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Abstract 

Purpose: Brain tumors are very important for the overall health of humans, which happen due to the uncontrolled 

increase and duplication of abnormal cells. Therefore, brain tumor segmentation is a very important step in 

medical diagnosis and can help in early tumor detection, treatment planning, and tumor progression follow-ups. 

To solve the problems related to manual segmentation such as time-cost, inaccuracy and subjectivity, automatic 

segmentation with deep learning methods is presented. This study aimed to develop an automatic brain tumor 

segmentation based on the combination of convolutional and graph neural networks to overcome the 

shortcomings of each network when they are used individually.  

Materials and Methods: The main goal of this study is to propose a novel architecture for brain tumor 

segmentation from multi-modal MR images and comparison of the results with related SOTA studies. The novel 

architecture uses a simple Convolutional Neural Network (CNN) and Graph Neural Network (GNN) sequentially. 

In the first stage, the volumetric 3D image with a combination of all modalities is fed to the simple convolutional 

network. After retrieving the feature representation of the CNN, a graph model is created and fed to the GNN. 

The CNN will help to capture local information of patches and GNN will retrieve the global information available 

in the data which together can provide promising results. 

Results: The proposed model used for the segmentation of the BraTS2021 dataset showed the average Dice score 

of 0.86 and the average Hausdorff of 17.94. The results showed that the combination of CNN and GNN can the 

performance of the task at hand. Also, the heatmaps extracted can show the importance of adding the GNN into 

the CNN. 

Conclusion: New and creative advancements in artificial intelligence and its applications for medical image 

segmentation are very promising. We proposed a hybrid network of CNN and GNN to capture local and global 

information and combine them in a way such that we can recreate an acceptable segmented result which is justified 

with Dice score and Hausdorff metrics quantitatively. The proposed methodology performed better in comparison 

with the other related methods. Also, the activation heatmaps confirm the reliability of the approach qualitatively. 

Keywords: Brain Tumor; Segmentation; Convolutional Neural Network; Graph Neural Network; Magnetic 

Resonance Imaging. 
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1. Introduction  

A brain tumor is caused by the uncontrolled growth 

of abnormal tissues that do not follow the natural cycle 

of cells. They may not be cancerous but if left 

untreated can put massive pressure on the cranium 

because of space. There are two types of brain tumors. 

First, the primary tumors begin in the brain 

boundaries, and, secondary tumors start in other parts 

of the body and metastasis to the brain and develop the 

brain tumors [1]. 

Early diagnosis of brain tumors plays an important 

role in increasing the chance of treatment and survival 

of patients. Tumor segmentation using neuro-imaging 

modalities such as MRIs is crucial for treatment 

procedure and planning [2], monitoring of tumor 

progression and response to treatment [3], and 

reducing healthcare costs by minimizing the need for 

extensive and late-stage interventions [4].  

Clinicians usually check and detect tumors on MR 

images based on their experience and expert 

knowledge. MR images usually are made up of many 

slices and manual segmentation of them is time-

consuming and with human errors, which should cause 

misdiagnosis [5]. Also, manual segmentation is time-

consuming, inaccurate, and subjective due to the 

variation in size, morphological shape, and location of 

tumors. Hence, automatic brain tumor segmentation 

seeks to address the limitations of manual 

segmentation, reduces the subjectivity of manual 

tumor delineation, saves clinicians valuable time 

compared to manual methods, and improves workflow 

and patient care. 

Machine Learning approaches used in brain tumor 

segmentation [6, 7] needed extensive feature 

engineering and the performance of the algorithms 

was not comparable with deep learning methods [8-

10].  

Among deep learning approaches, Convolutional 

Neural Networks (CNN) play an important role in 

image segmentation [11-14]. For Brain tumor 

segmentation, three variants of CNN can be seen in 

studies: cascade CNNs [15-17], single and multi-path 

CNNs [18-20], and fully convolutional networks [21-

23]. Iqbal et al. [13] proposed a deep CNN that made 

up several sequential layers for brain tumor 

segmentation. A CNN architecture with two pathways 

that emphasize both small and large contexts of MR 

images was proposed in [24]. Hussain et al. [25] 

developed a CNN-based algorithm for automated 

segmentation of brain tumors and to avoid over-fitting 

using max-out and drop-out is suggested. To improve 

the segmentation prediction results, a combination of 

CNN and full CRF is proposed in [26]. CNN-based 

approach do not need any feature engineering and 

different deep architectures have achieved good 

performances in brain tumor segmentation but there 

are some considerable problems. One of the main 

shortcomings of CNN-based algorithms which is 

mainly caused by the limited receptive field unless a 

very deep neural network is used, is the disability to 

capture long-range dependencies and global feature 

connections in related pixels and locations [27]. 

Transformers [28] using self-attention blocks are 

gaining so much respect in the field of image 

processing [29]. There are several studies on 

applications of Transformers or the variation of them 

[30] on brain tumor segmentation [31-33]. In order to 

use the advantage of both CNN and Transformer, a 

combination of them called TransBTS was developed 

by Wang et al. [31]. By inspiring TransBTS, Jia et al. 

[34] proposed an architecture that makes a feature 

representation of the skip connection. Zhang et al. [35] 

introduced a multimodal medical Transformer which 

can model local, global, and long-range correlations 

within each modality of MR images. The intra- and 

inter-modality correlation of MR images was explored 

by using a Nested Modality-aware Feature 

Aggregation module in [36]. The main problem of 

transformers in the field of medical image processing 

is the need for enormous datasets for training [37], and 

the high computational cost. 

Graph Neural Networks (GNN) [38-41] are 

developed in such a way that can handle the issues 

mentioned above. By defining different hop levels, 

considering global features and long-range 

dependencies of an image are addressed. It is also so 

much easier to train a GNN and needs far less 

computational cost compared to Transformers. 

Several variations of GNNs have been developed for 

3D brain tumor segmentation [42, 43]. Ma et al. [5] 

proposed spatial and channel reasoning modules in 

parallel for modeling long-range dependencies and 

contextual interdependencies of an image for brain 

tumor segmentation. This architecture works based on 
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Graph Convolutional Network (GCN) and Graph 

Attention Network (GAT). GAT is also used by Patel 

et al. [44] to identify the tumor type via a volumetric 

MRI. 

Bagheri et al. [45] introduced a graph coloring 

approach for brain tumor segmentation that 

considered each pixel of the image as a graph's node 

and the brightness difference of a couple of pixels as 

an edge. 

The main property of GNN is that it will perform on 

the basis of sampling neighbors in a node-wise manner 

and then aggregating the information retrieved from 

those neighbors. 

Inspired by these observations, in this study with 

the combination of two widely used methods in deep 

learning for brain tumor segmentation, we have 

proposed a novel architecture by using CNN to find 

relevant representations to create a graph input for the 

GNN to exploit and aggregate features with the 

following specifications:  

• A CNN for retrieving the local information 

available in near patches.  

• In order to leverage the global information, 

after the CNN layer we have used GraphSage. 

• By considering multiple hops for the sampling 

and aggregation of information of GNN it is possible 

to reach more nodes and hence more global 

information. 

• Merging and combining the two networks can 

help to alleviate the drawbacks of standalone 

architectures, hence boosting the performance of the 

overall results. 

• Deconvolution layers are used to recreate the 

main image size which is segmented. 

•The proposed architecture will target important 

locations for brain tumor segmentation which is 

evident from the resulting heatmaps. 

2. Materials and Methods 

The proposed method is mainly composed of two 

architectures, connected together in Figure 1. The 

details of every part of the figure are available in the 

next sections. In order to achieve fine-grained local 

information from images, the data is fed into a CNN. 

The CNN will receive the 3D input image so the 

convolutional operations are all in 3D form. Extracted 

features from CNN will be used as nodes with proper 

embeddings in a 2D form and are available for GNN 

input. GNN will perform operations in a manner to 

capture global information. To recreate the 

information of the whole image size and as for the 3 

main classes of the output result, deconvolution layers 

combined with 1×1 convolution layers are used. 

 

 

 

Figure 1. The main architecture of the proposed method 
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2.1. CNN Architecture  

As explained in section 2.6, the data is in the shape 

of 128×128×128×4. The input contains information 

from the 4 modalities of the MRI datasets. So, the 

convolutional layers are all in 3D form. The CNN 

architecture is made up of 4 layers of convolutions. 

The Conv3D with a kernel size of 5 and 3, the stride 

of 1, proper padding, and N filters are connected to the 

3D max-pool layer with a stride of 2. The process is 

repeated for other layers but with different numbers of 

filters. The output of CNN architecture is then 

averaged on the last dimension of data (not the feature 

size).  

The simple architecture helps in 3 ways, first, it will 

utilize the information available in 3D form of data 

from the 4 modalities of MRI. Second, the 3D data will 

be transformed into a 2D shape with 256 embedding 

vectors for every data point which is later considered 

as nodes of GNN. Third, the local spatial information 

is preserved and explored before feeding into a GNN.    

2.2. GNN Architecture  

The proposed graph neural network architecture in 

this study contains GraphSage layers [41] (Figure 2). 

As illustrated in Figure 2, with only one hop every 

node uses its adjacent neighborhood, and combines it 

with the available information to update the 

information passed into the next step. The output of 

the previous section with the size of 32×32 is 

considered nodes with 256 embedding vectors. The 

information of every node is transformed by (Equation 

1): 

𝐻𝑢
𝑙+1

=  𝜎(𝑊𝑙 . (𝐻𝑢
(𝑙)

𝑐𝑜𝑛𝑐𝑎𝑡 𝑚𝑒𝑎𝑛(𝑊𝑣𝜎( 𝐻𝑣
(𝑙)

)∀𝑣

∈ 𝑉(𝑢))) 

(1) 

aggregation of the neighbor's information shown in 

Equation 1.  

Where Hu at the beginning is the embeddings 

provided by CNN in the previous step and for other 

layers it is the feature matrix of node u at layer l, σ is 

an activation function to add non-linearity, 𝑊𝑙 is a 

trainable weight matrix at layer l, 𝑊𝑣 is another 

trainable weight matrix for neighbors, and V(u) is the 

subset of nodes which are directly connected to u via 

edges, also known as the neighborhood of u. 

The output size of GNN does not change and it 

remains the same as the input, but the information 

aggregation and updates from different hops will be 

utilized to cover related global features from other 

nodes. 

2.3. Deconvolution Model  

In this section, the data is converted back into the 

original shape of the input so we can have the output 

segmented result. In order to achieve this, 

deconvolutions with a factor of 2 are used. 1×1 

convolutions are leveraged to change the number of 

filters to the desired output channels. 

2.4. Loss Function  

Cross-entropy loss is used to calculate the loss and 

backpropagate through the entire model (Equation 2). 

So, the whole architecture is trained jointly. SoftMax 

activation function for the last layer can help to 

classify different labels of the dataset. 

𝐿𝐶𝐸 = − ∑ 𝑦𝑖𝑙𝑜𝑔𝑦�̂�

𝑁

𝑖=1

 (2) 

2.5. Dataset  

To evaluate the proposed method, the BraTS2021 

dataset is utilized [46-48]. There are 1251 cases for 

training and 216 for validation in this dataset. Each 

sample included the four 3D MRI modalities: T1-

weighted (T1), post-contrast T1-weighted (T1ce), T2-

weighted (T2), and Fluid Attenuated Inversion 

Recovery (FLAIR). The input image size is 240 × 240 

× 155. The labels are Label 1: Necrotic and non-

enhancing tumor (NCR), Label 2: Peritumoral Edema 

 

Figure 2. Detailed view of GraphSage layer 
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(ED) and Label 4: GD-Enhancing Tumor (ET). Label 

3 is not available in BraTS 2020.  

2.6. Pre-Processing 

By observing each image of the dataset, it is 

obvious that every slice largely consists of a dark 

background without any useful information that can be 

ignored. In this matter, unnecessary columns and rows 

are removed in each slice and the image is resized to 

128 × 128. Also, empty slices are dropped from the 

beginning and end of 155 slices, and 128 of them with 

more useful information are selected. As it is evident 

in Figure  in the first column, the margins of the input 

image are black pixels, so in order to get rid of 

unimportant information we can remove them. The 

MRI device is recording images sequentially, so the 

first and last slices of the image are not useful, we can 

delete them so we have only 128 slices out of a total 

of 155 slices in every sample. 

2.7. Implementation Details 

The entire proposed architecture is trained 

simultaneously for 50 epochs with mini-batch sizes of 

32 and a learning rate of 0.0003. Adam optimizer is 

used with default parameters. Python was used as the 

programming language. For the deep learning 

framework, we used the Pytorch 1.7 version with 

Pytorch Geometric. A Windows PC with an Intel i7-

12700K, an RTX 3080 GPU and 32GB of RAM was 

the choice for training the model. The training and 

validation split is done by default on the provided 

dataset of BraTS. However, we utilized 80 percent of 

the training data as train data and 20 percent of that for 

validation and early stopping criteria. 

2.8. Evaluation Metrics 

Two widely used metrics, including the Dice Score 

(DSC) and the 95th percentile of the Hausdorff 

distance (HD95%), are used for quantitative 

evaluation. The Dice score considers the internal 

padding of the segmentation label, and the Hausdorff 

distance is used to measure the areas near the 

boundaries of segmented locations. In other words, the 

DSC is used to measure the similarity between the 

ground truth and the segmentation results (Equation 3) 

and the average HD is a widely used performance 

metric to calculate the distance between two point sets 

(Equation 4). In medical image segmentation, HD is 

used to compare ground truth images with 

segmentations allowing their ranking. 

DSC= 
2𝑇𝑃

𝐹𝑁+ 𝐹𝑃+ 2𝑇𝑃
 (3) 

𝐻𝐷 (𝑋, 𝑌)

= 𝑚𝑎𝑥
{𝑠𝑢𝑝 𝑖𝑛𝑓 𝑑(𝑥, 𝑦), 𝑠𝑢𝑝 𝑖𝑛𝑓 𝑑(𝑥, 𝑦)},

𝑥 ∈ 𝑋   𝑦 ∈ 𝑌            𝑦 ∈ 𝑌 𝑥 ∈ 𝑋
 

(4) 

Where TP, FN, and FP are the number of True 

Positive, False Negative, and False Positive voxels, 

respectively. And also sup, inf, and d( , ) denote the 

supremum, infimum, and the function that computes 

the distance between two points, while x and y 

represent the points on surface X of the ground truth 

and surface Y of the predicted regions, respectively. 

3. Results 

The effectiveness of adding the two architectures 

together can be seen in an experiment done in Figure 

3. Class Activation Maps (CAM) [49] can help to 

achieve a qualitative assessment of the proposed 

method. By using CAMs, the areas in which the 

proposed approach has looked for extracting the 

representations related to the segmentation task are 

shown. The CAMs are extracted in two steps, firstly 

from CNN alone without the use of a GNN 

sequentially, which shows that the approach couldn't 

look for relevant areas with rich information for the 

task at hand. After adding the GNN it is showing that 

adding the GNN can help the network to see into more 

related areas and extract features from tumor locations 

by ignoring unimportant background redundant 

information. The resulting segmentation after using a 

combination of networks is complete evidence of how 

the GNN can impact the performance of the CNN. 

As it is illustrated in Figure 4, the segmentation 

result can be very close to the ground truth. Each 

modality of the MR images provides some 

information. For example, if we want to segment the 

core tumor, the FLAIR can be used. If we combine the 

FLAIR with T1ce, the information about necrotic 

tissue can be added to segment NET regions. The 

CNN helps to get information about smoothed borders 

while the GNN will provide the information about 

approximations of the image. The combination of all 
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the modalities can lead to a better performance which 

many studies ignore. We think that all the modalities 

can add a new level of information to the final 

segmentation results. The GNN clearly has taken 

advantage of the information provided by the CNN, in 

which the related areas are provided as node features. 

According to Table 1 we have compared the results 

of our proposed method to other related studies in a 

quantitative manner. It can be inferred that the 

combination of CNN with GNN can improve the 

results for the segmentation of brain tumors. The dice 

score for TC of [44] is slightly better, and the 

Hausdorff for ET of [50] is shown to be better. For all  

 

the other tasks our proposed method outperformed 

other models. The overall results indicate that 

combining the local patch filters with global features 

can improve the performance of the network. The 

DSC for WT, TC, and ET of our proposed method is 

0.93, 0.84, and 0.83 respectively. The HD95 of WT, 

TC, and ET is 6.99, 17.01, and 29.84 respectively. The 

simplicity of the CNN architecture is helping in 

reducing the computational costs and the GraphSage 

architecture for GNN also can help in that direction. 

 

Figure 3. Extracted class activation maps of two samples of the BraTS2021 dataset. From left to right: 

T2 modality of MRI, class activation maps after applying CNN architecture alone and after applying the 

combination of CNN and GNN 

 

Figure 4. Sample results of the proposed method on BraTS2021 dataset. Columns 1-4 show four MRI 

modalities: Flair, T1, T1ce and T2. Columns 5 and 6 illustrate the ground truth and predicted tumor 

segmentation, respectively.  Yellow=whole Tumor, Red=Enhancing Tumor, and Cyan= Tumor Core 
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4. Discussion 

We proposed an architecture composed of two main 

blocks. First, convolution layers and second, GraphSage 

layers. CNNs can alone produce acceptable results but 

due to the disability of capturing long-range 

dependencies, they require very deep architectures [53-

55]. One of the main disadvantages of deep CNNs is the 

time required to train and the need for large datasets. As 

for the GraphSage the disability to handle exactly the 

same multi-sets with different structures is sometimes 

problematic. 

The advantage of using this architecture is to alleviate 

the mentioned drawbacks. The simple CNN will provide 

a unique structure for the GraphSage. The simple 

architecture of CNN helps in 3 ways:  

• First, it will utilize the information available in 3D 

form of data from the 4 modalities of MRI. 

• Second, the 3D data will be transformed into a 2D 

shape with 256 embedding vectors for every data point 

which is later considered as nodes of GNN. 

• Third, the local spatial information is preserved 

and explored before feeding into the GraphSage. 

Also, using the deconvolution layers will provide 

proper information as there are learnable parameters. 

This combination also can produce smooth outputs, as it 

is a very important feature for segmenting brain tumors. 

The CNN with 4 layers of convolution will result in a 

2D graph which is fed into the GNN. The 

deconvolutional layers with learnable parameters in 

convolutional layers can result in a segmented image as 

output. In summary, the 3D combination of all 

modalities is fed into a CNN with 4 layers and the final 

feature representation is used as a node features  

 

information for GNN. We used 3 layers of GraphSage to 

exploit more relative information regarding the 

segmentation task. 

The methodology was performed with an average 

DSC of 0.86 and an average HD of 17.94 for the 

BraTS2021 dataset. The results show that the proposed 

method could provide reliable performance, which is 

confirmed by qualitative and quantitative comparisons. 

For the qualitative comparison we have used CAMs and 

in the quantitative comparisons we have provided two 

metrics that are mostly reported in related studies. 

5. Conclusion 

New and creative advancements in artificial 

intelligence and its applications for medical image 

segmentation are very promising. In this work, we 

proposed a hybrid network consisting of CNN and GNN 

parts to capture local and global information and 

combine them in a way such that we can recreate a 

segmented result with acceptable performance. The 3D 

input of the model is made from a combination of all 

modalities of MRI. The input is fed into a simple CNN 

with 4 layers and the resulting feature representation is 

used as a graph for input to GNN. In GNN we have used 

3 layers of GraphSage to exploit more relative 

information regarding the segmentation task. 

To show the advantage of the proposed method we 

utilized the CAMs. CAMs illustrated that CNN alone 

could not provide the perfect results due to their limited 

receptive field, while GraphSage could explore neighbor 

pixels and accumulate information on tumor areas which 

are evident in CAM results. It showed that the method 

can learn and look for the potential information related to 

the task of brain tumor segmentation in multi-modal MR 

Table 1. Performance of various models on BraTS2021 validation dataset 

Model 
Dice Score (%) HD95 

WT TC ET WT TC ET 

GNN [51] 0.87 0.78 0.74 6.92 16.67 20.40 

3D U-Net [50] 0.87 0.76 0.73 6.29 14.70 30.50 

3D ResU-Net [52] 0.90 0.85 0.82 4.3 9.89 17.89 

GAT [44] 0.91 0.86 0.79 5.91 6.08 9.52 

Proposed Method 0.93 0.84 0.83 6.99 17.01 29.84 
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images. Also, the model achieved an average DSC of 

0.86 and an average HD of 17.94 for the BraTS2021 

dataset.  

It is a good practice to use the Transformers [56] later, 

but it is important to keep in mind the importance of the 

computational cost of Transformers. So optimized 

versions of Transformers [57] combined with GNNs are 

proposed. 
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