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Abstract 

Purpose: Brain connectivity studies unveil the intricate interactions within neural networks. Various approaches 

exist to explore brain connectivity, yet the debate between the efficacy of linear versus non-linear methods 

remains unresolved due to the advantages and limitations of each. 

This study aims to provide a comprehensive evaluation of neuroimaging data analysis to gain insights into the 

functional aspects of the brain, particularly in the context of Alzheimer's Disease (AD). The objective is to identify 

potential pathways for early intervention and prevention, despite the controversies arising from diverse 

neuroimaging modalities and analytical techniques.  

Materials and Methods: Using fMRI data, both linear and non-linear approaches are investigated. The linear 

approach employs the Pearson Correlation Coefficient (PCC) to create whole-brain graphs. For non-linear 

approaches, Distance Correlation (DC) and the kernel trick are utilized. Functional brain networks are constructed 

and sparsified for each AD stage, followed by calculating global graph measures. 

Results: The findings indicate that non-linear approaches are more effective in distinguishing between different 

stages of AD. Among these, the kernel trick method performs better than the DC technique. Polynomial kernel 

(degree 3) showed better group separability, with significantly different graph measures such as clustering, 

transitivity, modularity, and small-worldness. Kernel analysis revealed that within-region connectivity was more 

disrupted in AD. Notably, the functional graphs of the brain are more significantly degraded in the early stages 

of AD. 

Conclusion: In the initial phases of AD, both functional integration and segregation of the brain are compromised, 

with a more pronounced decline in functional segregation as the disease progresses. The clustering coefficient, 

indicative of brain functional segregation, emerges as the most distinguishing feature across all stages of AD, 

highlighting its potential as a biomarker for early diagnosis. 

Keywords: functional Magnetic Resonance Imaging; Functional Connectivity; Linear Analysis; Graph Theory; 

Alzheimer's Disease; Non-Linear Dynamics. 
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1. Introduction  

Neurological diseases affect brain behavior and 

cognitive function noticeably. Alzheimer's Disease 

(AD) is a destructive and progressive neurological 

disease discovered in 1906 by Dr. Alois Alzheimer. 

Although more than a century has passed since the 

first AD case, there is still no definitive and effective 

treatment. Studies have shown that AD progresses 

through different stages, including Early Mild 

Cognitive Impairment (EMCI) and Late Mild 

Cognitive Impairment (LMCI), and it may take up to 

a decade for acute clinical symptoms to appear [1]. 

Since there is no specific treatment to return the 

patient to normal mental health, early detection is 

vital. Several experiments have revealed that the brain 

suffers from atrophy in AD [2]. 

The investigation of neurological diseases' effects 

on the brain has garnered significant attention from 

researchers. While structural changes in the brain have 

been extensively studied through imaging techniques 

such as Computed Tomography (CT) and Magnetic 

Resonance Imaging (MRI), the impact of these 

diseases on brain function has been less clear. In recent 

decades, methods like functional MRI (fMRI) and 

Positron Emission Tomography (PET) have increased 

the focus on brain function studies. fMRI, in 

particular, involves multiple MRI scans performed 

every few seconds to monitor changes in brain oxygen 

consumption, capturing low-frequency oscillations 

known as Blood-Oxygen-Level-Dependent (BOLD) 

signals [3]. Although brain behavior remains a topic 

of debate, some researchers model and analyze the 

brain as a linear system. However, this approach is 

overly simplistic, and non-linear methods offer a 

closer approximation of the brain's inherent 

complexity. 

A common tool to analyze fMRI signals is graph 

theory. In this approach, brain regions or voxels are 

modeled as graph nodes, and the links between the 

nodes are made using fMRI signals. Consequently, the 

edges represent the relationships between brain 

regions. Among various methods, the Pearson 

Correlation Coefficient (PCC) is the most widely used 

approach to modeling brain functional connectivity. 

PCC measures the correlation between two fMRI 

signals, yielding a value between -1 and 1. The sign 

indicates the direction of the connectivity, while the 

magnitude reflects its strength [4]. However, PCC 

captures only the linear dependency between two time 

series, which is an oversimplification of the brain’s 

complex relationships. Ample research shows that the 

brain’s signals, including fMRI, demonstrate non-

linear behavior. Despite this, PCC remains a 

widespread and reliable method for brain functional 

connectivity analysis [5]. A study on a non-linear 

alternative to PCC based on fMRI time series of 

Alzheimer’s Disease (AD) was conducted. This study 

utilized the kernel trick, a polynomial kernel, to 

increase the dimensionality of the input space and 

perform PCC calculations in this new space, making 

the PCC in the new space equivalent to non-linear 

relations in the primary space [6], Another study 

employed Kernel Canonical Correlation (KCC) to 

analyze fMRI and EEG data [7]. Amidst ongoing 

debates about linear versus non-linear methods, Gabor 

introduced Distance Correlation (DC) to overcome 

PCC's limitations in capturing non-linear 

dependencies. DC quantifies both linear and non-

linear dependencies between two signals [8]. The 

results indicate that DC is more powerful than PCC for 

measuring the relationship between two vectors. 

While deep learning methods have significantly 

improved classification and clustering accuracies for 

both linear and non-linear approaches, grasping the 

underlying cognitive neuroscience behavior remains 

critical [9, 10]. Regardless of the high accuracies 

achieved, it is important to determine whether linear 

or non-linear methods better model this behavior [11]. 

In the literature, patients are often classified from 

normal subjects based on structural changes in the 

brain [12]. Additionally, several biomarkers have been 

identified [13]. A recent study examines different deep 

learning architectures to perform a binary 

classification of AD based on structural MRI data. The 

models were divided into two categories: with and 

without augmentation. Results show that the 

Convolutional Neural Networks and Long Short-Term 

Memory (CNN-LSTM) were superior and reached 

more than 99.9% accuracy [14]. Khazaee et al. utilized 

functional connectivity information to distinguish AD 

subjects and predict conversion from MCI to AD, 

achieving more than 96% accuracy [15]. A study was 

focused on fMRI data to distinguish MCI and AD 

from control subjects. By employing Principle 

Component Analysis (PCA) the feature space 

dimension was reduced. They proposed a kernel-based 
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PCA Support Vector Regression (SVR) and achieved 

98.53% accuracy [16]. In [17] authors performed a 

classification among 4 different stages of AD 

(Normal-EMCI-LMCI and AD) based on functional 

data. They employed U-Net architecture to extract 

spatial features, and the LSTM to extract temporal 

features. By a 5-fold cross-validation, the deep 

network demonstrates 96.4% accuracy on average.  

Another interesting approach is combining structural 

data with functional data to gain a generalized insight 

into AD, which achieved 56% accuracy for three-class 

classification [18].  

Linear methods, such as the Pearson Correlation 

Coefficient (PCC), are widely used for their simplicity 

but are limited to capturing linear dependencies and 

may overlook the complex, non-linear interactions 

inherent in neural systems. Non-linear methods, such 

as Distance Correlation (DC) and kernel-based 

approaches, address this limitation by capturing 

higher-order relationships, providing deeper insights 

into the subtle connectivity changes associated with 

Alzheimer’s Disease (AD). As mentioned before, 

most studies have used PCC to generate brain graphs 

or utilized non-linear approaches individually. 

Although some studies, such as [19] compare different 

correlation methods, no study has combined PCC with 

robust non-linear methods such as DC and kernel-

based approaches. Understanding how brain 

functional connectivity evolves with AD progression 

is crucial, as it could pave the way for more effective 

early detection strategies and therapeutic 

interventions. Several studies have used both linear 

and non-linear approaches [20]. In the present study, 

to address the limitations of previous analyses, PCC is 

employed as the most accepted linear method, 

alongside kernel-based and DC methods as non-linear 

tools to analyze fMRI data of AD. Furthermore, to 

consider the gradual nature of AD and ensure a 

comprehensive experiment, three distinct conditions 

are explored: Healthy subjects vs. EMCI, EMCI vs. 

LMCI, and LMCI vs. AD. This study aims to 

investigate modifications in brain functional graphs as 

AD progresses. 

The rest of the article is arranged as follows: In the 

materials and methods section, the fMRI data are 

introduced and the steps of preprocessing are 

described. Then, there is a sub-section called 

Correlation Methods, which consists of PCC, kernel-

based, and DC definitions and relative equations. 

Afterwards, graph theory and statistical tests are 

described. In the Results section, the outcomes of 

analyses are elaborately reported. In the Discussion, 

the results are interpreted. Finally, concluding remarks 

are presented in the last section. 

2. Materials and Methods 

In this section, the utilized data and tools are 

presented separately, and each of them is explained 

completely. The research steps are summarized in 

Figure 1 as a block diagram. 

2.1. Data and Preprocessing 

The fMRI data were collected from the second 

phase of the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) project, which contains healthy 

subjects and all stages of AD (EMCI, LMCI, AD) 

 

Figure 1. The research flowchart. (AAL: Automated 

Anatomical Labeling, PCC: Pearson Correlation 

Coefficients, DC: Distance Correlation, EMCI: Early Late 

Mild Cognitive Impairments, LMCI: Late Mild Cognitive 

Impairments, FDR: False Discovery Rate) 
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[21]. The selected cases are age-matched, and the 

mental examination scores, including Mini-Mental 

State Examination (MMSE) and Clinical Dementia 

Rating (CDR), were checked. Each fMRI data set 

contains 140 volumes with a Repetition Time (TR) of 

3000 msec. The Echo Time (TE), flip angle, and slice 

thickness were 30 msec, 80 degrees, and 3.3125 mm, 

respectively. 

For preprocessing the data, according to ADNI, 

there was no need to remove the first time points. The 

rest of the preprocessing steps were implemented as 

depicted in Figure 2. Data Processing Assistant for 

Resting-State fMRI (DPARSF) [22] was used for 

preprocessing, and Automated Anatomical Labeling 

(AAL) [23] was employed to extract Regions of 

Interest (ROI) signals. The AAL atlas contains 116 

different ROIs that cover the whole brain, and in this 

study, all of them are employed for further processing. 

All other processing was conducted utilizing Matlab 

2018a software. 

2.2. Correlation Methods 

2.2.1. Pearson Correlation Coefficient (PCC) 

In statistics, correlation coefficients are used to 

measure the dependency between two vectors. PCC is 

the most popular method for this assessment but only 

addresses the linear relationship. If two variables have 

a total positive correlation, the PCC is +1, and -1 

corresponds to a total negative correlation. A value of 

0 exhibits no correlation. The PCC formula is 

(Equation 1): 

𝜌𝑋𝑖.𝑋𝑗
=

cov(𝑋𝑖 . 𝑋𝑗)

𝜎𝑋𝑖
𝜎𝑋𝑗

 (1) 

Where 𝜎𝑋𝑖
 and 𝜎𝑋𝑗

 are the representative of the 

standard deviation of vectors 𝑋𝑖 and 𝑋𝑗. Also Cov is 

the covariance of the vectors [24].  

2.2.2. Kernel Trick and PCC 

In the kernel trick, by using kernel functions, the 

input data is mapped to a new space. The linear 

calculations in the new space are equivalent to the 

non-linear computations in the primary space [25, 26]. 

Assuming that the data is x and the   is the 

corresponding transformation, the kernel trick is as 

follows (Equation 2): 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗 

(2) 𝜑: 𝑥 → 𝜑(𝑥) 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝜑(𝑥𝑖)
𝑇𝜑(𝑥) 

Where 𝜑 is the nonlinear transformation, 𝑥𝑖, 𝑥𝑗 are 

the two variables, and 𝐾 is the kernel function. 

According to the Mercer theorem, 𝐾 has to be a 

positive definite [27]. By the use of 𝜑(𝑥) the kernel 

trick, one can evaluate the inner product of two signals 

without knowing the 𝜑(𝑥) [28].  

 

 

Figure 2. The preprocessing steps. MNI Montreal Neurological Institute, FWHM: Full with at Half Maximum 
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If 𝑋𝑖 and 𝑋𝑗. are two signals, the covariance 

between them is defined as (Equation 3): 

cov(𝑋𝑖 . 𝑋𝑗) = (𝑋𝑖 − 𝜇). (𝑋𝑗 − 𝜗) (3) 

where 𝜇 and 𝜗 are the means of two 𝑋𝑖 and 𝑋𝑗 

signals respectively and ‘.’ is the dot product. The 

above covariance is the Pearson Covariance [29]. 

Now, the PCC is defined as [29] (Equation 4): 

𝜌𝑋𝑖.𝑋𝑗
=

cov(𝑋𝑖 . 𝑋𝑗)

√cov(𝑋𝑖 . 𝑋𝑖)cov(𝑋𝑗 . 𝑋𝑗)
 (4) 

Consequently, the PCC is rewritten regarding the 

dot product; therefore, based on [30] the kernel trick is 

applicable as follows (Equation 5): 

𝐾 {𝜌𝑋𝑖.𝑋𝑗
} =

𝐾{(𝑋𝑖 . 𝑋𝑗)}

√𝐾(𝑋𝑖 . 𝑋𝑖)𝐾(𝑋𝑗 . 𝑋𝑗)
 (5) 

As shown, the PCC cannot uncover nonlinear 

relationships. Therefore, rather than calculating the 

PCC in the primary space, the kernel trick is utilized 

to process the PCC in the new space. This approach 

captures nonlinear relationships in the primary space. 

“The polynomial kernel (degree 3) was selected based 

on its demonstrated effectiveness in capturing non-

linear dependencies in brain connectivity, as 

highlighted in the paper [7]. Alternative kernels, such 

as Gaussian and sigmoid, were considered. However, 

their performance was found to be less robust in 

detecting functional connectivity changes, as observed 

in earlier research [7]. Consequently in this study, 

based on [6], the polynomial kernel function was 

selected. It is worthwhile mentioning that while kernel 

performance can vary, kernels such as Gaussian or 

sigmoid may require intensive parameter tuning, 

which could affect the precision of findings. Using a 

less suitable kernel might weaken group separability 

or reduce statistical significance in detecting 

connectivity changes. 

2.2.3. Distance Correlation (DC) 

Based on the limitations of PCC for the evaluation of 

non-linear dependencies, DC was introduced to quantify 

non-linear relationships [8]. Assuming that 

(𝑋𝑚, 𝑌𝑚, 𝑚 = 1,2, … 𝑚, 𝑛) are two vectors. In this 

method, the distance matrix is defined as: 

𝑎𝑒,𝑓 = ‖𝑋𝑒 − 𝑋𝑓‖, 𝑒, 𝑓 = 1,2, … , 𝑛 
(6) 

𝑏𝑒,𝑓 = ‖𝑌𝑒 − 𝑌𝑓‖, 𝑒, 𝑓 = 1,2, … , 𝑛 

Where  is the Euclidean distance. Also, 𝐴𝑒,𝑓 and 

𝐵𝑒,𝑓 can be described as (Equation 7): 

𝐴𝑒,𝑓 = 𝑎𝑒,𝑓 − 𝑎𝑒.̅̅̅̅ − 𝑎𝑓.̅̅̅̅ + 𝑎..̅ 

𝐵𝑒,𝑓 = 𝑏𝑒,𝑓 − 𝑏𝑒.
̅̅ ̅ − 𝑏𝑓.

̅̅ ̅ + 𝑏..̅ 

(7) 

Where 𝑎𝑒.̅̅̅̅  is the mean of the 
the   row and 𝑎𝑓.̅̅̅̅ is the 

mean of the 
thf  column. The mean correlation 

distance is 𝑎..̅. B and A are defined identically. 

Finally, the arithmetic average of the product of 

𝐴𝑒,𝑓and 𝐵𝑒,𝑓is the distance covariance (Equation 8):  

𝑑𝐶𝑜𝑣𝑛
2(𝑋, 𝑌) =

1

𝑛2
∑ ∑ 𝐴𝑒,𝑓𝐵𝑒,𝑓

𝑛

𝑓=1

𝑛

𝑒=1

 (8) 

Accordingly, the DC is defined as (Equation 9): 

𝑑𝐶𝑜𝑟(𝑋, 𝑌) =
𝑑𝑐𝑜𝑣(𝑋, 𝑋)

√𝑑𝑉𝑎𝑟((𝑋)𝑑𝑉𝑎𝑟(𝑌)
 (9) 

Where dVar is distance variance and computed 

similarly to dCov as mentioned above. 

2.3. Graph Theory 

Regardless of whether the analysis is region-based 

or voxel-based, fMRI processing involves large 

datasets. Given the large number of voxels or regions 

available, calculating the correlation among all 

pairwise combinations provides a significant amount 

of information. A practical approach to managing this 

complexity is graph theory. In this context, nodes in 

the graph represent brain regions or voxels, and the 

edges represent functional or effective connectivity. 

𝐺 = (𝑉, 𝐸) is used to represent a graph, where 

𝑉denotes the nodes (brain regions) and E denotes the 

edges (connectivity) [31]. To eliminate weak and 

spurious edges that do not reflect real and strong 

correlations in the brain, a sparsification step is 

performed. This step converts weighted graphs into 

binarized ones [32]. Given that identifying an optimal 

threshold is still controversial, this research explores 

functional graphs with thresholds ranging from 0.25 to 
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0.75, in steps of 0.05, for a comprehensive 

investigation. 

By employing graph theory, various measures can 

be defined to reflect the characteristics of the brain 

graph. A healthy brain network demonstrates 

functional integration and segregation, which allow 

information to flow efficiently and flexibly. 

Neurological diseases such as AD degrade brain 

networks and impair these properties. The utilized 

graph features are introduced in Table 1. Please note 

that the small-world property of the brain was verified 

before calculating the features. 

𝑛 is the number of nodes, 𝑙 is the number of links, 

and 𝑑𝐺(𝑥, 𝑦) is the distance between the 𝑥 and𝑦. 𝐺𝐹𝐶 

is a representative of a fully connected graph. 𝐴𝑥,𝑦 

shows the connectivity matrix. The 𝛿𝑥,𝑦 is 0 if the two 

vertices are from one module, otherwise, it is 1. 

𝐸(𝐺) =
1

𝑛(𝑛−1)
∑

1

𝑝(𝑥,𝑦)𝑥∄𝑦∈𝑔  demonstrates the 

average efficiency and 𝑝(𝑥, 𝑦) corresponds to the 

shortest path length between 𝑥 and 𝑦. 𝐶𝑟 and 𝐿𝑟 relate 

to an identical irregular graph. 

 

2.4. Statistical Analysis 

In neuroimaging data processing, a non-parametric 

permutation test has been widely used and 

recommended. This test is based on bootstrapping, and 

by employing random subsets of the data, the results 

are validated. In this paper, the number of 

permutations was set to 5000, and the significance 

level was fixed at 5% (P-value < 0.05). It is important 

to note that, due to multiple comparisons and to 

control for Type I error, the False Discovery Rate 

(FDR) is applied [37]. Furthermore, there are four 

groups (CN, EMCI, LMCI, AD), and three different 

statistical tests are performed (CN vs EMCI, EMCI vs 

LMCI, LMCI vs AD). These comparisons follow the 

stages of disease progression, respectively. 

3. Results 

The purpose of this study is to investigate changes in 

brain functional graphs during the stages of AD by 

employing both linear and non-linear methods. Since 

the generating methods are different, the brain graphs 

vary in structure. Figure 3 depicts the brain graphs in 

control subjects using three different routines. 

Table 1. Graph features and explanations [33-36] 

Metric Formula Definition 

Degree - number of edges connected to a node 

Radius 𝑅 = min (𝐸𝐶𝐶) - 

Diameter 𝐷 = max  (𝐸𝐶𝐶) - 

Eccentricity 𝐸𝑐𝑐 = 𝑚𝑎𝑥{𝑑𝐺(𝑥, 𝑦)} 
The maximal distance between a particular 

node and some other center point 

Characteristic 

Path Length 

(CPL) 
𝐿 =

∑ 𝑑𝐺(𝑥, 𝑦)𝑥,𝑦∈𝑉(𝐺)

𝑛(𝑛 − 1)
 The average distance between a node to others 

Global Efficiency 𝐸𝑔𝑙𝑜𝑏(𝐺) =
𝐸(𝐺)

𝐸(𝐺𝐹𝐶)
 Average of the inverse shortest path length 

Local Efficiency 𝐸𝑙𝑜𝑐(𝐺) =
1

𝑛
∑ 𝐸(𝐺𝑥)

𝑥∈𝑔
 

Global efficiency of a node. calculated on the 

node’s neighbors 

Clustering 𝐶 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑜𝑠𝑒𝑑 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠
 A fraction of available triangles around a node 

Modularity 𝑀 =
1

𝑙
∑ [𝐴𝑥,𝑦 −

𝑘𝑥𝑘𝑦

𝑙
] 𝛿𝑥,𝑦

𝑥,𝑦

 The degree to which a graph can be partitioned 

into obviously isolated networks 

Transitivity 

𝑇

=
3 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑖𝑝𝑙𝑒𝑠 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠
 

The ratio of the total number of triangles to the 

number of triplets 

Small-Worldness 𝜎 =

𝐶
𝐶𝑟

𝐿
𝐿𝑟

⁄  

A small-world graph has a comparative 

trademark path length as an irregular graph 

with a similar degree conveyance yet is 

fundamentally more clustered 
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Notably, for clearer visualization, the graphs were 

sparsified using a 0.75 threshold 

As displayed in Figure 3, each method computes 

and predicts functional connectivity differently. 

However, the variation across all methods shows more 

inter-modular functional connectivity in the Occipital 

and Frontal areas. At the same threshold, DC shows 

more functional connectivity compared to other 

methods. 

In the first analysis, brain functional graphs of 

healthy subjects and EMCI groups are compared at 

different thresholds using the permutation test. 

According to the results, regardless of the selected 

threshold, PCC shows no significant differences. In 

other words, from the perspective of PCC, the 

modularity feature of functional brain graphs in EMCI 

subjects is almost the same as in healthy subjects. On 

the other hand, the DC method shows significant 

changes in the modularity feature at several 

thresholds. Although other thresholds show no 

significant difference, the P-Values are much smaller 

compared to PCC. The kernel-based method also 

shows significant changes. In comparison to DC, the 

kernel-based method exhibits more significant 

differences and has greater power to discriminate 

between healthy and EMCI subjects. The results are 

summarized in Table 2, which shows the number of 

significant differences for all the features in each 

method. 

 

 

Table 2 explains that DC is more powerful than 

PCC and that the kernel trick is the most discriminant 

method overall. Regardless of the method, features 

such as global and local efficiencies and clustering are 

the most distinguishable measures, and these graph 

properties of the brain are the most affected 

characteristics when healthy subjects transition into 

EMCI. Sparsification is a major issue in graph 

analysis. The polynomial kernel highlights significant 

group separability due to its ability to capture non-

linear dependencies in connectivity. The larger 

differences in clustering and modularity across groups 

align with biological expectations of neural 

disconnection in AD. Table 3 represents the effect of 

different thresholds. The arrays show the number of 

significant differences at each threshold for all the 

features. 

As shown in Table 3, there is no exact pattern for 

thresholds, and the feature behaviors are non-

identical. However, thresholds from 0.3 to 0.4 are the 

optimal values for discrimination between classes 

overall. It is worthwhile mentioning that the selected 

range for performing the investigation (0.25 to 0.75) 

was validated by stable graph metrics and significant 

separability of AD stages, ensuring biologically 

meaningful results. Also, the selected range aligns 

with the small-world network properties typical of 

brain connectivity. Thresholds below 0.25 often 

include spurious connections, while those above 0.75 

may overly prune critical connections. The optimal 

threshold for better discrimination is approximately 

0.3 to 0.4. “The threshold range of 0.3 to 0.4 was 

selected to balance the removal of noisy connections  

 

Figure 3. Demonstration of brain networks utilizing different methods in control subjects. All the graphs are 

sparsed with a 0.75 threshold 
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while preserving biologically meaningful ones, 

consistent with small-world network properties 

observed in brain connectivity studies. This range was 

validated through stable graph metrics, such as 

clustering and efficiency, and significant group 

separability across AD stages. The threshold range 

effectively preserves meaningful connections while 

removing noise, as evidenced by stable graph metrics 

(e.g., modularity and efficiency) across all stages of 

AD. Results depict that the average values of 

modularity from PCC analysis are nearly identical in 

healthy (control) and EMCI subjects. Although 

increasing the threshold makes alterations according 

to the statistical test, they are not significant. As the 

disease progressed, EMCI subjects converted to LMCI 

and then AD. The approach for investigating EMCI vs.  

 

LMCI and LMCI vs. AD is the same as above. To 

summarize, the outputs are given in Table 4 as 

follows. 

According to Table 4, in the EMCI vs. LMCI 

analysis, the non-linear methods again exhibit more 

power to distinguish the groups. Additionally, the 

kernel-based method shows better performance than 

the DC method. This pattern is consistent in the LMCI 

vs. AD examination. Between EMCI and LMCI, 

clustering is the most discriminative feature, followed 

by modularity, CPL, transitivity, and efficiencies, 

which illustrate significant differences. Between 

LMCI and AD, clustering is the most distinguishable 

measure, while other metrics show no significant 

changes. The clustering coefficient shows a 

Table 2. Number of significant differences (P-Value < 0.05) for every feature in each method between healthy and EMCI 

subjects 

Method 

Measure 
Pearson Correlation (PC) Distance Correlation (DC) Polynomial 

Degree 4 4 5 

Radius 0 0 1 

Diameter 1 1 2 

Eccentricity 1 6 7 

Characteristic  Path Length (CPL) 1 4 4 

Global Efficiency 6 9 8 

Local Efficiency 6 6 8 

Clustering 6 6 7 

Transitivity 5 7 7 

Modularity 0 4 8 

Small-Worldness 0 7 7 

Total 30 54 64 

 

Table 3. Number of significant differences (P-Value < 0.05) for each feature in all the thresholds between healthy and 

Early Late Mild Cognitive Impairments (EMCI) subjects 

Threshold 

Measure 
0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 

Degree 0 1 1 1 1 1 1 2 2 2 1 

Radius 0 0 0 0 0 1 0 0 0 0 0 

Diameter 0 0 1 1 1 1 0 0 0 0 0 

Eccentricity 2 2 2 2 2 2 1 0 1 0 0 

Characteristic Path 

Length (CPL) 
0 1 2 2 2 1 1 0 0 0 0 

Global Efficiency 3 2 3 3 2 1 2 2 2 2 1 

Local Efficiency 2 3 2 2 1 1 1 2 2 1 2 

Clustering 2 2 3 2 2 2 2 1 1 1 1 

Transitivity 3 3 2 2 2 3 2 1 0 0 1 

Modularity 0 1 1 1 1 0 1 2 2 2 1 

Small-Worldness 2 2 2 2 2 2 2 0 0 0 0 

Total 14 17 19 18 16 15 13 10 10 8 7 
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pronounced decline from early to advanced AD stages, 

indicating progressive disruptions in local 

connectivity and functional segregation. These trends 

highlight the early vulnerability of specialized neural 

networks, such as the Default Mode Network (DMN). 

It is important to note that the effect of thresholding is 

the same as before (healthy vs. EMCI). Through a 

non-parametric permutation test, three different 

comparisons (Healthy subjects vs. EMCI, EMCI vs. 

LMCI, and LMCI vs. AD) are made to reveal which 

method can properly clarify the differences and what 

exactly happens to brain functional graphs as AD 

progresses. Table 5 summarizes the results. 

Reduced values (Clustering & Modularity) indicate 

impaired functional segregation due to synaptic loss 

and neuronal death, particularly in the Default Mode 

Network (DMN). Modularity and clustering 

coefficients exhibit the most significant changes in 

early AD stages due to disruptions in functional brain 

networks caused by synaptic dysfunction and 

amyloid-beta accumulation. These metrics are 

sensitive to early connectivity changes, capturing the 

breakdown of network segregation and local 

connectivity before detectable structural damage 

occurs [38-40]. Declines in global efficiency show 

reduced long-range connectivity, while local 

efficiency reductions highlight disrupted short-range 

communication from amyloid plaques and tau  

pathology. These findings emphasize significant 

disruptions in early AD stages, underscoring the 

importance of early detection. The observed changes 

in graph metrics highlight their potential as 

biomarkers for early AD diagnosis, providing a non-

invasive means of identifying connectivity disruptions 

before structural damage. Moreover, these metrics 

enable tracking of disease progression, offering a 

framework for assessing the efficacy of therapeutic 

interventions. The robustness of kernel-based methods 

supports their integration into clinical workflows, 

paving the way for personalized diagnostic and 

treatment strategies. 

4. Discussion 

In this study, whole-brain functional graphs were 

generated using PCC, the kernel trick, and DC. The 

graphs were sparsified with thresholds ranging from 0.25 

to 0.75 (in steps of 0.05), followed by feature extraction. 

While PCC reveals linear dependencies, it is limited in 

detecting non-linear relationships. Given the brain’s 

inherently non-linear behavior, PCC struggles to 

discriminate between groups based on graph features 

extracted from fMRI signals. Non-linear approaches, 

such as DC and kernel-based methods, demonstrate  

Table 4. Number of significant differences (P-Value < 0.05) for each feature in each method 

 EMCI vs. LMCI LMCI vs. Alzheimer’s Disease 

Method 

Measure 

Pearson 

Correlatio

n (PC) 

Distance 

Correlation 

(DC) 

Polynomial 

Pearson 

Correlation 

(PC) 

Distance 

Correlation 

(DC) 

Polynomial 

Degree 0 2 4 0 1 3 

Radius 1 1 1 0 0 1 

Diameter 0 1 1 1 2 2 

Eccentricity 0 2 2 0 0 0 

Characteristic 

Path Length (CPL) 
2 4 6 0 0 2 

Global Efficiency 1 6 7 0 0 1 

Local Efficiency 0 5 6 1 1 1 

Clustering 5 9 11 3 4 7 

Transitivity 0 6 6 0 2 6 

Modularity 0 6 7 0 1 2 

Small-Worldness 0 0 0 0 0 0 

Total 9 42 51 5 11 25 
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superior discriminative capability and reveal more 

significant connectivity changes. Among these, the 

kernel-based method is particularly powerful due to its 

ability to capture biologically meaningful, higher-order 

dependencies in brain connectivity. Its computational 

feasibility, combined with recent technological 

advancements, supports its potential integration into 

clinical workflows for early AD detection. 

Although DC requires no assumptions, selecting the 

optimal kernel function is critical for the kernel-based 

method. This study utilized the polynomial kernel, as 

supported by prior research, due to its more effective 

performance in modeling complex, non-linear 

dependencies. The kernel method’s consistent 

outperformance aligns with theoretical insights and 

empirical evidence from previous studies [7], 

highlighting its suitability for functional connectivity 

analysis, particularly in the context of neurodegenerative 

diseases like AD. While this study focuses on comparing 

well-established methods, future research will explore 

hybrid approaches to enhance the robustness of 

functional connectivity analysis. 

An interesting and important result shown in Table 5 

is the rate of change in the various stages of the disease. 

In both linear and non-linear strategies, most changes in 

brain functional graphs occur in the first stage of the 

disease. As AD progresses, the rate of variations 

decreases until the last stage. This pattern is consistent 

across all three correlation methods. Therefore, early  

 

detection of AD is crucial. The variation is completely 

gradual, with the minimum changes occurring as LMCI 

subjects convert to AD. Accordingly, in the first stage of 

the disease, the most discriminative features include 

global and local efficiency, clustering, and transitivity. 

These features reflect both brain functional integration 

and segregation. As a result, in the first stage of AD, 

brain functions degrade significantly. As the disease 

progresses and EMCI subjects transition to LMCI, the 

clustering metric, which represents brain functional 

segregation, undergoes the most significant alterations. 

Since features exhibiting functional integration show less 

modification, the overall functional decay is less evident 

compared to the first phase. In the transition from LMCI 

to AD, despite fewer alterations, clustering demonstrates 

the most significant changes. Hence, functional 

segregation continues to decline in the last stage. “The 

identified graph metrics provide a foundation for 

developing clinical decision-support tools aimed at early 

AD detection and monitoring. Integrating graph metrics 

into diagnostic workflows could offer clinicians a non-

invasive, quantitative means of identifying early 

connectivity disruptions. These tools have the potential 

to complement traditional biomarkers, providing a 

comprehensive view of AD progression.” 

Clustering and Modularity reflects the breakdown of 

functional communities and network hubs like the DMN. 

Reduced global and local efficiency indicate 

compromised integration and local information flow, 

Table 5. Summary of the analyses 

Groups 

Parameter 
Control vs. EMCI EMCI vs. LMCI 

LMCI vs. Alzheimer’s 

Disease 

Most discriminative features 

Global and local 

efficiency, clustering, 

transitivity 

Clustering Clustering 

Least discriminative features Radius, diameter 
Radius, eccentricity, 

diameter 

Radius, eccentricity, 

small-worldness, 

Characteristic Path 

Length (CPL), global 

efficiency 

Number of significant 

differences based on Pearson 

Correlation 

30 9 5 

Number of significant 

differences based on 

Distance Correlation 

54 42 11 

Number of significant 

differences based on Kernel 
64 51 25 

Optimal threshold 0.3 to 0.4 0.3 to 0.4 0.3 to 0.4 
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driven by amyloid-beta and tau pathology. Metrics align 

with AD hallmarks such as loss of small-world 

properties, metabolic decline, and structural 

disconnections. These insights reinforce the role of graph 

metrics in understanding and monitoring AD 

progression. In summary, with the onset of Alzheimer's, 

the rate of variation in the brain functional graph is high, 

degenerating both brain functional integration and 

segregation. With further progression, the rate of 

variation declines, functional segregation is affected, and 

this pattern remains consistent until the last stage. On the 

other hand, in every stage, some features exhibit the least 

significant changes. Radius and diameter, which are the 

minimum and maximum of eccentricity, had the least 

discriminative potential in all stages. These metrics 

display the distance of a node to a specific node. 

Although AD degenerates the brain's functional graphs, 

with no significant differences, there are routes to pass 

between two specific nodes. In other words, nodes or 

ROIs are not completely and significantly isolated. This 

may originate from the plasticity and flexibility 

behaviors of the brain (human body) in confronting 

problems and pathological circumstances. In 

confirmation of previous results, as AD progresses, the 

number of features exhibiting no significant changes 

increases.  

Different thresholds were evaluated to investigate the 

effect of thresholding in fMRI connectivity analysis. The 

findings demonstrate no exact patterns with threshold 

modifications. Nevertheless, increasing the threshold 

makes the graphs more sparse and lowers computational 

costs. As a trade-off among computational cost, 

meaningful characteristics, and features, and eliminating 

weak and spurious links, a threshold of 0.3 to 0.4 is 

suggested. Therefore, the best discrimination efficiency 

between groups in all three analyses belongs to 

thresholds of 0.3 to 0.4. The use of fixed sparsification 

thresholds has inherent limitations, including the loss of 

weak yet meaningful connections and sensitivity to 

threshold selection, as demonstrated in prior studies [41] 

While fixed thresholds provide computational 

simplicity, they may introduce bias by favoring stronger 

connections or affecting the stability of certain graph 

metrics. 

5. Conclusion 

Brain functional connectivity alterations in different 

stages of AD have been investigated via fMRI data. In 

comparing linear and non-linear approaches, although 

the non-linear ones are more complex to implement due 

to the brain's non-linear nature, they are recommended. 

While non-linear methods incur higher computational 

costs, their accuracy and ability to capture the brain's 

non-linear dynamics justify their use in AD diagnosis. 

Recent advancements in computational technology have 

made them feasible for clinical use, especially given that 

real-time processing is not required for AD. These 

methods are indispensable for detecting subtle 

connectivity changes, and critical for early detection and 

monitoring. Kernel analysis as a non-linear routine is a 

powerful tool wherever it can be applied, but choosing 

the optimal kernel function is a challenge. Although there 

are algorithms for determining the optimal function, trial 

and error remains the most prevalent method, which is 

one of the limitations of this research. Based on the 

results and the non-linear nature of the brain, 

investigating different non-linear methods is also 

recommended. Regardless of the selected analysis 

approaches, all of them confirmed that brain functional 

connectivity declines more rapidly in the early phase of 

AD. 

Since there are no specific treatments, early detection 

is of great importance, and investigating the early stages 

of cognitive impairment and AD is recommended. As 

AD progresses, brain functional segregation further 

declines, indicating that AD adversely affects local 

information flow and consequently degenerates the 

small-world architecture of the brain. In this regard, 

nodal analysis of brain regions is highly recommended 

to reveal the most affected areas and understand how AD 

degenerates functional brain graphs in detail. In this 

study, whole-brain analysis was used, which is not 

comprehensive on its own; therefore, studying brain 

networks such as the Default Mode Network (DMN) is 

necessary. Another suggestion to address the limitations 

of this study is to investigate different statistical methods. 

Also, Future work will focus on hybrid methods, 

combining the strengths of linear and non-linear 

approaches to improve the precision and applicability of 

fMRI-based connectivity analyses. Also, Future efforts 

will focus on translating these findings into clinical 

decision-support systems, ensuring their utility in early 
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AD diagnosis and personalized therapeutic 

interventions. 
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