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Abstract 

Purpose: Understanding neural mechanisms is critical for discerning the nature of brain disorders and enhancing 

treatment methodologies. Functional Magnetic Resonance Imaging (fMRI) plays a vital role in gaining this 

knowledge by recording various brain regions. In this study, our primary aim was to categorize visual objects 

based on fMRI data during a natural scene viewing task. We intend to elucidate the challenges and limitations of 

previous models in order to produce a generalizable model across different subjects using advanced deep-learning 

methods.  

Materials and Methods: We've designed a new deep-learning model based on transformers for processing fMRI 

data. The model includes two blocks, the first block receives fMRI data as input and transforms the input data to 

a set of features called fMRI space. Simultaneously a visual space is extracted from visual images using a pre-

trained inceptionv3 network. The model tries to construct the fMRI space similar to the extracted visual space. 

The other block is a Fully Connected (FC) network for object recognition based on fMRI space. Using transformer 

capabilities and an overlapping method, the proposed architecture accounts for structural changes across different 

voxel sizes of the subjects' brains. 

Results: A unique model was trained for all subjects with different brain sizes. The results demonstrated that the 

proposed network achieves an impressive similarity correlation between visual space and fMRI space around 

0.86 for train and 0.86 for test dataset. Furthermore, the classification accuracy was about 70.3%. These outcomes 

underscored the effectiveness of our fMRI transformer network in extracting features from fMRI data. 

Conclusion: The results indicated the potential of our model for decoding images from the brain activities of new 

subjects. This unveils a novel direction in image reconstruction from neural activities, an area that has remained 

relatively uncharted due to its inherent intricacies. 

Keywords: Functional Magnetic Resonance Imaging; Deep Learning; Object Recognition; Region Of Interest 

Connectivity; Brain Decoding. 
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1. Introduction  

In computational neuroscience, a wide range of studies 

seek to answer the question of how sensory stimuli are 

encoded in nerve cells (neurons) and the feasibility of 

decoding stimuli from neural information. In the last two 

decades, the use of machine learning for neural decoding 

from fMRI data has significantly increased in both 

quantity and quality. In the early research, the goal of 

decoding was to identify the categories of objects 

presented to individuals [1]. Numerous studies have 

delved into the realm of fMRI data, with a significant 

portion focusing on object categorization [2-9], motion 

direction [10, 11], perceptual imagination [12], and even 

memory [13]. These investigations have demonstrated the 

remarkable ability of classification-based machine 

learning techniques to decode visual features from fMRI 

signals. These methods learn the linear or nonlinear 

mapping between brain activity patterns and stimulus 

categories from the training dataset. Besides, some studies 

tried to reconstruct the full image from fMRI signals [14-

17]. 

Understanding the functioning of various brain regions 

not only enhances our comprehension of brain operations 

but also offers potential diagnostic insights into anomalies 

and brain disorders when comparing outcomes across 

individuals. This study strives to contribute to this 

endeavor by enhancing the generalization capacity of 

existing models. 

In comparison to other non-invasive data collection 

methods, fMRI data offers advantages, including high 

spatial resolution and access to data from various brain 

regions. Nonetheless, this data acquisition method comes 

with certain limitations, such as indirect recording based 

on factors like blood or oxygen consumption by neurons. 

Additionally, the smallest unit of this aggregated data 

reflects the activity of hundreds of thousands of neurons. 

This level of resolution is insufficient for reconstructing 

and distinguishing individual components of an image, 

where neurons may carry valuable information. The act of 

combining them results in the loss of this information. 

Therefore, complete image reconstruction from fMRI data 

is controversial, but object categorization can be decoded 

from fMRI signals. 

A fundamental challenge in constructing a model based 

on data from multiple subjects lies in the variations in the 

structural and functional aspects of individuals' brain 

architecture. Although by mapping people's brains on 

each other, the general processing areas related to different 

senses coincide, this mapping causes a loss of neural 

activity information. In certain cases, such as decoding left 

and right-hand movements, where the activity or inactivity 

of relatively large brain areas on both hemispheres is 

sufficient for decoding, this mapping can be useful. 

However, for tasks such as image reconstruction that 

involve intricate patterns and details from diverse fMRI 

data points, this mapping may prove misleading. 

Moreover, the existence of differences such as blood 

pressure, mental state, and level of attention in different 

people causes statistical differences in the responses 

recorded in different fMRI. Consequently, existing image 

categorization systems are typically designed using one 

person's brain signals and assessed with that same 

individual's test data. This subject-dependent strategy 

significantly restricts the applicability and practicality of 

mind-reading models. 

In this research, we have sought to take a step towards 

making brain decoding more operational. Some of the 

innovations of this study are: 

• To extract information from fMRI, a new transformer 

deep neural network has been proposed which uses the 

concept of attention and tries to extract the features that are 

considered in different visual parts of the brain, and 

emphasizes the relationship between these areas. 

• Methods to increase the generalization properties of 

models by assimilating the input data are proposed. The 

presented model has the ability to be used for brain 

decoding of new subjects without the need to register 

subjects’ brains and match their volumes with each other. 

In the subsequent sections, we will begin by 

introducing the utilized dataset, followed by a 

comprehensive description of the methodology. 

Subsequently, we will scrutinize the results, then engage 

in a detailed discussion, and finally, conclude with a 

summary of the key findings. 

2. Materials and Methods  

We used the NSD dataset, which consists of eight 

participants who had their fMRI signals recorded while they 

viewed images selected from the COCO dataset. Figure 1 

shows how the test task was performed. We selected the 

data of the first three subjects (which had different voxel 

numbers in fMRI data). The numbers of voxels of the 
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subject’s brain data were as follows, respectively, {81 × 

104 × 83}, {82 × 106 × 84} and {81 × 106 × 82}. All 

fMRI data in NSD were collected at 7T using a whole-brain 

1.8 mm 1.6 s gradient-echo EPI pulse sequence. For pre-

processing, an approach aimed at preserving as much 

spatial and temporal detail as possible was adopted. This 

involved one temporal resampling to correct slice time 

differences and one spatial resampling to correct head 

motion within and across scan sessions, EPI distortion, and 

gradient nonlinearities. Following pre-processing, a 

General Linear Model (GLM) analysis of the pre-processed 

time-series data was performed. The approach aimed to 

estimate BOLD response amplitudes ('betas') for single 

trials, which was challenging due to the low signal-to-noise 

ratio. Each subject viewed 10,000 images from the COCO 

dataset, and each image was randomly played 3 times. 

These images were categorized into 80 different classes [18, 

19].  

Since the number of images related to each class varied 

significantly, particularly in the class related to humans, we 

divided the data into two categories: the class of humans 

and the class of non-humans. So, the proposed model 

predicted if a human existed in the image. In Figure 2, the 

number of images related to each class in the COCO dataset 

and the number of images related to each class after the new 

labeling are presented. 

The data set includes 90000 images for all three subjects 

but only 77,250 images are public. To prevent overfitting 

and avoid duplicate data between the test and training 

 

Figure 1. The NSD experiment was designed to collect data on how the human brain responds to different types of natural 

images, including objects, scenes, and people. The experiment consisted of 12 scan sessions, each of which lasted 5 

minutes and consisted of 63 or 62 stimulus trials with randomly interspersed blank trials. During each trial, participants 

viewed a natural scene and judged whether they had seen the image before. The images were taken from Microsoft's 

COCO dataset, which is a richly annotated data set with object information 

 

Figure 2.  Number of images related to each category in 

total and subtotal COCO dataset: A) Number of images 

in all categories of total dataset of COCO, B) Number of 

images in human and non-human categories in the total 

dataset of COCO, C) Number of images in human and 

non-human categories which are used in the NSD task, 

D) The same as C for the first three subjects 
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datasets, each image was used only once, resulting in a 

selection of 26,888 unique images. 

As outlined in the introduction, various challenges in 

image reconstruction from fMRI signals limited the 

models. The existing methods of image reconstruction are 

mostly subject-dependent models which train a model on 

an individual's training data and then evaluate the model on 

that same individual's test data. In this study, we introduced 

a subject-independent model. However, this approach faces 

significant challenges due to variations in the voxel 

numbers of whole brain and ROIs among individuals and 

also a lack of generalization of models across subjects. As a 

result, developing a method capable of generalizing to a 

new subject’s data was not initially considered feasible. In 

response to these challenges, we proposed a novel approach 

to address these issues and move closer to the development 

of a generalized model that is independent of the specific 

subject. Figure 3 illustrates the sequential steps involved in 

constructing the developed model. 

In this study, we introduced a transformer neural 

network designed for extracting information from fMRI 

data. This network addresses the issue of voxel mismatch 

and standardizes the distribution of extracted information 

across various individuals. The model construction process 

comprises two main blocks. The first block includes two 

phases.  

In the initial phase, we leveraged a pre-trained network 

based on the ImageNet image dataset. Through its image 

encoder, we extracted features from each image of the 

dataset which constructed the visual space of the image. 

Subsequently, we employed a decoder, which was built 

using an MLP network architecture. Using these extracted 

features, we classified the components presented within the 

images.  

In the second phase, we established a transformer 

network with the goal of extracting features from the fMRI 

signal constructing an fMRI space. We then employed the 

visual space from the previous phase to classify these 

features into components and complete our decoding 

process. An important aspect to highlight is that we feed the 

network with our fMRI signal as a collection of regions 

associated with vision. This strategic approach allows our 

transformer network to leverage its inherent capabilities, 

measuring the interconnections and attention levels among 

these regions and the voxels. As a result, it effectively 

identified the active regions within each area which were 

relevant to the target image. To facilitate this, we employed 

the HCP mask, which encompasses 380 distinct brain 

regions. We have curated 200 regions that are particularly 

pertinent to visual processing in the brain which have 

potential information for extracting visual features and 

aiding in the decoding process. A comprehensive list of 

these selected areas is provided in Table 1. 

Another crucial consideration is that we input fMRI 

signals from individuals with different brain sizes into the 

network. To accomplish this, we employ the overlapping 

technique without resizing or zero-padding. Instead, we 

facilitate compatibility among subjects by sharing 

information, thus effectively compensating for the 

differences in brain sizes. This approach allows us to 

perform this compensation without resorting to additional 

data through interpolation, extrapolation, or the removal of 

any part of the data. Instead, we leverage the fMRI signal 

itself. Consequently, we can effectively decode the fMRI 

signals of individuals with diverse brain sizes using the 

proposed network. 

Another noteworthy advantage of the network is its 

significantly reduced number of training parameters. This 

efficiency enhancement expedites model training, 

particularly when dealing with substantial datasets. The 

architecture of our model is shown in Figure 4. 

 

 

Figure 3. Block diagram illustrating the step-by-step process for constructing the developed model 
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Next, we employed accuracy, recall, F1-score, and 

precision as quantitative evaluation criteria of the proposed 

decoder (Equations 1, 2, 3, and 4). 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(1) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (2) 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

𝐹1 −  𝑆𝑐𝑜𝑟𝑒 = 2 ×  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

(4) 

𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  
∑ 𝐴𝑖

𝑛
𝑖=1 𝐵𝑖

√∑ 𝐴𝑖
2 . ∑ 𝐵𝑖

2𝑛
𝑖=1

𝑛
𝑖=1

 
(5) 

where TP represents true positive, FP represents false 

positive, TN represents true negative, and FN represents 

false negative. Given two n-dimensional vectors of 

attributes, A and B, the cosine similarity, is represented 

using a dot product where Ai and Bi are the ith components 

of vectors A and B, respectively (Equation 5). We 

employed cosine similarity to evaluate how well our 

model's feature space (fMRI space) aligns with feature 

space obtained from images by the Inception V3 network. 

This metric assesses the directional similarity between 

vectors, making it ideal for comparing high-dimensional 

data. Scores range from -1 to 1, where a score of 1 indicates 

perfect similarity, 0 indicates no similarity, and -1 indicates 

perfect dissimilarity. By computing cosine similarity scores 

for each data point and averaging them, we obtained a 

comprehensive measure of alignment (Equation 6). 

𝑃𝐸𝐼

=  
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ( 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑓𝑀𝑅𝐼 𝑠𝑝𝑎𝑐𝑒)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ( 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑣𝑖𝑠𝑢𝑎𝑙 𝑠𝑝𝑎𝑐𝑒)
 

× 100 

(6) 

The Percentage of extractable information (PEI) showed 

the percent of information extracted from fMRI space for 

object categorization respect to the total information that 

Table 1. 200 selected brain areas involved in visual 

processing 

Region Name 

V1_L&R LO3_L&R TGv_L&R 

V2_L&R FEF_L&R TE1m_L&R 

V3_L&R 43_L&R PSL_L&R 

V4_L&R OP4_L&R STV_L&R 

V6_L&R OP1_L&R TPOJ1_L&R 

V3A_L&R OP2-3_L&R TPOJ2_L&R 

V7_L&R PoI2_L&R TPOJ3_L&R 

IPS1_L&R FOP4_L&R 7Pm_L&R 

V3B_L&R MI_L&R 7AL_L&R 

V6A_L&R Pir_L&R 7Am_L&R 

V8_L&R AVI_L&R 7Pl_L&R 

FFC_L&R AAIC_L&R 7PC_L&R 

SFL_L&R 8Ad_L&R V3CD_L&R 

8Av_L&R 8BL_L&R p9-46v_L&R 

PGi_L&R PIT_L&R FOP3_L&R 

PGs_L&R VMV1_L&R FOP2_L&R 

RSC_L&R VMV3_L&R PoI1_L&R 

POS2_L&R VMV2_L&R Ig_L&R 

PCV_L&R VVC_L&R FOP5_L&R 

7m_L&R MST_L&R PI_L&R 

POS1_L&R LO1_L&R TF_L&R 

23d_L&R LO2_L&R TGd_L&R 

v23ab_L&R MT_L&R TE1a_L&R 

d23ab_L&R PH_L&R TE1p_L&R 

31pv_L&R V4t_L&R TE2a_L&R 

DVT_L&R FST_L&R TE2p_L&R 

PHT_L&R PFm_L&R s6-8_L&R 

46_L&R a9-46v_L&R 9-46d_L&R 

LIPv_L&R VIP_L&R MIP_L&R 

LIPd_L&R AIP_L&R PFt_L&R 

PGp_L&R IP2_L&R IP1_L&R 

IP0_L&R PFop_L&R PF_L&R 

9p_L&R 8C_L&R 9a_L&R 
 i6-8_L&R  

 

 

Figure 4.  Model architecture; pre-trained image encoder 

extracts features from images. The transformer network 

extracts features from fMRI signals and tries to construct 

an fMRI space similar to visual space. Then object 

categorization is done using the FC network 
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was accessible in the visual space for object classification 

(Equation 6). 

The software environment and hardware used for this 

study are presented in Table 2. We implemented the code 

in Python 3.10, and the neural network was constructed 

using the TensorFlow deep learning framework. 

3. Results 

This study presented a novel subject-independent 

approach for image reconstruction from fMRI data. 

The model consists of two main blocks: a pre-trained 

network for extracting visual features from images and 

a transformer network for extracting features from 

fMRI signals. The model also employs an overlapping 

technique to accommodate different brain sizes among 

subjects. This network addresses the challenge of 

voxel mismatch and standardizes the distribution of 

extracted information across individuals.  In this part, 

according to the measurement metrics that we 

discussed in the previous section, we examined the 

results of the proposed model. 

We divided the dataset into three parts: the training 

data set (80% of the total data), the evaluation dataset 

(10% of the total data), and the test dataset (10% of the 

total data). In Table 3, the data format used for each of 

the networks is explained. Despite different numbers 

of voxels or different sizes of fMRI matrices, the 

proposed model proceeded similarly for different 

subject inputs. There was no need to apply further pre-

processing techniques and group registration methods 

for transforming the input data to a specific size. The 

main advantage of such a model is invariance to the 

input size. Using the information of all subjects for 

training a model led to a subject-independent model 

which could decode the information of different brain 

subjects. 

Training parameters of both blocks of the proposed 

network are shown in Table 4 and Table 5. Table 4 

demonstrates the parameters of the fMRI transformer 

and Table 5 introduces the parameters of the FC 

network. 

The results obtained for our fMRI transformer 

network, using the Cosine similarity metric, were 86.8 

for the training dataset, 86.5 for the evaluation dataset, 

and 86.95 for the test dataset (Table 6). 

Additionally, the results obtained for the accuracy 

of the FC network, which utilized features extracted 

from the Inception V3 network during training, were 

72.4 for the training dataset, 67.2 for the evaluation 

dataset, and 67.5 for the test dataset. Furthermore, the 

Table 2. Software environment and hardware used for 

this study 

Configuration Item 

Windows 11  
Operation 

system 

AMD Ryzen 9 3950X 16-Core 

Processor 
CPU 

128G Memory 

NVIDIA GeForce RTX 2080 Ti GPU 

12G 
Video 

memory 

8TB Hard disk 

Python3.10; TensorFlow2.10; 

CUDA 12.2 
Software 

Anaconda; Jupyter Notebook Compiler 

 

Table 3. Size and format of data used for each network 

Subject Parameter Values 

Subject 01 

Size of fMRI 

matrix 
81 × 104 × 83 

Number of 

beta values 
27750 

Subject 02 

Size of fMRI 

matrix 
82 × 106 × 84 

Number of 

beta values 
27750 

Subject 03 

Size of fMRI 

matrix 
81 × 106 × 82 

Number of 

beta values 
21750 

Total (fMRI 

transformer) 

Number of 

beta values 
77250 

Total (FC) 
Number of 

beta values 
26888 

3 subjects ROI Patch size 512 × 144 

 

Table 4. Training parameters of fMRI transformer 

Training Parameters Setting Values 

Backbone fMRI transformer 

Loss Cosine similarity 

Optimizer Adam 

Batch size 32 

Epochs 50 + 100 

Learning rate 0.0001 

Dropout rate 0.2 

Features size 73728 (6 × 6 × 2048) 

Number of Features 77250 

Total parameter 2,164,608 
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accuracies obtained from the FC network for features 

extracted from the fMRI transformer network were 

71.1, 65.6, and 66.5 for the training, evaluation, and 

test dataset (Table 7). The dataset of two categories 

was balanced, however, we measured the other 

performance metric to ensure a fair decision of 

proposed networks. Furthermore, the precision, recall, 

F1-score, and AUC obtained from the FC network for 

features extracted from the fMRI transformer network 

were 72.2, 55.3, 62.62, and 61.59 for the test dataset. 

The fMRI transformer has to construct an fMRI space 

that is similar to the visual space extracted from the 

inception V3 network. The accuracy of object 

categorization using fMRI data was almost the same 

as the accuracy of object categorization based on 

visual space extracted from inception v3. This 

performance underscored the efficacy of the fMRI 

transformer network in feature extraction and fMRI 

space construction. In other words, the fMRI 

transformer was capable of extracting as much 

information as possible about the categories of images 

presented to the subjects using fMRI data. Sample 

results of the proposed model are shown in Figure 5. 

The second image was a mobile phone with a part of a 

finger. This small part of the human body was the 

reason for the label of the image as a category of 

person. This detection was hard for both inception V3 

and fMRI transformer to capture. However, the first 

image was correctly categorized as a person class, and 

the third image was correctly categorized as a non-

person class. 

 

Table 5. Training parameters of the FC network 

Training Parameters Setting Values 

Backbone 
Inception V3 & fMRI 

transformer 

Loss Binary Cross Entropy 

Optimizer Adamax 

Batch size 512 

Epochs 100 

Learning rate 0.0001 

Dropout rate 0.2 

Features size 73728 (6 × 6 × 2048) 

Number of Features 26888 

Image size 256 × 256 × 3 

Number of Class 2 

 

Table 6. Loss and similarity metrics of fMRI 

transformer 

Result Values 

Loss 

Train -0.868 

Validation -0.865 

Test -0.8695 

Cosine similarity 

Train 0.868 

Validation 0.865 

Test 0.8695 

 

Table 7. Performance metrics of FC network 

Result 

Values 

Inception 

 V3 features 

Prediction  

features 

Loss 

Train 0.5894 1.8061 

Validation 0.6366 0.7117 

Test 0.6333 0.7156 

accuracy 

Train 0.724 0.711 

Validation 0.672 0.656 

Test 0.675 0.665 

PEI 

Train 98.20% 

Validation 97.61% 

Test 98.51% 

 

 

Figure 5. Sample results of proposed model 



 Object Categorization from fMRI Signals  

624   FBT, Vol. 12, No. 3 (Summer 2025) 617-626 

4. Discussion 

This study emerges in the context of computational 

neuroscience's longstanding quest to decode sensory 

stimuli from neural information. In the past two decades, 

machine learning's role in decoding brain activity from 

fMRI data has substantially expanded in both its scale 

and quality. Initially, researchers focused on identifying 

object categories presented to individuals, and these 

pioneering studies laid the foundation for decoding 

stimulus categories. 

Building on this foundation, recent fMRI studies have 

demonstrated that a wide array of visual features can be 

decoded from fMRI activity patterns, encompassing 

aspects such as orientation, spatial frequency, motion 

direction, object categorization, perceptual imagination, 

dreams, and even memory. The crux of these studies has 

been the utilization of classification-based machine 

learning methods to map the intricate relationship 

between brain activity patterns and stimulus categories, 

with a primary focus on the identification of stimulus 

categories. 

However, a fundamental challenge arises when 

transitioning from experimental settings to real-world 

applications, where individuals vary significantly in 

terms of mental states, fatigue, and levels of attention. A 

substantial limitation arises from the need to construct 

individualized models, as structural and functional 

differences in people's brain architecture necessitate the 

establishment of subject-specific models. This presents a 

significant roadblock to the practical application of 

mind-reading models and demonstrates the need for 

subject-independent models that are able to process the 

various data of different subjects. 

Notwithstanding these challenges, the application of 

fMRI remains a powerful tool. Its high spatial resolution 

and ability to capture data from diverse brain regions set 

it apart as a non-invasive method for comprehending 

neural activity. 

Our research was built upon a robust foundation, 

utilizing the NSD dataset, which encompassed eight 

participants whose fMRI signals were recorded as they 

viewed images drawn from the COCO dataset. The 

choice of dataset was strategic, as it allowed us to operate 

within a real-world context, replicating the challenges 

and diversity encountered in practical scenarios. This 

dataset served as a critical testing ground for our 

methodology and demonstrated its viability in tackling 

real-world complexities. 

To maximize the effectiveness of our approach, we 

focused our training on the data of the first three 

participants. These participants exhibited varying data 

sizes and voxel dimensions, mirroring the heterogeneity 

found in real-world applications. This approach was 

instrumental in addressing the challenge of voxel 

mismatch and served as a cornerstone in building a 

model capable of generalized application. 

We addressed the challenge of data duplication 

between test and training datasets by adopting a prudent 

approach. Each image was utilized only once out of the 

77,250 images, resulting in a final selection of 26,888 

unique images. This rigorous approach not only 

prevented overfitting but also closely replicated the 

challenges posed by the practical usage of brain decoding 

models. 

The heart of our innovation lies in the development of 

a transformer neural network. This network, designed 

specifically for fMRI data analysis, has the unique 

capability to address the voxel mismatch problem while 

standardizing information extracted across individuals. 

Our approach comprises two key components: the initial 

phase, where we employ a pre-trained network to extract 

features from each image constructing the visual space, 

and the subsequent phase, involving the use of a 

transformer network to extract features from fMRI 

signals constructing the fMRI space. 

In addressing the challenge of different brain sizes 

among individuals, we've employed the overlapping 

technique, avoiding resizing or zero-padding. Our 

approach focuses on ensuring compatibility among the 

categorized areas by sharing information, effectively 

compensating for differences in brain size. This 

innovative technique is key to our ability to decode fMRI 

signals from individuals with diverse brain sizes. 

Of particular note is our strategic decision to input the 

fMRI signal as a collection of regions related to the visual 

system of the brain. This approach leverages the 

transformer network's inherent capabilities, enabling it to 

measure the interconnections and attention levels among 

these regions and the voxels. This, in turn, effectively 

identifies the active regions within each area relevant to 

the target image. The adoption of the HCP mask, 

consisting of 380 distinct brain regions, facilitates this 

process. We've thoughtfully curated 200 regions from 
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this mask, each specifically pertinent to visual tasks, 

making them ideal for the extraction of visual features 

and enhancing the decoding process. 

In sum, our methodology represents a significant leap 

forward in the field of fMRI data analysis and brain 

decoding. This research strives to make significant 

strides in rendering brain decoding more operationally 

viable. Our contributions, such as the transformer neural 

network and innovative model generalization methods, 

promise to facilitate the translation of computational 

neuroscience into real-world applications. By bridging 

the gap between laboratory-controlled experiments and 

diverse, real-world scenarios. 

5. Conclusion 

This study marks a substantial advancement in the 

field of computational neuroscience, aiming to make 

brain decoding more practically applicable. Over the last 

two decades, machine learning's role in decoding brain 

activity from fMRI data has grown significantly, 

particularly in object categorization. Recent research has 

shown the potential of fMRI data to decode various 

visual features. Yet, challenges arise in transitioning 

from controlled experiments to real-world applications, 

where individual variations like mental states are 

difficult to measure. 

To address these challenges, our novel approach 

revolved around a transformer neural network designed 

for fMRI data analysis. This network tackled the voxel 

mismatch problem, offering the potential to decode 

images from the brain activity in a subject-independent 

manner. The proposed model with very few training 

parameters facilitated its use in scenarios with large 

datasets. The proposed network constructed an fMRI 

space, based on information from Bold signals, which 

was similar to the visual space of images extracted from 

inception V3. The cosine similarity was about 0.86 for 

the test dataset. Using constructed fMRI space and a FC 

network, 98.5% of accessible information about object 

categorization was extracted (PEI=98.5%). In essence, 

this study stands as a pioneering step toward making 

mind-reading models more accessible and applicable. 

This offers exciting prospects for the future of image 

reconstruction research and the broader field of 

neuroscience. 
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