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Abstract 

Purpose: Pain detection remains a challenging aspect of medical diagnosis, necessitating innovative approaches 

to address existing limitations. Current pain detection methods often lack precision and efficiency, prompting the 

exploration of alternative methodologies. This study focuses on investigating dynamic Electroencephalogram 

(EEG) patterns during pain states, aiming to fill gaps in the current understanding of pain detection mechanisms.  

Materials and Methods: EEG recordings were conducted on a cohort comprising ten participants (5 men, and 5 

women) who were free from drug usage and underlying ailments. The participants underwent EEG recording 

sessions during both resting and phasic pain states induced by immersing their left hand in ice-cold water. The 

EEG data were subjected to rigorous analysis using Recurrence Quantification Analysis (RQA). Additionally, a 

rough neural network classifier, with specific parameters tailored to the dataset characteristics, was employed for 

pain state classification. 

Results: Our analysis revealed dynamic EEG features during phasic pain states, elucidated through RQA. 

Notably, the rough neural network demonstrated a high classification accuracy of 95.25% in distinguishing 

between pain and non-pain states. While specific numerical results such as p-values are not provided, the robust 

accuracy of the classification underscores the discernibility of cerebral responses during painful experiences. 

Conclusion: This study contributes to the advancement of pain detection methodologies by introducing an 

innovative approach that leverages EEG analysis and neural network classification. While further investigation 

is warranted to validate these findings, they hold promise for enhancing pain assessment accuracy and ultimately 

improving patient care outcomes. 

Keywords: Cold Pressor Test; Electroencephalogram; Phasic Pain; Rough Neural Network; Recurrence 

Quantification Analysis; Electroencephalogram Dynamics; Pain Assessment. 
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1. Introduction  

Pain, often regarded as an unpleasant sensation 

accompanying illness or physical injury, plays a 

critical role in determining an individual's quality of 

life and overall functionality. Despite its significance, 

accurately detecting and assessing pain remains a 

complex endeavor in medical practice. Existing 

methodologies for pain detection are fraught with 

limitations, necessitating innovative approaches to 

enhance precision and efficacy. Understanding the 

dynamic changes that occur in the brain during pain 

perception is crucial for advancing pain detection 

techniques. Various brain regions, including the 

somatosensory, insular, cingulate, and prefrontal 

cortices, as well as the thalamus, subcortical areas, and 

brainstem, are known to be involved in processing 

pain signals [1, 2]. Electroencephalogram (EEG) 

recordings offer a unique opportunity to capture these 

dynamic neural responses during pain induction. EEG, 

a well-established electrophysiological monitoring 

technique, has traditionally been utilized for 

diagnosing a range of neurological conditions, such as 

sleep disorders, epilepsy, and Alzheimer's disease [3-

5]. More recently, researchers have begun exploring 

its potential in pain assessment. While previous 

studies have demonstrated the brain's ability to 

perceive pain through EEG analysis [6-9], there 

remains a need for further investigation into the 

specific EEG patterns associated with different types 

and intensities of pain. 

Phasic pain, characterized by its short duration, 

serves as a valuable model for studying pain 

perception in controlled laboratory settings. Studies 

utilizing phasic pain induction methods, such as the 

Cold Pressor Test (CPT), have yielded insights into 

the neural correlates of pain processing [10-24]. 

Additionally, Garcia-Larrea et al. [11] evaluated 

phasic pain via EEG, while Lorenz et al. [12] and 

Mouraux et al. [13] found that the induction of pain 

could modulate neural activity in various frequency 

bands. Furthermore, Gross et al. [14] reported that 

phasic pain stimulation affects gamma frequencies. 

Accordingly, the obtained results based on different 

methods demonstrated that the brain could sense the 

pain [11-25]. Usually, the frequency band is used as a 

pain-related feature [10-25]. Some studies use 

classifiers to classify pain leveling (i.e. pain and no-

pain) [15-17]. Several studies have used classifiers to 

diagnose pain based on its severity [18-20], [23-28]. 

For instance, Mansoor et al. [19] differentiated pain 

from non-pain states using KNN and SVM classifiers, 

while Bonotis et al. [23] classified pain into five 

intensity levels using a stochastic forest algorithm. 

Elsayed et al. [24] found a direct correlation between 

alpha frequency band power and pain intensity and 

used an ANN classifier to classify data into four 

classes. Cao et al. [23] demonstrated the utility of the 

alpha band as a tool for sudden pain detection using 

laser stimulation. Moreover, recurrence quantification 

analysis (RQA) has emerged as a powerful tool for 

visualizing and analyzing the dynamic behavior of 

complex systems [27]. This research aims to 

investigate dynamic changes in the brain for pain 

detection using EEG during phasic pain episodes with 

the RQA method. The implications of accurate pain 

detection extend beyond research settings to clinical 

practice, where timely and precise pain assessment is 

essential for guiding treatment decisions and 

improving patient outcomes [31, 32]. By elucidating 

the neural mechanisms underlying pain perception, 

this research has the potential to inform the 

development of more effective pain management 

strategies. 

In summary, this study seeks to address gaps in our 

current understanding of pain detection by leveraging 

EEG technology and advanced analytical methods. By 

elucidating the dynamic neural responses associated 

with pain, we aim to contribute to the refinement of 

pain assessment techniques and ultimately enhance 

patient care. 

2. Materials and Methods 

In this study, the nonlinear features were extracted 

using the RQA method [27-30] to detect the pain state 

from the non-pain state. Then, the Rough neural 

network [31,32] was applied for pain classification. 

Figure 1 displays the general process in EEG 

classification.  
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2.1. Participants 

2.1.1. Sample Size and Demographics  

The study involved a total of 10 participants, 

consisting of five men and five women. The 

participants were selected based on the following 

criteria: they were drug-free and had no history of 

acute or chronic diseases. The selection criteria for 

participants in the study were carefully considered to 

ensure the reliability and validity of the findings. 

Participants were selected based on specific inclusion 

and exclusion criteria. Inclusion criteria included 

being drug-free and having no history of acute or 

chronic diseases. Exclusion criteria were not having 

any pre-existing medical conditions or taking any 

medications that could potentially affect pain 

perception. Participants were recruited through 

advertisements and word-of-mouth referrals within 

the local community. Individuals who expressed 

interest in participating underwent a screening process 

to determine eligibility based on the inclusion and 

exclusion criteria outlined above. The mean age of the 

participants was 33.9±6.07 years. Ethical 

considerations were taken into account throughout the 

study, including obtaining informed consent from 

each participant. To assess pain perception, 

participants provided pre- and post-test responses 

using the Visual Analogue Scale (VAS) method, 

which rates pain on a numerical scale from 0 (no 

sensation) to 10 (pain tolerance threshold). 

2.1.2. Data Acquisition  

The EEG data were recorded according to the 

standard 10-20 protocol, utilizing 19 channels (Fp1, 

F7, T3, T5, Fp2, F8, T4, T6, F3, C3, P3, O1, F4, C4, 

P4, O2, Fz, Cz, Pz). Referential electrodes were 

bilaterally connected to the two earlobes and then 

averaged. The acquired EEG signals were filtered 

using a hardware 4th-order band-pass filter with a 

bandwidth of 0.1 to 35 Hz [29], and a sampling 

frequency of 500 Hz. The study was conducted at 

Golestan Hospital of Ahvaz, following the necessary 

approvals from Ahvaz Jundishapur University of 

Medical Sciences and the local institutional ethics 

committee. Stringent ethical and safety procedures 

were implemented, given the possibility of inducing 

pain in volunteers. These procedures included 

appropriate considerations and contractions [33]. The 

EEG recordings were conducted in both resting and 

phasic pain states [34,35], induced by cold exposure, 

with the cooperation of ten participants (comprising 

five men and five women) who were drug-free and 

free from acute or chronic diseases. The average age 

of the participants was 33.9 years, with a standard 

deviation of 6.07. Informed consent was obtained 

from all participants before the test, and a series of 

questions were administered both before and after the 

test to ensure that the pain experienced by the 

volunteers was measurable and assessable. Pain 

intensity was assessed using the Visual Analogue 

Scale (VAS) method [36], allowing participants to rate 

the painfulness of the stimuli on a numerical scale 

ranging from 0 (no sensation) to 10 (pain tolerance 

threshold). During the experiment, all participants 

kept their eyes open. EEG recordings were performed 

using the reference method and passive electrodes, 

eliminating the need for gel application. A Nihon 

Kohden electroencephalograph machine, specifically 

the Neurofax model, was used to record EEG data. 

Key settings on the machine included the activation of 

a power line filter and a sensitivity of five microvolts. 

Additionally, the Neurofax machine applied a digital 

notch filter at 50 Hz. Impedance was consistently 

maintained at less than 5 Kohm to ensure data quality. 

The experimental procedure took place in a semi-dark 

room, where volunteers were seated in chairs. EEG 

recordings in the resting state were collected for 30 

seconds. For the cold pain condition [8], participants 

submerged their left hand in ice water until they could 

no longer tolerate the cold-induced pain. This process 

was repeated five times, and the durations of both pain 

and non-pain states were accurately recorded. 

 

Figure 1. General process in EEG classification 
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2.2. Pre-processing 

After EEG recording, the signals of pain and non-

pain states were categorized according to the time of 

occurrence, recording of signal, and sampling 

frequency (500 Hz). Then, signal processing was 

performed using Fz, Cz, and Pz channels. In this study, 

three midline channels (Fz, Cz, and Pz) were selected 

to fulfill global activation of the brain (both 

hemispheres). In addition, the complexity and time-

consuming analysis of all channels are avoided [27]. 

Finally, the zero-phase filter was used to remove the 

noises [26]. 

2.3. Feature Extraction 

RQA is considered a method of evaluating 

nonlinear data for applications in dynamic systems. 

The selection of Recurrence Quantification Analysis 

(RQA) over other nonlinear analysis methods in our 

research was based on several factors that are relevant 

to our study's objectives and the nature of the data we 

collected. RQA is a widely recognized and effective 

method for evaluating nonlinear data in dynamic 

systems. Our research aimed to investigate dynamic 

changes in the brain during pain induction using EEG 

signals. RQA is particularly suited for capturing and 

quantifying recurrent patterns and dynamical features 

in time series data. Its focus on recurrence and the 

structure of data points aligns well with our goal of 

detecting changes in brain activity associated with 

pain. EEG data is inherently complex and often 

exhibits nonlinear patterns. RQA is known for its 

ability to uncover hidden nonlinear dynamics in such 

data, making it a suitable choice for our study. While 

other nonlinear methods, like wavelet analysis or 

fractal analysis, have their merits, they may not have 

been as well-suited to our specific dataset and research 

question. After recording EEG in participants in pain 

and resting states, features were extracted and data 

were analyzed using the dynamic analysis of these two 

states based on EEG signals and the RQA method. The 

reconstructed signal in the phase space is required for 

calculating RQA. The values of RQA extremely rely 

on embedded parameters including dimension and 

delay time [28]. Another parameter is the threshold 

distance (radius). Euclidean distance was considered 

via 0.1 of the threshold regarding finding the neighbor. 

Further, the value of the minimum diagonal and 

vertical line was equal to 2, and the window size was 

1000 milliseconds [28]. Therefore, 13 features were 

extracted from the EEG signals for each channel in 

non-pain and pain states for each person. Our goal in 

extracting these specific features is to capture and 

quantify the dynamic changes in EEG data during pain 

perception. By analyzing these features, we aim to 

gain a deeper understanding of how the brain responds 

to painful stimuli. 

Equations 1-13 demonstrate features extracted 

according to RQA. In these equations, ε represents a 

predefined threshold, and N is the number of points in 

the phase space trajectory. The variables l and v denote 

the lengths of the diagonal and vertical lines in the 

recurrence plot, respectively. The parameters 

l<sub>min</sub> and v<sub>min</sub> specify the 

minimum lengths of diagonal and vertical lines to be 

considered in the analysis. P(l) denotes the frequency 

distribution of diagonal lines of length l, and P(v) 

represents the frequency distribution of vertical lines 

of length v [27-30]. Figure 2 displays one of the RQA 

plots of EEG channels. 

 

1. Recurrence Rate: The density of recurrence 

points in a recurrence plot (Equation 1); 

𝑅𝑅(𝜀) =
1

𝑁2
∑ 𝑅𝑖,𝑗(𝜀)

𝑁

𝑖,𝑗=1

 (1) 

2. Determinism: The percentage of recurrence 

points from the diagonal lines in the recurrence plot of 

the minimal length (𝑙min) (Equation 2); 

 

Figure 2. One of the RQA plots of EEG channels 
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𝐷𝐸𝑇 =
∑ 𝑙𝑃(𝑙)𝑁

𝑙=𝑙𝑚𝑖𝑛

∑ 𝑙𝑃(𝑙)𝑁
𝑙=1

 (2) 

3. Averaged diagonal length (Equation 3): 

𝐿 =
∑ 𝑙𝑃(𝑙)𝑁

𝑙=𝑙𝑚𝑖𝑛

∑ 𝑃(𝑙)𝑁
𝑙=𝑙𝑚𝑖𝑛

 (3) 

4. Length of the longest diagonal line (Equation 4):   

L𝑚𝑎𝑥 = 𝑚𝑎𝑥({𝐿𝑖; ⅈ = 1,2 … ,𝑁𝐿}) (4) 

5. Entropy of diagonal length: The Shannon 

entropy rate with the probability of 𝑃(𝑙)= 𝑃(𝑙)/ 𝑁𝑙 for 

finding the diagonal line exactly with length 𝑙 in the 

recurrence plot (Equation 5); 

𝐸𝑁𝑇𝑅 = − ∑ 𝑃(𝑙) ln 𝑝(𝑙)

𝑁

𝑙=𝑙𝑚𝑖𝑛

 (5) 

6. Laminarity: The rate between the recurrence 

points formed in the vertical structure and the internal 

data of the recurrence points is calculated as follows 

(Equation 6): 

𝐿𝐴𝑀 =
∑ 𝑣𝑃(𝑣)𝑁

𝑣=𝑣𝑚𝑖𝑛

∑ 𝑣𝑃(𝑣)𝑁
𝑣=1

 (6) 

7. Trapping time: The stopping time based on the 

average length of the vertical structure (Equation 7): 

𝑇𝑇 =
∑ 𝑣𝑃(𝑣)𝑁

𝑣=𝑣𝑚𝑖𝑛

∑ 𝑃(𝑣)𝑁
𝑣=𝑣𝑚𝑖𝑛

 (7) 

8. Length of the longest vertical line (Equation 8): 

𝑉𝑚𝑎𝑥 = 𝑚𝑎𝑥({𝑣𝑖; ⅈ = 1,… ,𝑁𝑣}) (8) 

𝑁𝑣 equals the absolute number of vertical lines. 

If recurrence data were assumed as 

S={xt1,xt2,… ,xti,…}, then the corresponding 

recurrence time T equals { 𝑇(ⅈ) = 𝑡𝑖+1 − 𝑡𝑖, ⅈ = 1,2,… }. 

Features 9 and 10 are achieved accordingly. 

9. Recurrence time of 1st type (Equation 9); 

10. Recurrence time of 2nd type (Equation 10); 

𝑇1 =
1

𝑁
∑ 𝑇𝑖

(1)

𝑁

𝑖=1

 (9) 

𝑇2 =
1

𝑁
∑ 𝑇𝑖

(2)

𝑁

𝑖=1

 (10) 

11. Recurrence period density entropy (Equation 

11); 

𝐻𝑛𝑜𝑟𝑚 = (𝑙𝑛 𝑇𝑚𝑎𝑥)−1 ∑ 𝑃(𝑡) 𝑙𝑛 𝑃(𝑡)

𝑇𝑚𝑎𝑥

𝑡=1

 (11) 

12. Clustering coefficient (Equation 12); 

𝐶𝑙𝑢𝑠𝑡 = ∑
∑ 𝑅𝑖,𝑗𝑅𝑗,𝑘𝑅𝑘,𝑖

𝑁

𝑗,𝑘=1

𝑅𝑅𝑖

𝑁

𝑖=1

 (12) 

13. Transitivity: The transfer of a complex network 

is related to the probability that two neighbors in each 

case are still neighbors, indicating how much the 

network is clustered locally (Equation 13). 

𝑇𝑟𝑎𝑛𝑠 =
∑ 𝑅𝑖,𝑗𝑅𝑗,𝑘𝑅𝑘,𝑖

𝑁

𝑗,𝑘=1

∑ 𝑅𝑖,𝑗𝑅𝑘,𝑖
𝑁

𝑖,𝑗,𝑘=1

 (13) 

In the current study, recurrence quantification 

analysis is done using MATLAB Toolbox [28]. 

(available at: http://tocsy.pik-potsdam.de/). 

2.4. Apply T-Test 

We took several steps to assess and ensure the 

normality of our data distribution. Firstly, we visually 

inspected the data using histograms and Q-Q plots, 

which allow for a preliminary assessment of data 

normality. This step provided an initial indication of 

whether our data points followed a normal 

distribution. Subsequently, we employed statistical 

tests for normality, such as the Shapiro-Wilk test and 

the Kolmogorov-Smirnov test. These tests are 

commonly used to assess if a dataset significantly 

deviates from a normal distribution. Our results from 

these tests indicated whether the data significantly 

departed from normality. To enhance the robustness of 

our analysis, we applied data transformations when 

necessary. These transformations can include 

logarithmic, square root, or Box-Cox transformations, 

among others, to make the data conform more closely 

to a normal distribution. It's important to note that not 

http://tocsy.pik-potsdam.de/
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all data needs to be perfectly normally distributed for 

certain statistical analyses to be valid. However, when 

violations of normality were identified, we employed 

appropriate statistical techniques, such as non-

parametric tests or data normalization, to mitigate the 

effects of non-normality on our results. This allowed 

us to choose the most suitable statistical methods for 

our data based on its distribution characteristics. A 

statistical paired T-test [25] by GraphPad Prism 

software was conducted after extracting features, and 

P-values were obtained for each feature that are less 

than the significance level (0.05). The signal 

classification was performed after applying the T-test 

and ensuring that features in both pain and non-pain 

states were different. 

2.5. Signal Classification 

The Rough neural network is used to classify the 

signals. These networks are neural structures that 

include rough neurons [31,32]. The neural network 

based on rough neurons can improve the network 

performance and reduce errors [31]. The output could 

be obtained for the second layer (output layer) similar 

to the multilayer perceptron neural network. Equations 

14-20 represent the neural network algorithm. 

𝑛ⅇ𝑡𝐿
1 = 𝑋 ⋅ 𝑊𝐿

1 (14) 

𝑛ⅇ𝑡𝑈
1 = 𝑋 ⋅ 𝑊𝑈

1 (15) 

𝑂𝐿
1 = 𝑚ⅈ𝑛( 𝑓1(𝑛ⅇ𝑡𝐿

1) ,𝑓1(𝑛ⅇ𝑡𝑈
1 )) (16) 

𝑂𝑈
1 = 𝑚𝑎𝑥( 𝑓1(𝑛ⅇ𝑡𝐿

1) ,𝑓1(𝑛ⅇ𝑡𝑈
1 )) (17) 

𝑂1 =
𝑂𝑈

1 − 𝑂𝐿
1

𝑎𝑣ⅇ𝑟𝑎𝑔ⅇ(𝑂𝑈
1 ,𝑂𝐿

1)
 (18) 

𝑛ⅇ𝑡2 = 𝑂1 ⋅ 𝑤2 (19) 

𝑂2 = 𝑓2(𝑛ⅇ𝑡2) (20) 

In this study, the feature matrix had a dimension of 

13×60. Additionally, Dataset is split into a 50/50 ratio. 

Also, we used 2-fold cross-validation [37] to divide 

the data into 2 folds with 20 times iterations. We kept 

the same dimension for both the training and testing 

sets. The Rough neural network was used in such a 

way that the number of neurons in the middle layer 

was equal to 10. The gradient descent method was 

used for learning and weight updates in the neural 

network. Furthermore, bias values in the first and last 

layers were randomly considered based on input and 

target data. Eventually, the maximum value for each 

step of training in the network was equal to 50. Then, 

the LogSig activation function was utilized for 

training and testing the data. The decision to employ a 

2-fold cross-validation technique was based on the 

limited size of our dataset. While 2-fold cross-

validation is less common than, say, 5 or 10-fold 

cross-validation, it was necessary due to the 

constraints of our dataset. With a limited number of 

samples, we aimed to ensure that both the training and 

testing sets were as diverse and representative as 

possible. A 50/50 split was chosen to prevent any bias 

toward one class or the other, given the nature of our 

binary classification task. The exact size of the 

training and test datasets would depend on the total 

number of samples available in the dataset, which is 

not specified in this context. However, the 50/50 split 

suggests an equal distribution between the two sets. 

We opted for a 2-fold cross-validation to ensure that 

both training and testing sets were adequately 

representative of the data distribution.  In summary, 

while we acknowledge that 2-fold cross-validation 

and a 50/50 data split may not be typical in all 

scenarios, these choices were made to address the 

specific challenges of our dataset, ensuring that the 

neural network model was trained and tested as 

effectively as possible given the available data.  

3. Results 

EEG variation during pain and no pain condition is 

studied in various research works. In the present study, 

all P-values in the paired T-test for 13 features were 

obtained using the RQA method and were less than the 

significance level (0.05), indicating the difference 

between pain and non-pain states. Therefore, these 

differences in features demonstrate a sign of the 

difference in cerebral performance in pain and non-

pain states and thus can be used for pain detection and 

classification in participants (Figure 3). The mean and 

standard deviation of VAS were 4.2 and 1.25. Pain 

level estimation is shown in Figure 4. The obtained 

values from the paired T-test are presented in Table 1. 

After training the neural network and considering the 

network as a recurrent neural network, a confusion 

matrix based on comparing the neural network output  
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with the target matrix was calculated to evaluate each 

step of the classifier. Figure 5 shows one confusion 

matrix of 20 times of running the classifier.   

All feature in Figure 3 is shown in no-pain and pain 

conditions. Recurrence rate, determinism, averaged 

diagonal length, length of longest diagonal line, 

entropy of diagonal length, laminarity, trapping time,  

 

length of longest vertical line, recurrence times of 

second type, clustering coefficient, transitivity is 

lower in the pain state than the non-pain state. 

Recurrence times of the first type and recurrence 

period density entropy is lower in the no-pain state 

than in the pain state.  

 

 

  

  

Figure 3. A) Recurrence rate across 3 channels for 10 subjects. B) Determinism across 3 channels for 10 subjects 
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Therefore, the accuracy of the Rough neural 

network classifier was obtained by the confusion 

matrix [38]. Table 2. Depicts the Mean and standard 

deviation of the values of the confusion matrix, for two 

steps of classification using 20 times of the running 

classifier, which was equal to 95.254%. Accordingly, 

extracting dynamic features and using the neural  

 

network based on rough neurons is appropriate for 

classifying and detecting pain from non-pain states. 

This test aims to detect and classify pain from non-

pain states in volunteers using features that are 

extracted from EEG and the RQA method [28]. In the 

present study, CPT was applied to create phasic pain.  

 

  

  

  

Figure 3. C) Averaged diagonal length across 10 subjects. D) Length of longest diagonal line across 10 subjects 
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Implementation of proposed methods performed using 

MATLAB R2017a software. 

4. Discussion 

The detection and differentiation of pain states have 

garnered significant attention in research globally. In 

this study, we have demonstrated substantial 

alterations in the dynamic features of the brain when 

comparing pain and non-pain states. We also propose 

the utilization of the Recurrence Quantification 

Analysis (RQA) method to investigate these dynamic 

brain changes. Importantly, we have achieved highly 

accurate pain differentiation using a Rough Neural 

Network classifier. Prior research has explored EEG 

signal processing and related methods for automatic  

 

 

 

Figure 3. E) Entropy of diagonal length for 10 subjects. F) Laminarity for 10 subjects 
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pain detection, but the results have not been 

consistently conclusive. For instance, studies by 

Vatankhah et al. [13,14], Alazrai et al. [15], and 

Nezam et al. [16], Bonotis et al. [21], Elsayed et al. 

[22], Mosares-Haghighi et al. [24], Wang et al. [25], 

and Lin Lin Y et al. [39] employed the Cold Pressor  

 

Test (CPT), similar to our study, to induce pain in 

participants and recorded data using EEG. Each of 

these studies utilized different features and techniques 

for pain detection. For example, Vatankhah et al. [13] 

and [14] focused on nonlinear and spectral features, 

while Alazrai et al. [15] concentrated on the beta  

 

  

  

Figure 3. G) Trapping time across 10 subjects. H) Length of longest vertical line across 10 subjects 
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frequency band. Nezam et al. [16] achieved multi-

level pain differentiation, and Bonotis et al. [21] 

classified pain into five intensity levels based on band 

power. Elsayed et al. [22] found a direct correlation 

between the alpha frequency band power and pain 

intensity, while Mosares-Haghighi et al. [24] 

differentiated pain and non-pain states by examining 

differences in connectivity graphs in the alpha band. 

Wang et al. [25] used a paired T-test to investigate the  

 

significance of EEG power differences between pain 

and non-pain states, revealing higher power in the pain 

state across most frequency bands. Lin Lin Y et al. 

[39] used SVM for classifying three levels of pain 

using various physiological signals, including EEG, 

with a focus on frequency-domain features. 

In our study, we have made noteworthy 

advancements by utilizing the Rough Neural Network  

  

  

  

Figure 3. I) Recurrence times of the first type across 10 subjects. J) Recurrence times of the second type across 10 

subjects 
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and nonlinear features, leading to increased accuracy 

in pain differentiation. However, the primary focus of 

these studies has been on distinguishing different 

levels of pain, which was not the primary objective of 

our research. Mansoor et al. [17] induced pain using 

cold and heat stimuli and achieved 100% accuracy 

using frequency and time-domain features with  

 

classifiers like SVM and KNN. While their overall 

accuracy surpassed our results, they did not 

incorporate nonlinear features. Panavarnan et al. [18], 

Misra et al. [19], Vijayakumar et al. [20], and Cao et 

al. [23] induced pain through heating stimuli. 

Panavarnan et al. [18] used power spectral density in 

alpha and beta frequencies for pain classification.  

 

  

  

Figure 3. K) Recurrence period density entropy across 10 subjects. L) Clustering coefficient across 10 subjects 
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Misra et al. [19] analyzed independent components 

and localization in EEG to classify pain, concluding 

that gamma and theta power increase in the prefrontal 

area and beta power decreases in the cortical region 

 

 

Figure 3. M) Transitivity across 10 subjects 

 

Figure 4. Pain level estimation of 10 subjects using the 

VAS method 
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Table 1. P-values (paired T-test) of RQA Measures 

Features P-value 

Recurrence rate 0.0002 

Determinism 0.03 

Averaged diagonal length 0.003 

Length of longest diagonal line 0.008 

Entropy of diagonal length 0.008 

Laminarity 0.02 

Trapping time 0.001 

Length of longest vertical line 0.0001 

Recurrence times of first type 0.002 

Recurrence times of second type 0.02 

Recurrence period density entropy 0.04 

Clustering coefficient 0.001 

Transitivity 4.67E-06 
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with increased pain sensation. Vijayakumar et al. [20] 

used time-frequency wavelet transformation of EEG 

and the random forest algorithm to assess pain. Cao et 

al. [23] employed laser stimulation and found that 

alpha band amplitude was an effective objective tool 

for sudden pain detection. Zolezzi DM et al. [40] 

successfully differentiated three levels of pain severity 

in chronic neuropathic pain patients, focusing on the 

sampling rate. Notably, studies such as Panavarnan et 

al. [18], Misra et al. [19], Nezam et al. [16], Cao et al. 

[23], and Zolezzi DM et al. [40] have reported 

contradictory results based on spectral features. This 

highlights the insufficiency of relying solely on 

spectral features from EEG for pain processing. Future 

studies should consider incorporating both dynamic 

and spectral features to enhance the accuracy and 

robustness of pain detection methods. 

In summary, our study contributes to the growing 

body of research in the field of pain detection by 

highlighting the significance of dynamic features, 

nonlinear analysis, and the potential for improved 

accuracy in pain differentiation using the Rough 

Neural Network method. This underscores the 

importance of further exploration of a holistic 

approach that combines dynamic and spectral features 

for more robust and accurate pain processing. 

4.1. Limitation 

It should be mentioned that the test was applied 

based on phasic pain by the CPT test. In this study, 

only nonlinear features were extracted, and it is 

suggested that the effect of both linear and nonlinear 

features be investigated. 

5. Conclusion 

In Figure 3, a comprehensive set of features was 

examined in both no-pain and pain conditions. It is 

evident that various dynamic features, including 

recurrence rate, determinism, averaged diagonal 

length, length of the longest diagonal line, entropy of 

diagonal length, linearity, trapping time, length of the 

longest vertical line, recurrence times of the second 

type, clustering coefficient, and transitivity, were 

observed to be lower in the pain state compared to the 

non-pain state. On the other hand, recurrence times of 

the first type and recurrence period density entropy 

were found to be lower in the no-pain state compared 

to the pain state. 

This analysis underscores the significance of 

extracting dynamic features and employing neural 

networks based on rough neurons for the accurate 

classification and detection of pain from non-pain 

states. The observed differences in these dynamic 

features serve as valuable insights into the distinctive 

brain activity patterns associated with pain perception, 

offering a promising avenue for the development of 

robust pain detection methodologies. 
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Figure 5. One confusion matrix obtained from 20 

iterations of running the classifier. 

 
Table 2. The mean and standard deviation of confusion 

matrix measurements 

 
Accuracy value 

for First input 

Accuracy 

value for 

Second input 

Mean of 

Confusion Matrix 
95.5005 95.001 

Standard 

Deviation of 

confusion Matrix 

4.506915 4.014004 

 



 M. Tavasoli, et al.  

FBT, Vol. 12, No. 3 (Summer 2025) 571-586 585 

References  

1- Charles L Webber and Norbert Marwan, "Recurrence 

quantification analysis." Theory and best practices, Vol. 

426(2015). 

2- Mona Elamir, Walid Alatabany, and Mohamed 

Aldosoky, "Intelligent emotion recognition system using 

recurrence quantification analysis (RQA)." in 2018 35th 

National Radio Science Conference (NRSC), (2018): 

IEEE, pp. 205-13. 

3- Ernst Niedermeyer and FH Lopes da Silva, 

Electroencephalography: basic principles, clinical 

applications, and related fields. Lippincott Williams & 

Wilkins, (2005). 

4- William O Tatum IV, Handbook of EEG interpretation. 

Springer Publishing Company, (2021). 

5- Cynthia C Chernecky and Barbara J Berger, Laboratory 

tests and diagnostic procedures. Elsevier Health Sciences, 

(2012). 

6- Hoda Heidari and Zahra Einalou, "SSVEP extraction 

applying wavelet transform and decision tree with bays 

classification." International Clinical Neuroscience 

Journal, Vol. 4 (No. 3), pp. 91-97, (2017). 

7- Saeid Sanei and Jonathon A Chambers, EEG signal 

processing. John Wiley & Sons, (2013). 

8- Peyman Dehghanpour and Zahra Einalou, "Evaluating 

the features of the brain waves to quantify ADHD 

improvement by neurofeedback." Technology and Health 

Care, Vol. 25 (No. 5), pp. 877-85, (2017). 

9- Nayereh Eslamieh and Zahra Einalou, "Investigation of 

Functional Brain Connectivity by Electroencephalogram 

Signals using Data Mining Technique." Journal of 

Cognitive Science, Vol. 19 (No. 4), (2018). 

10- Laura A Mitchell, Raymond AR MacDonald, and Eric 

E Brodie, "Temperature and the cold pressor test." The 

journal of pain, Vol. 5 (No. 4), pp. 233-37, (2004). 

11- L Garcia-Larrea, Maud Frot, and M Valeriani, "Brain 

generators of laser-evoked potentials: from dipoles to 

functional significance." Neurophysiologie 

clinique/Clinical neurophysiology, Vol. 33 (No. 6), pp. 

279-92, (2003). 

12- Jürgen Lorenz and Luis Garcia-Larrea, "Contribution of 

attentional and cognitive factors to laser evoked brain 

potentials." Neurophysiologie clinique/Clinical 

neurophysiology, Vol. 33 (No. 6), pp. 293-301, (2003). 

13- André Mouraux, Jean-Michel Guerit, and Léon Plaghki, 

"Non-phase locked electroencephalogram (EEG) 

responses to CO2 laser skin stimulations may reflect 

central interactions between A∂-and C-fibre afferent 

volleys." Clinical neurophysiology, Vol. 114 (No. 4), pp. 

710-22, (2003). 

14- Joachim Gross, Alfons Schnitzler, Lars Timmermann, 

and Markus Ploner, "Gamma oscillations in human 

primary somatosensory cortex reflect pain perception." 

PLoS biology, Vol. 5 (No. 5), p. e133, (2007). 

15- Maryam Vatankhah, Vahid Asadpour, and Reza Fazel-

Rezai, "Perceptual pain classification using ANFIS 

adapted RBF kernel support vector machine for 

therapeutic usage." Applied Soft Computing, Vol. 13 (No. 

5), pp. 2537-46, (2013). 

16- Maryam Vatankhah and Amir Toliyat, "Pain level 

measurement using discrete wavelet transform." 

International Journal of Engineering and Technology, 

Vol. 8 (No. 5), pp. 380-84, (2016). 

17- Rami Alazrai, Mohammad Momani, Hussein Abu 

Khudair, and Mohammad I Daoud, "EEG-based tonic 

cold pain recognition system using wavelet transform." 

Neural Computing and Applications, Vol. 31pp. 3187-

200, (2019). 

18- Tahereh Nezam, Reza Boostani, Vahid Abootalebi, and 

Karim Rastegar, "A novel classification strategy to 

distinguish five levels of pain using the EEG signal 

features." IEEE Transactions on Affective Computing, 

Vol. 12 (No. 1), pp. 131-40, (2018). 

19- Zara Mansoor, Mustansar Ali Ghazanfar, Syed 

Muhammad Anwar, Ahmed S Alfakeeh, and Khaled H 

Alyoubi, "Pain Prediction in humans using human brain 

activity data." in Companion Proceedings of the The Web 

Conference 2018, (2018), pp. 359-64. 

20- Pradkij Panavaranan and Yodchanan Wongsawat, 

"EEG-based pain estimation via fuzzy logic and 

polynomial kernel support vector machine." in The 6th 

2013 Biomedical Engineering International Conference, 

(2013): IEEE, pp. 1-4. 

21- Gaurav Misra, Wei-en Wang, Derek B Archer, Arnab 

Roy, and Stephen A Coombes, "Automated classification 

of pain perception using high-density 

electroencephalography data." Journal of 

neurophysiology, Vol. 117 (No. 2), pp. 786-95, (2017). 

22- Vishal Vijayakumar, Michelle Case, Sina Shirinpour, 

and Bin He, "Quantifying and characterizing tonic 

thermal pain across subjects from EEG data using random 

forest models." IEEE Transactions on Biomedical 

Engineering, Vol. 64 (No. 12), pp. 2988-96, (2017). 

23- Panagiotis A Bonotis et al., "Automated assessment of 

pain intensity based on EEG signal analysis." in 2019 

IEEE 19th International Conference on Bioinformatics 

and Bioengineering (BIBE), (2019): IEEE, pp. 583-88. 

24- Mahmoud Elsayed, Kok Swee Sim, and Shing Chiang 

Tan, "A novel approach to objectively quantify the 

subjective perception of pain through 

electroencephalogram signal analysis." IEEE Access, Vol. 

8pp. 199920-30, (2020). 

25- Tianao Cao, Dan Liu, Qisong Wang, Lin Tao, and 

Jinwei Sun, "Frequency-Domain EEG Analysis for 



 Accurate Brain Tumor Image Segmentation and Classification Using DCNN and PCNN  

586   FBT, Vol. 12, No. 3 (Summer 2025) 571-586 

Sudden Pain Perception." in 2020 IEEE International 

Conference on Artificial Intelligence and Information 

Systems (ICAIIS), (2020): IEEE, pp. 434-40. 

26- P Modares-Haghighi, Reza Boostani, Mohammad 

Nami, and Saeid Sanei, "Quantification of pain severity 

using EEG-based functional connectivity." Biomedical 

Signal Processing and Control, Vol. 69p. 102840, (2021). 

27- Yingzi Lin et al., "Experimental exploration of 

objective human pain assessment using multimodal 

sensing signals." Frontiers in Neuroscience, Vol. 16p. 

831627, (2022). 

28- Daniela M Zolezzi, Luz María Alonso-Valerdi, and 

David I Ibarra-Zarate, "EEG frequency band analysis in 

chronic neuropathic pain: A linear and nonlinear approach 

to classify pain severity." Computer Methods and 

Programs in Biomedicine, Vol. 230p. 107349, (2023). 

29- Atefeh Goshvarpour, Ataollah Abbasi, and Ateke 

Goshvarpour, "Dynamical analysis of emotional states 

from electroencephalogram signals." Biomedical 

Engineering: Applications, Basis and Communications, 

Vol. 28 (No. 02), p. 1650015, (2016). 

30- Shifei Ding, Jinrong Chen, Xinzheng Xu, and Jianying 

Li, "Rough neural networks: a review." Journal of 

Computational Information Systems, Vol. 7 (No. 7), pp. 

2338-46, (2011). 

31- Robert K Nowicki and Robert K Nowicki, "Rough 

Neural Network Classifier." Rough Set–Based 

Classification Systems, pp. 95-132, (2019). 

32- Paul Root Wolpe, "Treatment, enhancement, and the 

ethics of neurotherapeutics." Brain and cognition, Vol. 50 

(No. 3), pp. 387-95, (2002). 

33- Christopher Sinke, Katharina Schmidt, Katarina 

Forkmann, and Ulrike Bingel, "Phasic and tonic pain 

differentially impact the interruptive function of pain." 

PLoS One, Vol. 10 (No. 2), p. e0118363, (2015). 

34- Markus Ploner, Christian Sorg, and Joachim Gross, 

"Brain rhythms of pain." Trends in cognitive sciences, 

Vol. 21 (No. 2), pp. 100-10, (2017). 

35- Gillian A Hawker, Samra Mian, Tetyana Kendzerska, 

and Melissa French, "Measures of adult pain: Visual 

analog scale for pain (vas pain), numeric rating scale for 

pain (nrs pain), mcgill pain questionnaire (mpq), short‐

form mcgill pain questionnaire (sf‐mpq), chronic pain 

grade scale (cpgs), short form‐36 bodily pain scale (sf‐36 

bps), and measure of intermittent and constant 

osteoarthritis pain (icoap)." Arthritis care & research, 

Vol. 63 (No. S11), pp. S240-S52, (2011). 

36- David González Márquez, "Filtering guide: filtering 

biomedical signals Matlab." (2019). 

37- Norbert Marwan, Cross Recurrence Plot Toolbox for 

Matlab. (2022). 

38- Li Wang, Yan Xiao, Richard D Urman, and Yingzi Lin, 

"Cold pressor pain assessment based on EEG power 

spectrum." SN Applied Sciences, Vol. 2pp. 1-8, (2020). 

39- Daniel Berrar, "Cross-validation." ed, (2019). 

40- (2024). plotconfusion, Plot classification confusion 

matrix.  [Online]. Available: 

https://www.mathworks.com/help/deeplearning/ref/plotc

onfusion.html. 

 

https://www.mathworks.com/help/deeplearning/ref/plotconfusion.html
https://www.mathworks.com/help/deeplearning/ref/plotconfusion.html

