,
random 160 cases were used. The slice count varied in
the range of 110-388. A total of 4157 DICOM slices
of CT scans were hence collected and considered. The
nodules in these CT slices with different MS i.e. score
1 indicating benign, score 2 likely benign, score 3
indeterminate, score 4 likely to be malignant, and
score 5 highly likely to be malignant were separated.
(Table 1a).

Three scenarios were created: Scenario 1 (G54 Vs
G12), Scenario2 (G543 Vs G12), and Scenario 3 (G54
Vs G123). In Scenario 1, nodules with MS 5 and 4
were taken as malignantand that of 3 and 4 were taken
as benign. We discarded lung nodules with MS 3 to
lessen the consequences of an indeterminate
assessmentofnodulemalignancy. Thus thereare 1703
malignant and 1265 benign nodules. Again, Scenario

Table 1a. Lung cancerscore with respective meaning [18]
and number of ROI’s considered

Malignancy Meaning # of nodule ROIs
Score
1 Benign 324
2 Likely Benign 941
3 Intermediate 1189
4 Likely Malignant 820
5 Malignant 883

2 and 3 were created so that indeterminate and
uncertain nodules are grouped as malignant and
benign ones, respectively, to assess the effect of
nodules with malignancy suspicion on the proposed
model’s performance. Accordingly, 2892 malignant
and 1265 benign nodules are grouped in Scenario 2,
and 1703 malignant and 2454 benign nodules are
categorized in Scenario 3 (Table 1b). Some of the

Table 1b. Distribution of nodules with malignancy scores in 3 different Scenarios

Dataset Malignant Benign
Malinancy Score 5 4 1 2
Senario 1 # of nodules 883 820 324 941
Aggregate 1703 1265
Malinancy Score 5 4 3 1 2
Senario 2 # of nodules 883 820 1189 324 941
Aggregate 2892 1265
Malinancy Score 5 4 1 2 3
Senario 3 # of nodules 883 820 3249411189
Aggregate 1703 2454
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samples from the LIDC dataset with different MS are
shown in Figure 1.

Figure 1. LIDC dataset sample images with ROI’s
having malignancy score: 1 to 5

In this work, median filtering is performed as the
pre-processing step to remove redundant noise from
the data. A median filter is a non-linear filter and is
widely used to remove noise from images. The
framework of the proposed methodology is illustrated
in Figure 2.

2.2. Feature Extraction

Feature extraction is performed on the entire
dataset. In this work, radiomics based on texture and
shape features are extracted using statistical
techniques. Initially, from annotations of the
radiologist, the ROI of nodules is obtained. Shape

features of all nodules are extracted. A sub-image of
11x11 pixels is selected around the centroid of each
nodule and texture analysis is carried out. An
overview of these features is briefly described as:

2.2.1. Shape Features

The classification process relies significantly on
several shape factors. These characteristics are critical
since they are directly related to the identification and
prognosis of cancer [19]. Seven such features are
extracted namely Area, Perimeter, Major-axis-Length,
Minor-axis-Length, Max-Intensity, Mean-Intensity,
and Min-Intensity. The list of these extracted features
is given in Table 2.

2.2.2. Texture Features

Texture analysis is a method for image analysis and
classification [20]. It is a way of describing the spatial
distribution of intensities [21] hence enabling the
description of tissue heterogeneity, a property
believed to influence the outcome of cancer treatment
[22]. In this work, Haralick’s texture features are
calculated as per the equations given in [20] from
GLCM, GLDM, and GLRLM [6, 9, 10, 20, 23]. The
second-order statistical method counts the relationship
between two surroundingpixels in GLCM and GLDM
whereas high-order features employ a run-length
matrix such as GLRLM [20]. 88, 20, 44 features arc
extracted using GLCM, GLDM, and GLRLM,

Linear SVM

Quadratic SVM

Cubic SVM

Fine Gaussian SVM
Medium Gaussian SVM
Coarse Gaussian SVM

e Sensitivity

* Specificity

LIDC Dataset /_‘
Preprocessing Classification Perform:fnce Malignant
Evaluation cancer
{Embedded Type |
__.le Boosted ensemble tree |
Feature Feature """ le Bagged ensembled tree |
Extraction Selection - !
| tCTi Tl
R e ! e Type ]
Fm——————————=5 ' J I
| Shape features | :Texlure Features | te Chi-square test |
o | GLCM : e ANOVA :
GLDM ' [ !
GLRLM !
WPT-GLCM |
WPT-GLDM i
|
|

WPT-GLRLM

Figure 2. Proposed framework to diagnose lung cancer
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respectively, taking 4 directions (0) and inter-pixel
distance (d) of one into consideration. Using GLCM
twenty-two texture features are computed viz.
Autocorrelation  (ACOR), Contrast (CON),
Correlation 1 (COR1), Correlation 2 (COR2), Cluster
Prominence (CP), Cluster Shade (CS), Dissimilarity
(DS), Energy (ENR), Entropy (ENT), Homogeneity 1
(HMG1), Homogeneity 2 (HMG2), Maximum
Probability (MP), Sum of Squares: Variance (SOS),
Sum Average (SA), Sum Variance (SV), Sum Entropy
(SENT), Difference Variance (DV), Difference
Entropy (DENT), Information Measure of Correlation
1 (IMC1), Information Measure of Correlation 2
(IMC2), Inverse Difference Moment (IDM), Inverse
Difference Moment Normalized (IDMN).

Five texture features; Contrast (CON), Angular
Second Moment (ASM), Entropy (ENT), Mean (M),

Inverse Difference Moment (IDM) are computed from
GLDM.

Also, using GLRLM eleven features are computed
namely Short Run Emphasis (SRE), Long Run
Emphasis (LRE), Gray Level Non-uniformity (GLN),
Run Length Non-uniformity (RLN), Run Percentage
(RP), Low Gray-Level Run Emphasis (LGRE), High
Gray-Level Run Emphasis (HGRE), Short Run Low
Gray-Level Emphasis (SGLGE), Short Run High
Gray-Level Emphasis (SRHGE), Long Run Low
Gray-Level Emphasis (LRLGE), Long Run High
Gray-Level Emphasis (LRHGE). The list of features
extracted is given in Table 2 and the list of feature
classes along with the no of features extracted in each
class is provided in Table 3.

2.2.3. WPT Features

The discrete wavelet transform (DWT) is a multi-
leveled sub-band framework which decomposes an

Table 2. List of features per class

image into the approximation image (LL) and details
images (LH, LV, LD). The approximation sub-band,
LL is then decomposed further into a second level of
approximation and details, and so on. WPT is an
extension of Discrete Wavelet Transform (DWT)
where decomposition is carried on both
approximations and details into a further level of
approximations and details [24, 25]. In this proposed
scheme, a two-level WPT is performed, as shown in
Figure 3. There is no need to perform a deeper
decompositionbecause, after the secondlevel, the size
of the image becomes too small, and no more valuable
information is obtained [24]. The second level of
decomposition provides one image of approximation
and 15 images of details which are displayed in Figure
3. A comprehensive description of realization and
equations used are provided in [24- 26]. In this work,
Daubechies wavelet family, dbl, db2, and db3,
introduced by Daubechies [27], are applied to
implicate WPT on each of the sub-images. As
discussed, this step generates 16 sub-images whose

Figure 3. Block diagram of WPT

Autocorrelation (ACOR), Contrast(CON), Correlation 1 (COR1), Correlation2 (COR2), Cluster Prominence (CP), Cluster Shade
(CS),Dissimilarity (DS), Energy (ENR), Entropy(ENT), Homogeneityl (HMG1), Homogeneity2 (HMG2), Maximum Probability

(MP), Sum of Squares: Variance(SOS), Sum Average (SA), Sum Variance (SV), Sum Entropy (SE), Difference Variance (DV),

GLCM Difference Entropy (DE), Information Measure of Correlationl (IMC1), Information Measure of Correlation2 (IMC2), Inverse
Difference Moment(IDM), Inverse Difference Moment Normalized (IDMN)
GLDM Contrast (CON), Angular Second Moment (ASM), Entropy (ENT), Mean, Inverse Difference Moment (IDM)
Short Run Emphasis (SRE), Long Run Emphasis (LRE), Gray Level Non-uniformity (GLN),

GLRLM Run Length Non-uniformity (RLN), Run Percentage (RP), Low Gray-Level Run Emphasis (LGRE), High Gray-Level Run

Emphasis (HGRE), Short Run Low Gray-Level Emphasis (SGLGE), Short Run High Gray-Level Emphasis (SRHGE), Long Run

Low Gray-Level Emphasis (LRLGE), Long Run High Gray-Level Emphasis (LRHGE)

Fsel;:lll):es Area, Perimeter, MajorAxisLength, MinorAxisLength, Max_Intensity, Mean_Intensity,Min_Intensity
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Table 3. List of feature classes and feature count per class

Feature class No of the features extracted Total
Shape 7
0”0 22
45 22
GLCM 9000 22 88
—~ 135 22
S 0
= 0 5
g 45 5
=}
GLDM g 90" 5 20 152
2 135° 5
A 0 11
45 11
GLRLM 90" 11 44
135° 11 7455
dbl 88*16 1408
WPT-GLCM db2 88*16 1408 4224
o db3 88*16 1408
ET dbl 20%16 320
WPT-GLDM i db2 20%16 320 960
== db3 20%16 320
dbl 44*16 704
WPT-GLRLM db2 44*16 704 2112
db3 44%16 704

texture was re-analyzed using texture analysis
techniques (3.2.2) and are denoted as WPT-GLCM,
WPT-GLDM, and WPT- GLRLM. The list of features
extracted is given in Table 2 and the list of feature
classes along with the no of features extracted in each
class is provided in Table 3.

2.3. Feature Selection

ML models benefit from Feature Selection (FS),
which aims to extract only the most informative
features and remove noisy non-informative irrelevant,
and redundant features [28]. The FS that are routinely
used are grouped into three methodological
categories: Filter Type FS (FTFS), Wrapper Type FS,
and Embedded Type FS (ETFS) methods. FTFS
methods use feature ranking as the evaluation metric
for FS. In this work, four algorithms were used for all
three scenarios. Two FTFS methods, Chi-square tests
and the Analysis of Variance (ANOVA), which have
proven significant to the detection of lung nodules
using radiomics and ML [29] are used. Also, two
ETFS methods, Boosted Classification Ensemble Tree
(BOCET) and Bagged Classification Ensemble Tree
(BACET) are used. The ETFS entails integrating the
feature selection process directly into the model
training process [30].

FBT, Vol. 12, No. 4 (Autumn 2025) 742-756

2.3.1. Chi-Square (x?) Test

¥? tests are statistical tests used to determine if
categorical variables are significantly associated. The
calculated y? statistic can be compared against a
critical value from the chi-square distribution with
degrees of freedom determined by the number of
categories in the feature and target variables. If the
calculated y? value exceeds the critical value, it
indicates a significant association between the feature
and the target, suggesting that the feature is relevant
for classification or prediction [31]. Features with a
high y?value and alow p-value are selected for further
analysis becausethey aredeemed more pertinent to the
task. The mathematical formula for calculating the
statistic for a single cell is as follows (Equation 1):

B ((0 - E)?

. M)

¥?

where y? is the Chi-Square statistic for a specific
cell. ‘O’ is the observed frequency in the cell
(intersection of a feature category and a target
category). ‘E’ is the expected frequency in the cell
under the assumption of independence. The expected
frequency E is calculated using the following formula
(Equation 2):
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Row Total = Column Total

Total Observations 2)

Higher Chi-Square values suggest a stronger
association between the feature and the target, which
can indicate the relevance of the feature for
classification or prediction tasks. For detecting lung
nodules, this technique identifies which radiomic
characteristics have a significant correlation with the
presence or absence of cancer.

2.3.2. Analysis of Variance (ANOVA)

Analysis of Variance (ANOVA) is a statistical

technique used to examine the differences between
group means in a dataset [32]. In the context of lung

nodule detection using radiomics and ML, ANOVA
assists in evaluating the variability of radiomics
features across distinct classes or groups, such as

nodules and non-nodules. Features that demonstrate

significant variability between these categories are

regarded essential for differentiating them and thus are
selected for further analysis as shown in Table 4. The

variations between the sample mean, as well as the
variation within each of the samples, are computed.
Higher F-statistic values indicate greater variation
between groups and suggest that the featureis relevant
for differentiating the groups. Thus, features with

Table 4. The basic mathematical equation for performing
ANOVA

Mean(i) = Z(Xj) / ni
Yij is the value of feature Y for
the j observation
in group i, and
n; is the number of
observations in group i

Calculate the group means
For each group i;
(where i =1 to m),
calculate the mean of the
numeric feature Y

Calculate the overall mean
of all values of the numeric
feature Y across all groups

Overall Mean = Z(2(Yy)) / N
Where, N is the total number
of observations

Calculate the between-group
sum of squares (SSB)

SSB = %(n; * (Mean(i) -
Overall Mean)"2)

Calculate the within-group
sum of squares (SSW)

SSW(i) = ((Xij - Mean(i))*2)

Then, sum up the SSW(1)
values for all groups

SSW = Z(SSW(i))

Calculate the degrees of
freedom (df)

Between-group df (dfB) = m-1
Within-group df (dfW) =N -m

Calculate the mean squares
(MS)

Mean Square Between (MSB)
=SSB/dfB

Mean Square Within (MSW) =
SSW /dfwW

Calculate the F-statistic

F=MSB/MSW

749

higher F-statistic values are typically selected for
further analysis or model building.

Radiomic characteristics that demonstrate the most
significant associations or variations concerning the
presence or absence of LC may be systematically
recognized and retained. This improves the precision
as well as the efficacy of predictive ML for lung
nodule detection by ensuring that only the most
relevant and discriminatory features are taken into
account during the model-building stage.

2.3.3.Boosted Classification Ensemble Tree
(BOCET)

Boosted Classification Ensemble Tree [33] is a
robust ML approach that constructs a highly accurate
predictive model by aggregating predictions from
numerous weak models such that decision trees as
shown in Figure 4. In FS, the boosting technique
entails the sequential training of decision trees on
distinct subsets of the data, with a heightened
emphasis on misclassified occurrences throughout
each iteration. The method prioritizes characteristics
that significantly contribute to proper classification,
resulting in the automated inclusion of important
features throughout the constructing process of the
model. This guarantees that the most informative
characteristics are highlighted and employed in the
ultimate ensemble model.

Figure 4. Boosted Classification Ensemble Tree

FBT, Vol. 12, No. 4 (Autumn 2025) 742-756
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2.3.4.Bagged Classification Ensemble Tree
(BACET)

The Bagged Classification Ensemble Trees, also
referred to as bagging, is an ensemble learning
approach that seeks to enhance the accuracy of a
model by creating numerous models trained on
distinctsubsetsofthe trainingdata [34]. Subsequently,
each model is employed to generate predictions, and
the outcomes derived from these models are
aggregated to yield a conclusive forecast. During FS,
the bagging technique entails the random picking of
subsets from the dataset, followed by the training of
separate decision trees on each of these subsets as
depicted in Figure 5. Features that regularly manifest
in the highest-performing trees are deemed significant
and are preserved for subsequent study. Both
approaches dynamically detect and prioritize pertinent
characteristics while constructing intricate models.
This phenomenon facilitates the development of more
precise and robust prediction models for the
identification of lung nodules. The algorithms for
decision tree-based BOCET and BACET are
presented in Algorithm 1 and Algorithm 2.

TIJ.
Al b h
A

Figure 5. Bagging Classification Ensemble Tree

2.4. Classification and Performance
Evaluation

Once the relevant features are selected using
approaches explained in the above section, the
classification of LC into 2 classes (i.e. benign and
malignant) is then performed using a robust approach
namely the SVM (Figure 6). SVM has emerged as a
significant classifier in the domain of medical image
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Algorithm : Boosting
Input: Training Sample , Classifier L, iterations /
Output: Result L

Training:

normalize the weights and make the total weight equal to m
Si = Sample firom S according to the distribution

L; = Train a classifier on S; via L

1

= o le- € S;; Li(x):yweight(xi)

€i

Bi-1—

—e;

weight(x;) = weight(xy fi for all x;, where Li(x;)=yi
end for
Lg =arg max 1 x)-ylog(1/p1)

Algorithm : Bagging

Input: Training Sample S, Classifier L, iterations /
Output: Result Lz

Training:

fori=1tol

Si = bootstrap sample from S
Li = train classifier on S, via L
end for

L =arg max Xpi(=y1

analysis as it requires less training and is easy to
implement [35]. SVM can be extended to handle
nonlinearly independent data by transforming the
input features into a higher-dimensional space using a
kernel function. This allows for finding a non-linear
decision boundary in the original feature space. The
decision function with a kernel can be represented as
(Equation 3):

fO) = Zh o yk(xpx)+b (3)

Where k(x; x) is the kernel function that computes
the similarity between data points x; and x, and «; are
the learned coefficients. k can be Linear Kernel,
Polynomial Kernel, and Radial Basis Function (RBF)
Kernel [35,36] also known as Gaussian SVM is given
in the following equations (Equations 4-6):

k(%) = xpx 4
kQGo,x) = (x;x +¢)? (5)
k(x,x) = elix+o)’ (6)
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Figure 6. SVM forclassification; (a) illustrates the feature space of data pointsandtheirdecision boundary. (b) and
(c) illustrate the non-linear data points and their transformation into higher space using a kernel function

The trainingof SVM involves solving a constrained
optimization problemto find the optimal hyperplane
or decision boundary [37]. The kernel trick is
employed to transform the feature space, enabling the
algorithm to capture complex decision boundaries.
The training process involves solving an optimization
problem with the help of Lagrange multipliers and
dual problem formulation. Hence, SVM offers a
versatile framework for classification tasks, with
different kernel functions enabling the modeling of
complex decision boundaries [38].

To evaluate a model, it is necessary to check its
performance using some metrics called performance
evaluation metrics like Accuracy, Sensitivity,
Specificity, and Area under Curve (AUC) [37].
Accuracyis simply the ability of the model to compute
many accurate predictions to the total figure of
predictions. Sensitivity, also known as Recall, is used
to compute the number of true positives (#p) and
Specificity refers to the ability of the model to predict
true negatives (¢n). For all these metrics, a value close
to 1 indicates a good classification result and vice-
versa. The Receiver Operating Curve (ROC) tells how
well a model performs. The data is divided into ‘k’=5
folds and the model is trained using ‘k-1" folds. The
AUC is computed and the process is repeated until all
the 5 folds are utilized as test sets [37, 39]. In the end,
‘k> AUC values are averaged to get cross-validated
AUC. The mathematical equations used to calculate
the evaluation metrics are provided as follows
(Equations 7-9):
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Accuracy = Yop ¥ Yon @)
Yoo+ Yein+ Yp, + Vg
C e s tp
Sensitivity /Re c all = ———— 8
Yip + Y ®)
Specificity = L 9)
Yin+ Y

Here, Ytp, Ytn, Yp, and Yfn denote true-positive,
true-negative, false-positive, and false-negative.

Within the framework of this investigation, a
thorough examination was performed utilizing SVM
on CT images taken from the LIDC database. We
experimented with different kernels of SVM such as
Linear, Quadratic, Cubic, Fine Gaussian, Medium
Gaussian, and Coarse Gaussian. The Linear SVM
(LSVM) employs a straightforward linear kemel, ideal
for data separable by a straight line. Quadratic SVM
(QSVM) enhances this by introducing quadratic
kernels, accommodating more intricate separations.
QSVM may be preferable to linear SVM when the
border does not comprise a straight line but rather a
curved boundary. Cubic SVM (CSVM) goes further,
leveraging cubic kernels to capture even more
complex relationships. A more precise classification
model may be generated using a cubic SVM when the
lung cancer data reveals very complicated and curved
correlations among its components. Fine Gaussian
SVM (FGSVM), featuring a narrow Gaussian kemel,
excels in intricate pattern recognition, while Medium
Gaussian SVM (MGSVM) finds the balance between
detail and generalization. It works by projecting data
into an infinite-dimensional space using Gaussian
functions. On the other hand, Coarse Gaussian SVM
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(CGSVM) employs a wider Gaussian kernel, focusing
on broader data trends. These diverse SVM kernels
empower data scientists to tailor their approach,
matching the kernel's complexity to the underlying
data distribution, thereby optimizing classification
accuracy and robustness. All the above six SVM
models are used for classification, in all the 3
scenarios, and are evaluated for different performance
metrics.

3. Results

In this proposed work, the LIDC database is used to
diagnose LC. The whole process of implementation
has been performed using MATLAB 2017b and
2021a. A 64-bit computer system with 16 GB RAM
was utilized for the purpose. A total of 4157 slices of
CT images are used.

ROI of nodules for every slice was obtained using
the radiologists' annotations. The shape features of
every noduleare retrieved (Section 2.2.1). To compute
all 152 of Haralick's texture characteristics (Section
2.2.2), a sub-image consisting of 11x11 pixels is
chosen around the centroid of every nodule. Using all
four spatial directions at 6 = 0o, 450, 900, and 1350,
the GLCM, GLDM, and GLRLM matrices are created,
keeping inter-pixel distance ‘d’=1, which can have
major implications. Moreover, WPT is applied up to
level 2 for each sub-image, producing 16 multi-scaled
mini-images. Daubechies wavelet family dbl, db2,
and db3 were used as the basis functions and the WPT
texture features (Section 2.2.3) were evaluated in all 4
directions as above. A total of 4224 WPT-GLCM
features, 960 WPT-GLDM features, and 2112 WPT-
GLRLM features were retrieved. Hence, a cohort of
7455 features wascomputed (Table 3). Feature scaling
(min-max normalization) is employed to normalize
the feature range in preparation for further evaluation.

FS is done to obtain the most discriminative
featuresusing two FTFS techniques, Chi-square tests
and ANOVA, andtwo ETFS techniques, BOCET and
BACET. Based upon the ranking established
individually by four FS techniques, four different
radiomics feature sub-sets, each consisting of only
eight relevant features, were selected to discriminate
between benign and malignant nodules. We restricted
the use of the first 8 features only for classification
because the use of more than 8 features did not help
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the classifier to improve its accuracy any further.
Subsequently, four distinct sets of relevant features are
available for classification in the next phase.

In this study, six types of ML classifiers were used:
LSVM, QSVM, CSVM, FGSVM, MGSVM, and
CGSVM. All were evaluated to check the efficacy of
four different sets of selected shapes and radiomic
features in detecting lung nodules. For classification,
to get cross-validated AUC for all classifiers, a
fivefold cross-validation approach was used and
evaluated around 50 times. All are evaluated and
compared for AUC, accuracy, sensitivity, precision,
and specificity. Each scenario, i.e. Scenario 1 (G54 Vs
G12),Scenario2 (G543 Vs G12), and Scenario 3 (G54
Vs G123)is evaluated one by one. A comprehensive
analysis ofthe abovemetrics w.r.t. different classifiers
as well as the ranking algorithms in three scenarios is
presented in Table 5, Table 6, and Table 7,
respectively.

Table 5. Results for Scenario 1(G54 Vs G12)

Feature Scenario 1 (G54 Vs G12)
Selection  Classifier
method AUC  Acc.%  Senst.% Spec.%
LSVM 0.74 63.2 62.5 66.4
=Y g QSVM 0.67 60.8 61.3 58.7
S 235 CSVM 0.68 61.5 61.8 60.1
=3 % FGSVM 0.65 59.8 59.4 63.7
Z =3 MGSVM 0.69 58.5 58.1 73.2
CGSVM 0.63 58.4 58.1 73.8
LSVM 0.79 72.8 80.1 65.4
< QSVM 0.79 74.7 77.6 70.7
% CSVM 0.78 73.8 76.5 69.9
Z. FGSVM 0.74 71.9 72.8 70.2
< MGSVM 0.79 75.0 77.2 71.7

CGSVM  0.78  73.9 80.1 67.2

LSVM 0.80  73.7 81.4 67.0
QSVM 0.80  75.0 77.8 70.8
CSVM 0.66  57.2 68.9 49.2
FGSVM 0.78 75.2 77.2 72.2
MGSVM  0.80 75.3 77.9 71.5
CGSVM __ 0.79 744 81.4 67.0
LSVM 0.79  66.7 66.6 67.3
QSVM 0.81 67.6 66.5 71.4

Chi-Square
test

H
8 CSVM 0.77  66.2 65.7 68.1
Q FGSVM 0.78 67.4 66.1 72.5
. MGSVM  0.80 67.9 66.7 72.4
CGSVM  0.79  67.1 67.0 67.2
LSVM 0.80  62.8 62.4 65.1
= QSVM 0.79  62.8 62.1 68.0
) CSVM 0.79 633 62.4 70.0
§ FGSVM 0.75  62.2 61.6 66.8

MGSVM  0.80 63.3 62.4 69.1
CGSVM __ 0.80  62.4 62.3 62.7

752



A. Nissar, et al.

Table 6. Results for Scenario 2 (G543 Vs G12)

Scenario 2 (G543 Vs G12)

Feature

Selection  Classifier Sonsr Spec
0, . .
method Auc  Ace% % %
LSVM 0.772  65.7 73.4 64.4
N QSVM 0.683  62.6 59.8 63.3
S 2% CSVM 0.679  62.5 59.1 63.4
§ E = FGSVM  0.646  60.8 61.0 60.8
n MGSVM  0.730  59.2 87.5 59.1

CGSVM Failed
LSVM 0.78 72.2 80.5 64.4
< QSVM 0.79 74.3 77.5 70.0
% CSVM 0.72 68.8 71.4 63.8
z FGSVM  0.76 73.3 74.7 71.1
< MGSVM  0.79 74.3 76.7 70.8

CGSVM  0.79 73.4 80.2 66.4
LSVM 0.79 72.6 71.3 73.2
QSVM 0.79 74.7 70.3 77.4
CSVM 0.68 65.7 61.4 67.4
FGSVM  0.77 73.1 68.4 76.1
MGSVM  0.79 73.6 69.9 75.8
CGSVM ___ 0.79 72.5 70.6 73.5
LSVM 0.79 72.5 71.2 73.1
QSVM 0.79 73.9 69.7 76.5

Chi-Square
test

[_4
E)-‘ CSVM 0.74 70.5 70.0 70.7
Q FGSVM  0.75 72.0 67.2 75.0
m MGSVM  0.78 73.4 69.5 75.6
CGSVM__ 0.79 72.4 70.8 73.1
LSVM 0.79 72.8 72.0 73.1
= QSVM 0.80 74.2 70.2 76.6
& CSVM 0.75 71.1 70.4 71.5
;5 FGSVM  0.75 70.7 66.6 73.0

MGSVM  0.79 73.8 70.8 75.4
CGSVM 0.79 72.6 71.4 73.1

4. Discussion

Recent studies and related literature have
consistently highlighted the possible significance of
shape and radiomics in the characterization of lung
nodules.In our work, the shapeandselected radiomics
based on Daubechies dbl, db2, and db3 WPT were
examined with nine ML classifier modelsto determine
the effectiveness of selected features and the model
pair.

Based on the values obtained from evaluation
metrics, in Scenario 1 (G54 Vs G12), it can be
analyzed that the features selected using each FS
method, ANOVA, Chi-square, BOCET, and BACET
give good classification results when combined with
the various ML models. The detailed results obtained
are provided in Table 5. It is seen that Chi-Square
gives overall best sensitivity /recall (81.4%) with
CGSVM and LSVM. However, ANOVA gives the
best values among the rest of the different classifier
metrics and sensitivity is also reasonably very good
with FGSVM (80.1%). The best values for AUC,
accuracy, and specificity are given by QSVM +
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Table 7. Results for Scenario 3 (G54 Vs G123)

Feature Scenario 3 (G54 Vs G123)
Selection  Classifier = o 3
cc. enst. pec.
method AUC o o o
LSVM 0.67 69.6 70.0 25.0
ERY g QSVM Failed
S 235 CSVM 0.60 68.2 71.7 44.8
232 FGsVM Failed
2 MGSVM 0.65 69.9 69.9 70.4
CGSVM 0.68 69.6 69.6 62.01
LSVM 0.64 69.6  70.0 25.0
< QSVM 0.63 69.6 69.6 41.6
S CSVM 0.64 70.0 71.0 53.7
Z. FGSVM 0.60 68.9 71.8 47.1
< MGSVM 0.64 70.0 70.4 58.1

CGSVM 0.62 69.6 69.6 33.5
LSVM 0.56 69.8 69.6 31.8
QSVM 0.60 69.6 69.4 51.7
CSVM 0.63 70.3 70.6 62.1
FGSVM 0.59 69.2 71.9 48.5
MGSVM 0.61 69.7 69.9 56.0
CGSVM 0.59 67.6 70.6 27.6
LSVM 0.51 69.9 69.6 42.8
QSVM 0.63  69.9 69.6 50.1

Chi-Square
test

[_4
8 CSVM 0.54 643 40.1 33.1
Q FGSVM 0.61 69.5 71.9 49.8
; MGSVM 0.63  70.1 70.2 63.0
CGSVM 0.56 _ 69.6 69.0 46.1
LSVM 0.55 68.1 69.6 55.3
= QSVM 0.64 69.6 70.6 50.0
) CSVM 0.66 703 72.0 54.1
ZE FGSVM 0.61 70.7 72.3 55.8

MGSVM 0.66 70.1 70.4 60.2
CGSVM 0.67 69.6 69.6 56.0

BOCET (81%), MGSVM + Chi-Square (75.3%), and
QSVM + BOCET (71.4%), respectively. FTFS
techniques give better performance results than ETFS.
Similarly, in Scenario 2 (G543 Vs G12), where G543
is the malignant group and G12 is the benign group,
all SVMs are evaluated as per the calculated
performance metrics. The values obtained for
evaluation parameters revealed that the overall best
sensitivity (80.5%) with LSVM. The best values for
AUC, accuracy and specificity are givenby QSVM +
BACET (80%), QSVM + Chi-Square (74.7%), and
QSVM + BACET (76.6%), respectively. Finally, in
the lastscenario, i.e. Scenario3 (G54 Vs G123), where
G54 is the malignant group and G12 is the benign
group, the evaluation metrics obtained demonstrate
that the best results for sensitivity are given by
FGSVM+BACET (72.3%) in comparison to other
models. The best values for AUC, accuracy and
specificity are given by CGSVM + BACET (67%),
CSVM + Chi-Square (70.3%), and MGSVM +
BOCET (63%), respectively.
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If we analyze the results achieved, itis clear that the
FTFS method showed the best results by yielding the
best sensitivity and other parameter values. Further, it
can’t be denied that many among the rest of the
classification models also achieved good results with
comparable metrics. However, it is worth mentioning
that the results attained in Scenario 1 are better than
Scenario 2, and Scenario 3. The rationale for this could
be the incorporation of indeterminate nodules with MS
3 in Scenario 2, and Scenario 3. Furthermore, the
outcomes of Scenarios 2 and 3 reveal that classifying
indeterminate lung nodules into the malignant
category results in a higher classification accuracy
than classifying them into the benign category,
suggesting a greater degree of similarity between
those indeterminate nodules and malignant nodules.
Therefore, the central finding from the sum total of
results shows the implications of utilizing predictive
radiomics features in conjunction with SVM models
that can be reliable for LC prediction

5. Conclusion

Lung cancer stands as the prevailing and most fatal
form of cancer, accounting for 2.21 million fresh cases
and resulting in 1.80 million fatalities. The key to
fighting lung cancer is early diagnosis of pulmonary
lesions and nodules. In recent years, radiomics has
received considerable attention and investigation for
lung nodule identification. But so far it is murky and
unclear which radiomics feature(s) to use for the
prediction of pulmonary nodules. In this study, an
attempt has been made towards evaluation of CT
radiomics extracted using shape, texture analysis, and
WPT featuresin amalgamation with ML algorithms.
The results are quite promising in the prediction of
pulmonary lung nodules.

In this study, the LIDC dataset consisting of 4157
CT images is used. Shape features were extracted. A
sub-image of 11 by 11 pixels, around the nodule
centroid, was analyzed for its texture. Three statistical
texture analysis approaches, i.e. GLCM, GLDM, and
GLRLM were then employed to extract texture
features. Further, Daubechies wavelet family (dbl,
db2, and db3) was used to apply WPT on each of the
sub-images, up to decomposition level 2. The texture
analysis techniques were applied again on 16 sub-
images. FTFS methods, Chi-squaretest, ANOVA, and
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ETFS algorithms (BOCET and BACET) were used to
determine relevant features. Finally, the classification
of cancer into benign or malignant was performed in
three scenarios. Pairing of nodules based upon
malignancy scores, 1(benign) through 5(malignant),
accordingly three scenarios were created: Scenariol
(G45 Vs G12), Scenario 2 (G453 Vs G12), and
Scenario 3 (G45 Vs G123). Six different SVM models,
LSVM, QSVM, CSVM, FGSVM, MGSVM, and
CGSVM kernels were used for classification. The
intricate framework of this approach showed how the
SVM algorithm with six different kernel approaches
works efficiently to extract information from CT
images.

In Scenario 1, the best sensitivity of 81.4% was
achieved by the MGSVM+Chi-Square model. The
best sensitivity of 80.5% was achieved in Scenario 2
using the LSVM+ANOVA model. The third
scenario's best sensitivity, 72.3%, was achieved by the
FGSVM+BACET. Overall, the study demonstrates
that the radiomics-based shape and WPT texture
achieve decent results for the classification of CT
pulmonary nodules. The outcome thus can help the
clinicians to diagnose, and make better decisions and
treatments.

In future work, the study can be extended by
applying different ML algorithms, and/or Deep
Learning (DL)  techniques, nature-inspired
optimization approaches, and considering different
lung cancer datasets for better lung cancer outcomes.
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