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Abstract 

Purpose: Schizophrenia (SZ), which affects 0.45% of adults worldwide, is a complex mental illness with 

unknown causes and mechanisms. Neuroimaging techniques have been used to study changes in the brain of 

patients with SZ. In this study, we aim to construct brain subnetworks, analyze the association of structure with 

function, and investigate them with graph measures. We hope to identify important subnetworks and graph 

measures for SZ diagnosis.  

Materials and Methods: This study investigates the structural and functional brain connectivity of 27 Healthy 

Controls (HC) and 27 patients with SZ. Independent Component Analysis (ICA) and joint ICA (jICA) are used 

to construct subnetworks based on functional and structural connectivity. An association between structural and 

functional connectivity is examined. Joint functional and structural subnetworks are also examined and compared 

with independent analysis of functional and structural subnetworks. Several graph measures are used in the whole 

brain and its subnetworks. 

Results: In this study, we investigated brain connectivity in HC and SZ patients using graph measures. The study 

analyzed both the whole brain and brain subnetworks to better understand the importance of partitioning the brain 

into subregions. Our results suggest that analyzing the whole brain may not be the most effective method for 

studying the brain peculiarities of SZ patients. In addition, multimodal brain analysis has proven to be effective 

in understanding SZ. There is no one-to-one relationship between structural and functional connectivity in the 

brain. Certain measures such as maximum modularity, clustering coefficient, network strength, global efficiency, 

and path length were important in distinguishing patients with SZ from HCs in specific subnetworks. This study 

recommends further investigation of specific subnetworks that overlap with default mode, visual, and 

somatomotor resting state networks. 

Conclusion: This study emphasizes the importance of subnetwork and multimodal analysis for understanding SZ 

disease. 

Keywords: Schizophrenia; Independent Component Analysis; Subnetworks; Functional Connectivity; Structural 

Connectivity; Graph Theory. 
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1. Introduction  

Schizophrenia (SZ) is a debilitating, complex, and 

serious mental illness [1]. This psychiatric disorder is 

rooted in genetic and environmental factors [2]. This 

chronic mental disease affects approximately 0.45% 

of the adult population worldwide [3]. However, the 

causes and pathophysiological mechanisms of this 

complex mental disorder remain largely unknown [4]. 

Researchers have attempted to investigate pervasive 

changes, especially abnormal interactions, in the 

brains of patients with SZ. Some neuroimaging 

techniques, such as resting-state functional Magnetic 

Resonance Imaging (fMRI) and Diffusion Tensor 

Imaging (DTI), have been used to elucidate the 

neurobiological basis of schizophrenia [1]. fMRI 

examination shows blood oxygen level-dependent 

signals between different Regions Of Interest (ROI). 

This technique drives Functional Connectivity (FC) 

[4]. DTI is a diffusion-weighted MRI method that 

evaluates accurate fiber structural information. DTI 

technique drives Structural Connectivity (SC) [1]. SZ 

disrupts functional and structural patterns of the brain 

[5]. Most SZ studies with neuroimaging methods used 

functional and structural networks separately to 

investigate changes in the whole brain network. 

However, some studies have used more modalities in 

the whole brain and subnetworks. Contradictory and 

unclear results have been reported by these studies [6-

8]. 

In brain networks, there are variations of algorithms 

such as blind Independent Component Analysis (ICA) 

for subnetwork creation. To quantitatively analyze the 

brain, graph theory has predominantly been used to 

investigate functional and structural topologies. 

However, most previous studies have used few graph 

measures and have reported unclear results [6, 9].  

In this paper, we aim to construct brain subnetworks 

with both single modality and multimodality to 

elucidate the association between structural and 

functional brain subnetworks. In addition, we analyze 

11 graph measures in brain subnetworks 

(betweenness, clustering coefficient, characteristics 

path length, radius, diameter, eccentricity, optimum 

and max modularity, local and global efficiency, and 

strength). Furthermore, we want to find important 

subnetworks and graph measures in SZ diagnosis. We 

expect our approaches to lead to improvements in the 

diagnosis of SZ using subnetworks. 

2. Materials and Methods  

Methods and materials of our cohort study are 

presented in this section 

2.1. Data and Preprocessing 

This study consists of a total of 27 healthy controls 

(HC) and 27 SZ patients with structural and functional 

MRI data. The mean age of SZ subjects was 41.9±9.6 

years and 35±6.8 years, respectively. It is a public 

dataset in the Zenodo platform 

https://doi.org/10.5281/zenodo.3758534). More 

details about this data such as data acquisition, data 

preprocessing, SC, FC, inclusion and exclusion 

criteria, and ethics statement, are described in detail  

elsewhere [10]. 

2.2. Network Reconstruction  

In our study, we used the Desikan– Killiany atlas 

along with considering parcellation in the Cammoun 

study. The brain was divided into 129 ROIs [11, 12]. 

For partitioning the brain, several algorithms, such as 

Principal Component Analysis (PCA) were used to 

reduce the dimensionality of data, and independent 

component analysis (ICA) was then applied to identify 

subnetworks based on Functional Connectivity (FC) 

and SC, separately. jICA was further used to identify 

subnetworks using both SC and FC. In addition, a 

modified version of ranking and averaging ICA by 

reproducibility algorithm (RAICAR) was used to 

identify reproducible components across multiple runs 

of ICA, ensuring consistency in component ordering. 

More details about our methods are provided in [13]. 

2.3. Subnetworks Relationship 

In our study, we found an association between SC 

and FC by investigating common edges in the 

connectivity matrix when using the ICA algorithm and 

independent functional and structural subnetworks 

and when using the jICA algorithm and joint 

subnetworks. To calculate association, we converted 

FC and SC subnetworks into binary. With this 

technique, we have only edge connectivity between 

https://doi.org/10.5281/zenodo.3758534
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nodes in subnetworks without values. Using (Equation 

1), we calculated the percentage of common edges in 

each subnetwork: 

𝑒𝑑𝑔𝑒𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝐹𝐶 ∩  𝑒𝑑𝑔𝑒𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑆𝐶

𝑒𝑑𝑔𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝐹𝐶 ∪  𝑒𝑑𝑔𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑆𝐶
 × 100 (1) 

According to changes that structural information 

creates in functional subnetworks in joint mode, and 

vice versa, we examined joint functional and structural 

subnetworks to investigate how they differ from 

functional and structural independent subnetworks. 

2.4. Network Examination  

We used a network-based approach to investigate 

specific neural signatures of schizophrenia brain 

connectivity. Altered brain networks and connectivity 

describe the neurobiological underpinnings of 

schizophrenia. Graph theory characterizes the 

organization of brain networks. We used the following 

graph measures from our undirected, weighted 

matrices: betweenness, clustering coefficient, 

characteristic path length, radius, diameter, 

eccentricity, optimal and maximum modularity, local 

and global efficiency, and network strength. In this 

study, we computed graph measures using the Brain 

Connectivity Toolbox implemented in MATLAB 

version 2021b [14]. 

2.5. Statistical Analysis 

We performed statistical analysis of network 

properties using Python version 3.10. To compare 

graph measures in subnetworks, we employed the t-

test or Mann–Whitney U test, as appropriate. A 

significance threshold of 0.05 was used in this study. 

3. Results 

Structural and functional connectivity assess in vivo 

deviation of water molecules along white matter fiber 

structure and pairwise correlations of brain activity 

time series during brain rest, respectively [7]. Next, we 

will review the investigation of connections results. 

3.1. Subnetworks Relationship 

In this study, we investigated the correlation 

between SC and FC. We calculated common edges in 

the same subnetworks and common nodes using 

(Equation 1). 

3.1.1. ICA FC and SC Subnetworks 

Table 1 shows the percentage of common edges in 

the same FC and SC ICA subnetworks and nodes. For 

example, ICA subnetwork #1 SC and FC have 

14.1705% common edge connectivity. For 

visualization of subnetworks in the study, the nodal 

strength of each region to map subnetworks was used. 

Figure 1 shows ten ICA brain subnetworks. 

3.1.2. JICA FC and SC Subnetworks 

Table 2 shows the percentage of common edges in 

jICA FC and SC subnetworks. Figure 2 shows ten 

jICA brain subnetworks. 

 

Figure 1. ICA brain subnetworks A) FC and B) SC 

 

      

    

    

       

   

      

   

          

       

Table 1. The percentage of common edge 

connectivity between FC and SC in the ICA 

subnetworks according to Equation 1 

ICA subnetworks percentage % 

#1 14.1705 

#2 13.0416 

#3 13.5109 

#4 15.7167 

#5 

#6 

#7 

#8 

#9 

#10 

12.6606 

9.9096 

14.5541 

13.8249 

9.1605 

12.7259 
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3.1.3. ICA and JICA FC Subnetworks 

Figure 3 shows the percentage of similarity 

(correlation coefficient) of SC independent and SC 

joint of components separately. In Figure 3, changes 

in functional subnetworks due to the addition of 

structural information can be seen. 

3.1.4. ICA and JICA SC Subnetworks 

Figure 4 shows the percentage of similarity 

(correlation coefficient) of the SC independent and the 

SC joint components separately. In Figure 4, changes 

in structural subnetworks due to the addition of 

functional information can be seen. 

3.2. Whole Brain Statistical Analysis 

Whole brain Functional Connectivity (FC) and 

Structural Connectivity (SC) were analyzed using 

various graph measures. The clustering coefficient 

was significantly different between SZ and HC for 

both FC (0.1845±0.0333 vs. 0.0642±0.0102, P < 

0.0001) and SC (0.0009±0.0001 vs. 

0.0004±6.1491×10-5, P <0.0001). Max modularity 

(0.5011±0.0165 vs. 0.4861±0.0189, P =0.0097) and 

network strength (0.1138±0.0086 vs. 0.1085± 0.0072, 

P =0.0215) were also significantly different between 

SZ and HC for whole brain SC. More details on the 

results of the statistical graph measure analysis for FC 

and SC are shown in Tables 3 and 4, respectively. 

Table 2. The percentage of common edges 

connectivity between FC and SC in jICA subnetworks 

jICA subnetworks percentage % 

#1 13.0434 

#2 13.2347 

#3 13.7822 

#4 14.8742 

#5 

#6 

#7 

#8 

#9 

#10 

15.0613 

11.4071 

16.2841 

10.6024 

11.1609 

14.2513 

 

 

Figure 2. JICA brain subnetworks A) FC and B) SC 

 

  

  

  

  

  

  

  

    

  

  

    

  

  

    

     

   

 

Figure 3. Percentage of similarity (correlation 

coefficient) of ICA FC and the FC joint of components 

separately. Please zoom in 

 

Figure 4. Percentage of similarity (correlation 

coefficient) of the SC independently and the SC joint of 

components separately. Please zoom in 



 Altered Graph Measures in Schizophrenia 

380   FBT, Vol. 12, No. 2 (Spring 2025) 376-386 

3.3. ICA FC Subnetworks Statistical Analysis 

This study used an Independent Component 

Analysis (ICA) algorithm to divide the whole brain 

into subnetworks. Each subnetwork was analyzed 

using graph analysis techniques, focusing on brain 

functional information. The results revealed several 

significant differences between individuals with SZ 

and HC. In subnetwork #5, the characteristic path 

length was longer for SZ than HC. This difference was 

also observed in subnetworks #7 and #9. The 

clustering coefficient was lower in SZ for subnetworks 

#5, #7, and #9. Furthermore, SZ exhibited a larger 

diameter in subnetwork #1, and eccentricity was 

higher for SZ in subnetworks #1 and #7. The radius 

was also significantly different in subnetworks #1, #7, 

#8, and #10. Regarding network strength, SZ showed 

lower values in subnetworks #5, #7, and #9. The 

global efficiency was lower in SZ for subnetworks #7, 

#9, and #10. The local efficiency was lower in SZ for 

subnetworks #5, #7, and #9. Finally, maximum 

modularity was significantly different between SZ and 

HC. More details are shown in Table 5. SD is the 

standard deviation in Tables. 

3.4. ICA SC Subnetworks Statistical Analysis 

In individuals with SZ and HC structural networks, 

the clustering coefficient was significantly lower in SZ 

than in HC in three subnetworks #1, #2, and #10. The 

network strength was significantly lower in SZ than in 

HC in subnetworks #1, #2, #4, #5, #6, #7, and #10. 

The betweenness was significantly lower in SZ than in 

HC in two subnetworks #1 and #8. The local 

efficiency was significantly lower in SZ than in HC in 

two subnetworks #1 and #10. The maximum 

modularity was significantly lower in SZ than in HC 

in three subnetworks #1, #6, and #7. The optimum 

modularity was significantly lower in SZ than in HC 

in four subnetworks #1, #2, #6, and #9. More details 

are shown in Table 6. 

 

Table 3. Statistical investigation 11 graph measures FC in the whole brain analysis 

Graph measures  Mean HC SD HC Mean SZ SD SZ P-value 

Clustering coefficient 0.1845 0.0102 0.0642 0.0333 <0.0001 

Radius 4. 9197 0.4166 5. 1027 0.3644 0.0589 

Local efficiency 0.2031 0.0364 0.1888 0.0328 0.0746 

Network Strength 30.9940 4. 6837 29.0485 4. 1793 0.0805 

Global efficiency 0.3083 0.0300 0.2957 0.0263 0.0901 

Eccentricity 5. 9203 0.4483 6. 0857 0.3965 0.0973 

Characteristic path  3.6803 0.3382 3. 8069 0.3022 0.1424 

Betweenness 80.7883 9. 6914 83.4990 8. 7069 0.2069 

Diameter 7. 1388 0.6441 7. 3581 0.6087 0.2279 

Max modularity 0.1341 0.0196 0.1306 0.0184 0.2939 

Optimum modularity 2. 0847 0.4565 2. 0896 0.3104 0.8671 

 

Table 4. Statistical investigation 11 graph measures SC in whole brain analysis 

Graph measures Mean HC SD controls Mean SZ SD SZ P-value 

Clustering coefficient 0.0004 0.00006 0.0009 0.0001 <0.0001 

Max modularity 0.4861 0.0189 0.5011 0.0165 0.0097 

Network Strength 0.1085 0.0072 0.1138 0.0086 0.0215 

Global efficiency 0.0052 0.0003 0.0054 0.0004 0.3355 

Betweenness 450.31 25.866 454.1 21.86 0.4601 

Local efficiency 0.0014 0.0001 0.0014 0.0002 0.4706 

Characteristic path 259.05 20.145 254.9 21.345 0.6554 

Radius 480.9 107.8 490.7 121.5 0.8369 

Optimum modularity 38.702 0.7763 39.144 0.7657 0.8469 

Eccentricity 640.58 135.54 651.16 151.69 0.8503 

Diameter 925.82 203.59 921.32 194.56 0.959 
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Table 6. Statistical graph measures ICA SC subnetworks analysis 

ICA subnetwork Significant graph measure 
Mean and SD 

HC 

Mean and SD 

SZ 
P-value 

#1 Max modularity 0.5863±0.0205 0.5702±0.0209 0.0037 
 Betweenness 522.50±22.802 542.26±29.584 0.0139 
 Optimum modularity 5.5584±1.1535 4.8326±0.9988 0.0189 
 Network strength 0.0776±0.0065 0.0735±0.0053 0.0169 
 Local efficiency 0.0034±0.0003 0.0032±0.0002 0.0311 
 Clustering coefficient 0.0022±0.00022 0.0021±0.0001 0.0356 

#2 Optimum modularity 7.5363±2.1985 5.9239±1.7111 0.0075 
 Clustering coefficient 0.0004±7.1401×10-5 0.0003±6.4026×10-5 0.0423 
 Network strength 0.0460±0.0037 0.0441±0.0036 0.0480 

#4 Network strength 0.0427±0.0044 0.0396±0.0040 0.0260 

#5 Network strength 0.0320± 0.0031 0.0293± 0.0028 0.0010 

#6 Max modularity 0.6138±0.0158 0.5949±0.0239 0.0013 

 Network strength 0.0431±0.0038 0.0398±0.0035 0.0026 

 Optimum modularity 6.7244±1.5115 5.8145±1.7840 0.0218 

#7 Network strength 0.0288±0.0030 0.0271±0.0021 0.0125 
 Max modularity 0.6213± 0.0263 0.6084±0.0189 0.0372 

#8 Betweenness 550.43±29.411 573.78±43.805 0.0226 

#9 Optimum modularity 8.6655±2.2835 7.3853±1.7369 0.0418 

#10 Network strength 0.0367±0.0039 0.0339±0.0029 0.0113 
 Local efficiency 0.0004± 9.3316×10-5 0.0004±6.064×10-5 0.0311 
 Clustering coefficient 0.0003±7.1815×10-5 0.0002±4.8002×10-5 0.0311 

 

Table 5. Statistical graph measures ICA FC subnetworks analysis 

ICA subnetwork Significant graph measure 
Mean and SD 

HC 

Mean and SD 

SZ 
P-value 

#1 Max modularity 0.2236±0.0159 0.2109±0.0153 0.0074 
 Eccentricity 7.5383±0.6867 8.0193±0.7077 0.0153 
 Diameter 9.5028±1.0687 10.190±1.1309 0.0196 
 Radius 6.0951±0.5390 6.4006±0.5429 0.0441 

#5 Clustering coefficient 0.0929±0.0172 0.0806±0.0178 0.0082 
 Local efficiency 0.1640±0.0276 0.1457±0.0283 0.0139 
 Network strength 9.3982±1.3596 8.4650±1.4123 0.0146 
 Characteristic path length 5.0278±0.5156 5.3170±0.5082 0.0372 

#7 Clustering coefficient 0.0807± 0.0169 0.0686±0.0132 0.0008 
 Network strength 9.9264±1.6259 8.8630±1.3269 0.0026 
 Local efficiency 0.1485±0.0275 0.1310±0.0231 0.0028 
 Radius 6.5527±0.5724 6.9812±0.5899 0.0045 
 Global efficiency 0.2278±0.0249 0.2132±0.0210 0.0102 
 Eccentricity 8.1626±0.78529 8.5957±0.7353 0.0298 
 Characteristic path length 4.9885±0.5166 5.2596±0.4703 0.0388 

#8 Radius 6.0142±0.6194 6.3854±0.4672 0.0139 

#9 Network strength 6.2364±1.0911 5.6457±0.8649 0.0237 
 Global efficiency 0.1965±0.0246 0.1824±0.0201 0.0272 
 Characteristic path length 5.8382±0.6970 6.2393±0.6449 0.0298 
 Local efficiency 0.1241± 0.0266 0.1106±0.0200 0.0340 
 Clustering coefficient 0.0586± 0.0139 0.0515± 0.0097 0.0423 

#10 Radius 7.3427±0.8911 7.7424±0.6326 0.0237 
 Global efficiency 0.2013±0.0225 0.1912±0.0193 0.0460 
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3.5. JICA FC Statistical Analysis 

FC joint subnetworks in patients with SZ were 

compared to HC in terms of several metrics. 

A metric that showed significant differences was 

the clustering coefficient. Subnetworks #3 and #7 

showed lower clustering coefficients in SZ patients 

than in HC. This suggests that these subnetworks are 

less interconnected in patients with SZ. Another 

metric that showed significant differences was 

network strength. Subnetwork #3 showed lower 

network strength in SZ patients compared to HC. This 

suggests that this subnetwork is less active in SZ 

patients. Eccentricity showed in Subnetworks #2, #10, 

and #1 were higher in SZ patients than HC. This 

suggests that these subnetworks are more disrupted in 

patients with SZ.  

Local efficiency showed significant differences in 

subnetworks #3, #7, and #1, with lower values 

observed in SZ patients.  

Global efficiency showed lower values in 

subnetwork #1 in SZ than in HC. This suggests that 

information transfer is less efficient across the whole 

brain network in SZ patients. 

Characteristic path length showed higher values in 

subnetwork #2 in patients with SZ than HC. This 

suggests that the average distance between pairs of 

nodes is greater in this subnetwork in patients with SZ.  

Maximum modularity showed significant 

differences in subnetworks #4 and #9, with lower 

values observed in SZ patients. This suggests that 

these subnetworks are less modular in patients with 

SZ. 

The diameter and radius showed significant 

differences in multiple subnetworks. This suggests 

that the overall structure of these subnetworks is 

disrupted in patients with SZ. For a more detailed 

analysis of graph measure values and their changes in 

each jICA FC subnetwork, readers refer to Table 7. 

3.6. JICA SC Statistical Analysis 

Statistical analysis of the SC joint network reveals, 

significant differences between SZ and HC. 

Subnetworks #1, #3, #5, #6, and #9, there had lower 

network strengths in SZ than HC. Additionally, 

maximum modularity was significantly lower in 

subnetworks #1, #4, and #6 in SZ than in HC. These 

findings suggest that there are disruptions in the SC 

joint network in individuals with SZ. 

Other graph measures that showed significant 

differences between SZ and HC included local efficiency, 

clustering coefficient, betweenness, and global efficiency. 

These measures were significantly lower in subnetwork #3 

in SZ than in HC. For a more detailed analysis of graph 

measure values and their changes in each jICA SC 

subnetwork, readers refer to Table 8.  

Table 7. Statistical graph measures jICA FC subnetworks analysis 

jICA subnetwork Significant graph measure 
Mean and SD 

HC 

Mean and SD 

SZ 
P-value 

#1 

Global efficiency 

Local efficiency 

Eccentricity 

0.2099±0.0112 

0.1648±0.0120 

9.5580±0.6444 

0.2042±0.0132 

0.1587±0.0154 

9.9980±1.0318 

<0.0001 

0.0200 

0.0385 

#2 

Radius 

Eccentricity 

Diameter 

Characteristic path length 

5.7011±0.6478 

7.072±0.6884 

8.8182±0.9284 

4.3129± 0.4279 

6.1749±0.6096 

7.603±0.7694 

9.5426±1.3534 

4.5421±0.4584 

0.0040 

0.0089 

0.0140 

0.0466 

#3 Radius 5.6983±0.5456 6.1127±0.5228 0.0092 

 Network strength 17.2231±3.5778 15.529±2.3429 0.0441 

 Local efficiency 0.1794±0.0426 0.1601±0.0281 0.0480 

 Clustering coefficient 0.1330±0.0357 0.1164±0.0220 0.0480 

#4 Max modularity 0.2196±0.0162 0.2075±0.0137 0.0053 

#7 
Radius 

Clustering coefficient 

5.9906±0.58855 

0.0851±0.0145 

6.3525±0.4977 

0.0784±0.0136 

0.0234 

0.041 
 Local efficiency 0.1580±0.0255 0.1470±0.0235 0.0460 

#9 Max modularity 0.2029±0.0122 0.1944± 0.0134 0.0224 

#10 
Eccentricity 

Diameter 

8.0484±0.7478 

9.9852±1.0309 

8.5843±0.7648 

10.858±1.2485 

0.0107 

0.0204 
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4. Discussion 

In this study, we investigated brain connectivity in 

HC and SZ patients using graph measures in 2 states: 

first, whole brain, and second, brain subnetworks. 

These investigations were aimed at finding the 

importance of brain partitioning into subregions, 

finding important regions and graph measures in SZ 

diagnosis, and investigating the association between 

FC and SC in SZ.  

In the whole brain analysis according to Tables 3 

and 4, few measures can distinguish SZ patients from 

HC. Structural connection differs in clustering 

coefficients, max modularity, and network strength. 

Functional connection differs only in clustering 

coefficients. 

So, our results showed that analyzing the whole brain 

may not be the most effective method for studying the 

brain peculiarities of SZ patients in our data. 

Using jICA and ICA, we can partition the brain into 

10 subnetworks. A similar study has shown that 

subnetworks analysis is an effective approach to 

understanding SZ disease. This study showed that 

functional and structural brain changes are observed in 

some brain regions, but many regions only change in 

FC or SC connectivity [15]. 

This suggests that there is no simple one-to-one 

relationship between these two types of connectivity in 

the brain.  

In addition, overlap values between structural and 

functional connectivity in Tables 1 and 2 confirm the 

relation between brain structure and function, a 

finding that is consistent with recent studies [16]. 

Also, according to Figures 3 and 4, we can infer that 

adding structural information to functional subnetworks, 

and vice versa, can cause extensive changes in 

subnetworks.  

According to topological changes in subnetworks, 

when using the jICA algorithm, we recommend 

investigating subnetwork #3 in both SC and FC. When 

using the ICA algorithm, we recommend subnetworks 

#7 and #5 in FC and subnetwork #1 in SC. The 

abovementioned subnetworks overlap the most with 

Default Motor (DMN), visual, and Somatomotor (SM) 

Resting State Networks (RSNs). Our results show the 

jICA functional and structural subnetwork #3 is 

important in SZ and extensive changes in these regions 

have been reported in various studies. Therefore, by 

utilizing the jICA algorithm, we can elicit more 

structural and functional information that relates to SZ 

because both of them were involved in the 

construction of subnetworks. This is not possible with 

the ICA algorithm. A similar study showed that 

multimodal ICA fusion models are effective for SZ 

diagnosis. Also, some studies have assessed the 

correlation between structural and functional 

connectivity as multimodality. They used ICA to 

identify associations. Consistent with our findings, 

they proved the good potential of the brain networks 

method for investigating individuals with mental 

disease [17, 18]. 

Additionally, examining graph measures in each 

subnetwork reveals extensive changes that these 

parameters undergo, which is not possible when 

examining the whole brain. According to Tables 5, 6, 

Table 8. Statistical graph measures jICA SC subnetworks analysis 

jICA Subnetwork Significant graph measure 
Mean & SD 

HC 

Mean & SD 

SZ 
P-value 

#1 Max modularity 0.5250±0.0208 0.5057±0.0208 0.0015 
 Network strength 0.1302±0.1571 0.1038±0.0077 0.0429 

#3 Network strength 0.0323±0.0033 0.0275±0.0041 <0.0001 
 Local efficiency 0.0004±9.92×10-5 0.0003±0.0001 0.0003 

 Clustering coefficient 

Global efficiency 

0.0004±8.26×10-5 

00016± 0.0001 

0.0003±0.0001 

0.0014±0.0002 

0.0006 

0.0009 
 Betweenness 627.44±36.55 661.60±48.583 0.0077 

#4 Max modularity 0.6454±0.0201 0.6393±0.0195 0.0292 

#5 Network strength 0.0392±0.0046 0.0356±0.0028 0.0013 

#6 Network strength 0.0233±0.0027 0.0214±0.0021 0.0077 
 Max modularity 0.6989±0.0318 0.6793±0.0309 0.0333 

#9 Network strength 0.0374±0.0041 0.0346±0.0034 0.0062 
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7, and 8, our findings in topology changes are 

supported by several studies. The results indicate that 

network strength, global efficiency, maximum 

modularity, clustering coefficient, and path length are 

important measures in examining topology changes in 

patients with SZ [19-24]. 

Global efficiency is an important measure that helps 

us understand network topology and the efficiency of 

parallel information transmission. Furthermore, path 

length relates to a complex disorder that affects 

cognition, emotion, and behavior, and is characterized 

by a reduced ability to process and integrate 

information across different brain regions. 

Additionally, clustering coefficients measure the 

interconnectedness of nodes in a network. Recent 

research suggests that individuals with SZ have less 

efficient brain networks than HC, which may 

contribute to cognitive and social deficits associated 

with the disorder. Furthermore, modularity is a 

network topology measure that quantifies the degree 

to which a network can be subdivided into densely 

interconnected modules. Also, mean network strength 

relates to disruption in information integration. that 

reduced brain [22-24]. 

5. Conclusion 

This study aimed to investigate brain connectivity 

in HC and SZ patients using graph measures in two 

states: whole brain and brain subnetworks. Results 

showed that just a few measures can distinguish SZ 

patients from HC in whole-brain analysis, suggesting 

that whole-brain analysis might not be the optimal 

method for brain analysis. This study also found that 

multimodal brain analysis in understanding SZ disease 

is an effective approach. Examining graph measures in 

each subnetwork revealed extensive changes that 

these measures undergo, which is not possible when 

examining the whole brain. The most important 

differentiators between HC and SZ were in maximum 

modularity, network strength, global efficiency, and 

clustering coefficient in various subnetworks. This 

study’s authors recommend investigating SC and FC 

of SZ patients in specific subnetworks that overlap 

with DMN, visual, and SM RSNs. Overall, this study 

highlights the importance of investigating brain 

connectivity using a multimodal approach and 

analyzing subnetworks for a more detailed 

understanding of SZ disease. 
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