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Abstract 

Purpose: Ensuring excellent video quality is crucial for the success of minimally invasive surgical procedures 

without disrupting the surgical procedure flow. Real-time laparoscopic video frequently encounters issues such 

as blur and smoke, often stemming from lens contamination. The automatic detection of these distortions is 

imperative to assist surgeons, ultimately reducing operative time and mitigating risks for the patient.  

Materials and Methods: In this paper, we leverage the Laparoscopic Video Quality (LVQ) database developed 

by Khan et al. to train and validate our model. To classify defocus blur, motion blur, and smoke in the laparoscopic 

video, we adopt a novel approach utilizing a cascade support vector machine (SVM) classifier, which combines 

decisions from three binary classifiers. The first classifier categorizes videos into two classes: good and distorted. 

The second classifier focuses on detecting smoke and blur, while the third is dedicated to distinguishing between 

defocus blur and motion blur. 

Results: In this study, we calculate performance metrics, including accuracy rate, precision, recall, F1 score, and 

execution time, which are crucial indicators for evaluating quality detection results. The machine-learning 

classification demonstrates notable performance, with an accuracy rate of 96.55% for the first classifier, 100% 

for the second, and 99.67% for the third classifier. Additionally, the classification achieves a high inference speed 

of 37 frames per second (fps). 

Conclusion: The experimental results showcased in this paper underscore the efficacy of the proposed approach 

in automatically detecting distortions in a laparoscopic video. The method exhibits high performance, excelling 

in both accuracy and processing speed. Notably, the method's advantage lies in its simplicity and the fact that it 

does not necessitate high-performance computer hardware. 

Keywords: Automatic Detection of Laparoscopic Video Distortion; Smoke and Blur Detection; Machine-

Learning Classification. 
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1. Introduction  

Outstanding video quality is essential for minimally 

invasive surgical procedures, ensuring the flow of 

operative procedures [1]. Laparoscopic videos are 

susceptible to various distortions, including noise, 

smoke, uneven illumination, defocus blur, and motion 

blur. These are considered the five categories of 

laparoscopic video distortion [1]. Reduced video 

quality not only diminishes a surgeon's visibility but 

also compromises the outcomes of computational 

tasks in robot-assisted surgery and image-guided 

navigation systems [2, 3]. Examples of such tasks are 

segmentation [4-7], instrument tracking [8-11], and 

augmented reality [12, 13]. A noticeable drop in 

accuracy was observed when the laparoscopic image 

quality was degraded (blur, noise, or resolution drop) 

[14]. 

Numerous solutions have been proposed to address 

these issues, each grounded in the detection of one or 

more causes of distortion. The first methods focused 

on the detection and classification of smoke, using 

Support Vector Machines (SVM) [15] and 

Convolutional Neural Networks (CNN) [16-19].  

Researchers have also proposed alternative approaches, 

including using the histogram of the saturation channel (S) 

in the HSV color space. These methods reveal that the 

color saturation decreases when smoke obscures the Field 

Of View (FOV) [20].  

To classify the other distortions, the authors 

constructed a Laparoscopic Video Quality database 

(LVQ) containing a dataset of 200 videos. The 

database comprises five categories of distortions and 

four levels of intensity [1]. A specific method was used 

to classify each type of distortion: a fast noise variance 

estimator with a threshold for noise distortion [21], a 

Saturation Analysis (SAN) classifier for smoke 

distortion [16], statistics of the luminance component 

of an image for uneven illumination distortion [1], and 

a Perceptual Blur Index (PBI) with a threshold 

classifier for motion and defocus blur distortions [22]. 

The authors have also utilized various methods with 

different datasets to detect image sharpness or 

blurriness. Some of these methods include: 

Haar Wavelet Transform (HWT), Fast Fourier 

Transform (FFT), Laplacian operator, and Sobel 

operator [23, 24]. However, these techniques are 

constrained to specific types of distortion. 

Furthermore, they are only applicable for single 

distortion classification [25]. When confronted with 

multiple distortions during processing, the complexity 

can significantly increase, leading to intensified 

masking effects between video frames [26].  

The deep learning approach is gaining popularity 

and is successfully employed not only in image 

classification but also in text classification. Various 

architectures, such as Recurrent Neural Networks 

(RNN) or bidirectional RNN [27], contribute to its 

versatility. 

In the analysis of laparoscopic images, a diverse set 

of deep learning methods was applied to detect and 

classify the five categories of laparoscopic video 

distortions. Some of these methods utilized single-

label classification and a single Deep Neural Network 

(DNN) [28]. Others, based on multi-label distortion 

classification [29], used the convolutional neural 

network ResNet50 as DNN to extract the features from 

laparoscopic frames. Recently, a multi-label 

classification method was proposed, based on a 

combination of ResNet and a Fully Connected Neural 

Network (FCNN) [30], using the LVQ database 

introduced in [1]. However, most of these solutions are 

time-consuming during the training phase [27] and 

rely on the high performance of computer hardware. 

Additionally, there are challenges in the medical 

domain, including limited data access due to privacy 

concerns and the need for high-quality labeled datasets 

for training deep learning models [28]. The lack of 

availability of large-scale data is a common problem 

in medical applications [29]. 

To benefit from the distortion classification, it is 

necessary to separate distortions caused by 

laparoscopic lens contamination from distortions 

caused by technical problems. During minimally 

invasive surgical procedures, most distortions 

surgeons encountered were caused by contamination 

such as blur and smoke [31]. Therefore, our work 

focuses on detecting these types of distortions. 

In this paper, we propose an alternative approach 

using three SVM classifiers in cascade for automatic 

detection and classification of defocus blur, motion 

blur, and smoke in laparoscopic video. In the first 

classifier, we assess the video quality as high or low. 

In the second, we identify the presence of blur or 
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smoke. Finally, the third classifier distinguishes 

between defocus blur and motion blur. The first and 

second classifiers use the variance and maximum 

values of the Laplacian and Sobel operators and the 

SAN classifier as features of the image. The third 

classifier uses the variance and the maximum value of 

the Laplacian and the Sobel operators as features of 

the image.  

We propose a three-staged computational 

framework for the automatic detection of these 

distortions. The real-time detection of defocus blur in 

laparoscopic video can be used to activate an 

automatic in-situ lens cleaning system. 

This paper introduces several contributions: 

- A novel distortions classification system used to 

identify distortions, specifically those caused by 

laparoscopic lens contamination. 

- A real-time solution to identify distortions in live-

captured videos. 

- A simple machine-learning, classification-

based method that does not demand high-performance 

resources. Hence, it avoids the challenge of the limited 

availability of large-scale medical data.  

- To our knowledge, this study is the first to focus 

on detecting distortions caused by laparoscopic lens 

contamination using a cascading SVM. 

The structure of this paper is as follows: Section II, 

Materials and Methods, provides an overview of the 

datasets and a detailed description of the method 

employed. Section III, Results, delves into the 

experimental setup and results. Section IV, 

Discussion, provides an analysis and discussion of the 

results. Lastly, Section V, Conclusion, summarizes the 

outcomes and significance of this work, offering 

insights into potential future improvements. 

2.  Materials and Methods  

2.1. Dataset Overview 

In this paper, we utilize the LVQ database 

developed by Khan et al. [1]. The database consists of 

10 reference videos, each lasting ten seconds. These 

videos are extracted from the Cholec80 dataset [32], 

which includes ten distinct categories of scene 

variations: Bleeding (BL), Grasping and Burning 

(GB), Multiple Instruments (MI), Irrigation (IR), 

Clipping (CL), Stretching Away (SA), cutting (CU), 

stretching forward (SF), Organ Extraction (OE), and 

Burning (BU). 

Each reference video was distorted by five different 

categories of distortions with four levels of severity, 

as shown in Table 1 and Table 2. This results in a total 

of 200 videos annotated with subjective scores 

performed by expert and non-expert observers. Khan 

et al. [1] used these severity ranks to investigate how 

experts and non-experts perceive the themes of each 

distortion. The distortions include smoke, noise, 

uneven illumination, defocus blur, and motion blur, as 

shown in Figure 1. 

To validate our method, we utilized an extended 

version of the LVQ database (ICIP LVQ Challenge 

dataset) which was proposed in the International 

Conference on Image Processing Challenge 

(ICIP2020) [32]. The ICIP_LVQ_test has 200 

laparoscopic videos, which include both single and 

multiple distortions. Specifically, there are 60 videos 

with noise, 50 videos with defocus blur, 45 videos 

with motion blur, 95 videos with smoke, and 95 videos 

with uneven illumination. 

Table 1. Dataset description [1] 

Resolution 

of each 

video 

Frame 

rate 

 Number of 

distortions 

Number 

of levels 

512 X 288 25 fps  5 4 

 

Table 2. Dataset summary [1] 

Distortions 

categories 

Number 

of 

distorted 

videos 

Number of 

videos by 

level 

Number 

of levels 

of 

severity 

Smoke 40 10 4 

Noise 40 10 4 

Uneven 

illumination 
40 10 4 

Defocus 

blur 
40 10 4 

Motion blur 40 10 4 

Total 200 50 / 
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2.2. The Proposed Method 

In this study, we propose a new approach using 

three SVM classifiers in cascade for the automatic 

detection and classification of defocus blur, motion 

blur, and smoke in laparoscopic video. The first 

classifier assesses the video quality as either high or 

low, using two classes: 'Degraded Image' and 'Good 

Image.' The second classifier identifies the presence of 

blur or smoke. Lastly, the third classifier differentiates 

between defocus blur and motion blur. 

To generate degraded frames from the dataset, we 

exclude frames that exhibit the first level of defocus 

blur, motion blur, and smoke distortions. This 

exclusion is determined by the good scores obtained 

in expert evaluation, which fall between 0.8 and 1, as 

mentioned in [1]. Hence, the second, third, and fourth 

levels of these distorted videos were taken to create a 

training dataset encompassing three classes: 'Defocus 

Blurred Image,' 'Motion Blurred Image,' and 'Smoked 

Image.' 

Consequently, 90 videos are chosen and converted 

into frames with a rate of 5 fps, as depicted in Table 3. 

These three classes are combined into a single class 

labeled 'Degraded Image.' It is important to note that 

the classes 'Noise' and 'Uneven Illumination' are 

     
a: Smoke                                             b: Noise 

  

c: Uneven illumination                                                  d: Defocus blur 

 

e: Motion blur 

Figure 1. Various distorted images extracted from the LVQ database [1] 
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excluded from consideration, as this work focuses on 

detecting blur and smoke. 

From the reference video in the LVQ database, all 

frames from 10 videos were extracted, with a frame 

rate of 25 fps. This class is labeled ‘Good Image’. 

Among the various imbalanced learning 

approaches, the data-level approach was selected [33] 

to address the issue of imbalanced class distribution in 

the dataset. As a result, we resampled the training 

dataset by oversampling the 'Good Image' class, which 

is the minority class, achieved by vertically flipping 

the extracted frames, as illustrated in Table 3. 

For the second classifier, the two classes, 'Defocus 

Blurred Image' and 'Motion-Blurred Image,' are 

combined into a single class labeled 'Blurred Image.' 

To achieve balance with the 'Smoked Image' class, 

data augmentation is performed by vertically flipping 

the extracted frames, as shown in Table 4. 

For the third classifier, we utilize two classes: 

'Defocus Blurred Image' and 'Motion Blurred Image' 

as shown in Table 5. 

Video frames are resized to 224x224 pixels before 

being applied to the SVM classifiers. 

2.3. Features Extraction 

Blur features: To identify blur in laparoscopic 

videos, we utilize two pixel-based edge detection 

algorithms: the Laplacian, a second derivative 

operator, and the Sobel operator, a first derivative 

operator. This selection is made due to the observation 

that non-blurred images exhibit sharper edges in 

comparison to blurred images [24].  

The Laplacian accentuates regions with rapid 

changes in intensity values. By computing the 

variance of the Laplacian of an image, we can discern 

between a blurred image and a sharp image. High 

variance indicates a widespread response, signifying 

an edge or sharp image, while low variance indicates 

a minimal spread of response, indicating blur [34]. 

Additionally, we employ the Sobel operator for edge 

detection due to its insensitivity to noise and its use of 

a relatively small mask in images [35]. 

In this study, we utilize the variance and the 

maximum value derived from each operator as image 

features for the SVM classifier, facilitating the 

discrimination between blurred and non-blurred 

frames [24, 35]. For instance, for blurred images, the 

variance and the maximum values of the Laplacian 

and Sobel operators are below a threshold 

automatically determined by the SVM classifier. 

-Smoke features: In smoke detection, we utilize the 

SAN classifier, which relies on the histogram of the 

saturation channel from the HSV color space. Smoke-

containing images typically exhibit reduced color, and 

as a result, the saturation channel in the HSV color 

space demonstrates a notable correlation with the 

Table 3. Training data summary for the first classifier 

Dataset Number of frames 

Number of defocus 

blurred frames 
1548 

Number of motion-

blurred frames 
1548 

Number of smoked 

frames 
1548 

Number total of 

degraded frames 
4644 

Number of reference 

frames 
2561 

Number of reference 

frames after data 

augmentation 

4644 

Number of total frames 9288 

 

Table 4. Training data summary for the second 

classifier 

Dataset Number of frames 

Number of blurred 

frames (defocus and 

motion) 

3096 

Number of smoked 

frames 
1548 

Number of smoked 

frames after data 

augmentation 

3096 

Number of total frames 6192 

 

Table 5. Training data summary for the third classifier 

Dataset Number of frames 

Number of defocus 

blurred frames 
1548 

Number of motion 

blurred frames 
1548 

Number of total frames 3096 
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presence of smoke [16]. Leibetseder et al. employed 

saturation peak analysis (SPA) to assess the saturation 

of a frame by converting it into the HSV color space. 

This method isolates the corresponding S-channel and 

generates an intensity histogram. It is observed that 

images lacking color or containing smoke exhibit 

numerous low-saturation pixels. Consequently, their 

histograms display higher values in the lower bins, 

creating an inverse scenario for the upper bins [36]. If 

the majority of bin values in the histogram fall below 

the suggested threshold of tc = 0.35, as proposed in 

[16], the frame is classified as having smoke. The 

probability of an image having smoke is defined as 

(Equation 1): 

𝑃𝑟𝑒𝑑𝑠(𝐻) =
1

|𝐻|
∑ 𝑏𝑖                             
𝑖=0
𝑏∈𝐻
𝑖≤𝑡𝑐

 
(1) 

Where: bi is the i-th bin value of histogram H, with 

|H|=256, and tc the threshold (tc = 0.35) [16]. 

Detecting smoke using saturation histograms 

essentially involves identifying a suitable 

concentration point for bin values in non-smoke 

samples called the classification threshold, or tc. This 

threshold serves as a reference point for smoke 

samples, as they typically display a lower 

concentration [16]. 

2.4. The Proposed Work 

The rationale behind the selection of the SVMs 

classifiers is that they are supervised learning 

classifiers of linear and non-linear data; they have 

different kernel functions (e.g., linear kernel, RBF 

kernel, polynomial kernel) [37]. They have relatively 

high predictive performance and are less affected by 

the overfitting problem [38]. The inputs into the SVM 

are feature vectors extracted from frames of the dataset 

cited in the preceding section. The goal is to separate 

the feature vectors to maximize the margins from both 

vectors.  

Dimensionality reduction techniques can 

significantly decrease the time complexity during the 

training phase of machine learning algorithms, thus 

alleviating the computational burden. Two widely 

used dimensionality reduction methods are Linear 

Discriminant Analysis (LDA) and Principal 

Component Analysis (PCA) [39]. However, we did 

not employ any of these methods in this work. Instead, 

our focus was solely on identifying the optimal SVM 

kernel. Our objective was to apply a transformation 

that yields the best separation of feature vectors, 

consequently achieving the highest accuracy. In this 

work, various SVM kernels were evaluated, and the 

Gaussian Radial Basis Function (RBF) kernel was 

found to provide the highest accuracy. The optimal 

parameters were determined as C = 100 and Gamma = 

0.01. 

SVM is trained to fit the extracted features and map 

them to specific classes. Three binary SVMs are 

utilized in cascade in this paper, as shown in Figure 2.  

 

Figure 2. Flowchart of the proposed framework for 

laparoscopic video quality identification 

 Laparoscopic video input 

Good frame 

Yes The 

process 

continues 

No 

Yes 
Smoked 

frame  

No 

 

The third SVM classifier is used 

Yes Defocus 

blurred 

frame 

ddetected

Laparoscopic video captured frame by frame 

Features extracted from each frame 

The first SVM classifier is used 

Degraded frame detected 

The second SVM classifier is used 

Smoked frame 

Blurred frame 

No 

Motion blurred frame  

Defocus Blur 
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2.4.1. First Step: Degraded Image/Good Image 

Classification 

For the first classifier, training data is generated 

from the two classes 'Degraded Image' and 'Good 

Image' and stored in a data file. Subsequently, various 

feature combinations are explored, including: 

- The variance and maximum value of the Laplacian 

operator and SAN classifier.  

- The variance and maximum value of the Sobel 

operator and SAN classifier. 

- The variance and maximum value of the Laplacian 

and Sobel operators and the SAN classifier. 

Finally, Scikit-learn confusion matrices are 

presented, prediction parameters (accuracy, 

prediction, precision, recall, f1-score) are computed, 

the best feature combination is determined, and the 

prediction model is saved. 

2.4.2. Second Step: Blurred Image/ Smoked 

Image Classification 

In the second step, frames from the two classes, 

'Blurred Image' and 'Smoked Image' are used to train 

the second classifier. The image features used include 

the maximum value and variance of the Laplacian and 

Sobel operators and the SAN classifier. Afterward, the 

second prediction model is saved. This classifier is 

used when a degraded frame is detected in the first 

step. 

2.4.3. Third Step: Defocus Blurred Image/ 

Motion Blurred Image Classification 

In the third step, frames from the two classes, 

'Defocus Blurred Image' and 'Motion Blurred Image', 

are used to train the third classifier. The features used 

for the image include the maximum value and variance 

of both the Laplacian and Sobel operators. Finally, the 

third prediction model is saved. This model is used 

when the output of the second classifier indicates a 

blurred image. 

3. Results  

3.1. Experimental Setup 

The experiments are performed on a desktop 

computer with the following specifications: CPU - 

Intel Core i3 - 2365M @ 1.40 GHz, GPU - Intel HD 

Graphics 3000, and 4 GB of RAM. The computer runs 

on Windows 7 64-bit operating system. Various 

frameworks, including OpenCV (CV2) v4.5.5, Scikit-

Learn 1.1.2, and Scikit-Image 0.19.2, are utilized with 

Python 3.8. 

3.2. Performance Metrics 

To train and evaluate the proposed methodology, 

we randomly divided each dataset into two non-

overlapping subsets: 80% for training and 20% for 

testing. The distribution for each classifier is as 

follows: 

- First Classifier: 7430 frames for training and 

1858 frames for testing. 

- Second Classifier: 4953 frames for training and 

1239 frames for testing. 

- Third Classifier: 2476 frames for training and 

620 frames for testing. 

Ultimately, our method is evaluated using 200 

videos from the testing dataset [31], and the results are 

compared to the ground truth of this dataset. 

The performance metrics, encompassing accuracy 

rate, precision, recall, F1 score, and execution time, 

are computed. These metrics serve as crucial 

indicators for evaluating the outcomes of quality 

detection. The summary of performance metrics is as 

follows: 

Accuracy calculates the percentage of correctly 

predicted frames out of all the test frames (Equation 

2): 

Accuracy  =   
𝑇𝑃 + 𝑇𝑁

   𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2) 

Where TP is true positive, TN is true negative, FP 

is false positive, and FN is false negative. 

Precision refers to the accuracy of positive 

predictions [29] (Equation 3): 
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Precision =     
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3) 

Recall (sensitivity) measures the fraction of positive 

predictions that were correctly identified [29] 

(Equation 4): 

Recall =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (4) 

- The F1 score encapsulates recall and precision in 

a single quantity. The best score is 1.0 [29] 

(Equation 5).  

F1_score = 
2∗ precision∗ recall

precision+recall
 (5) 

- CPU execution time represents the time taken by 

the CPU to execute the framework and classify the 

frames. 

- The frame rate, measured in frames per second 

(fps), refers to the speed at which video frames are 

scanned to identify distortions in live-captured 

laparoscopic videos [29]. 

3.3. Experimental Results 

This section presents the evaluation results of the 

proposed method for each classifier. The focus is on 

the accuracy rate, precision, recall, F1 score, and 

confusion matrix. 

3.3.1. The First Classifier 

For the first classifier, we conducted a comparative 

analysis of different blur and smoke detection methods 

in images. Various feature combinations as described 

in the methodology section are compared. The 

confusion matrix for each method is shown in Figure 

3.  

Figure 3 displays the confusion matrices. In each 

matrix, the rows represent the true (actual) classes: 

'Degraded Image' (class 0) and 'Good Image' (class 1). 

The columns represent the predicted classes for 

each feature combination (a, b, and c), and each 

element (i, j) in the matrix corresponds to the number 

of frames known to be in real class i and predicted to 

be in class j 

Table 6 shows accuracy, recall, precision, F1 score, 

and CPU execution time. 

Table 7 displays the accuracy, recall, precision, F1 

score, and CPU execution time for the second and 

third classifiers. 

Figure 4 shows the confusion matrices of the second 

classifier (a) and the third classifier (b). The two 

classes are 'Blurred Image' (class 0) and 'Smoked 

 

Figure 3. The confusion matrix of the proposed 

solution for the first classifier with each feature 

configuration: (a) The variance and the maximum 

value of the Laplacian operator and SAN classifier; 

(b) The variance and the maximum value of the Sobel 

operator and SAN classifier; (c) The variance and the 

maximum value of the Laplacian and Sobel operators 

and SAN classifier 
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Image' (class 1) for the second classifier. For the third 

classifier, the classes are 'Defocus Blurred Image' 

(class 0) and 'Motion Blurred Image' (class 1). 

 

 

Table 7 displays the accuracy, recall, precision, F1 

score, and CPU execution time for the second and 

third classifiers. 

3.3.2. The Proposed Method Tested on the 

ICIP2020 Dataset   

Our method was tested on the 200 videos in the 

ICIP2020 testing dataset [32]. 

We compared the distortion classification results of 

our method to the ground truth of the ICIP2020 testing 

dataset and illustrated the outcomes using confusion 

matrices. Figure 5 presents these confusion matrices 

categorized by distortion types: defocus blur (a), 

motion blur (b), and smoke (c). 

Table 8 displays the performance parameters 

(accuracy, recall, precision, and F1 score) of our 

method tested on 200 distorted videos of the ICIP 

2020 testing dataset. The results are categorized by 

distortion types (defocus blur, motion blur, and 

smoke). 

3.3.3. Comparison of Methods 

To showcase the efficiency of the used approach in 

classifying defocus blur, motion blur, and smoke 

Table 6. The performance metrics of the first classifier for each feature configuration 

Methods Accuracy % Recall % Precision % F1-Score % 
CPU execution 

time (s) 

The variance and the 

maximum value of the 

Laplacian operator and 

the SAN classifier 

95.90 95.81 96.02 95.91 0.93 

The variance and the 

maximum value of the 

Sobel operator and the 

SAN classifier 

85.79 84.37 87.66 85.98 2.18 

The variance and the 

maximum value of the 

Laplacian, the Sobel 

operators, and the SAN 

classifier 

96.55 96.88 96.26 96.56 0.78 

 

 

Figure 4. The confusion matrix of the proposed 

solution for the second and third classifiers: (a) The 

second classifier with the maximum value and the 

variance of the Laplacian, the Sobel operators, and the 

SAN classifier; (b) The third classifier with the 

maximum value and the variance of both the Laplacian 

and the Sobel operators 
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distortions in single-label classification, we compare it 

to the methods proposed by Aldahoul et al. [27] and 

Table 7. The performance metrics of the second and third classifiers  

Methods Accuracy % Recall % Precision % F1-Score % 
CPU execution 

time (s) 

The second classifier (the 

maximum value and the 

variance of the Laplacian 

and Sobel operators, and the 

SAN classifier) 

100 100 100 100 0.24 

The third classifier (the 

maximum value and the 

variance of both the 

Laplacian and Sobel 

operators) 

99.67 99.31 100 99.65 0.14 

 

 

Figure 5. The confusion matrix of the proposed 

solution for each distortion tested on the ICIP 

testing dataset: (a) defocus blur, (b) motion blur, and 

(c) smoke 

Table 8. Performance metrics of the proposed method 

tested on the ICIP testing dataset  

Distortions Accuracy 

% 

Recall 

% 

Precision 

% 

F1-

Score 

% 

Defocus 

blur 
97 98 90.74 94.23 

Motion 

blur 
95 84.44 92.68 88.36 

Smoke 84.5 73.68 92.10 81.86 

 

Table 9. Comparing the performance metrics of our 

method to those of Aldahoul et al.'s [27] and Khan et al.'s 

[1] methods for defocus blur 

Distortions 
Accuracy 

% 

Recall 

% 

Precision 

% 

F1-

Score 

% 

Our 

method 
97 98 90.74 94.23 

Aldahoul et 

al. method 
100 100 100 100 

Khan et al. 

method 
91 77.5 77.5 77.5 

 

Table 10. Comparing the performance metrics of our 

method to those of Aldahoul et al.'s [27] and Khan et 

al.'s [1] methods for motion blur 

Distortions Accuracy 

% 

Recall 

% 

Precision 

% 

F1-

Score 

% 

Our 

method 
95 84.44 92.68 88.36 

Aldahoul et 

al. method 
90 55.55 100 71.42 

Khan et al. 

method 
89.5 75 73.17 74.07 
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Khan et al. [1]. Both of these methods utilize the ICIP 

2020 dataset. 

Tables 9, 10, and 11 present the performance 

parameters (accuracy, recall, precision, and F1 score) 

of our method compared to Aldahoul et al.'s [27] and 

Khan et al.'s [1] methods. The tables are organized by 

distortion types: defocus blur, motion blur, and smoke. 

We assessed 200 distorted videos from the ICIP 2020 

testing dataset. The results of Khan et al.'s method 

were extracted from the Khan thesis [40]. 

The inference time of our solution took 0.027 

seconds, calculated from the time step of applying the 

video frame at the input until the time step of 

producing the distortion types at the output. 

Consequently, the model demonstrated the ability to 

scan video frames at a speed of 37 Frames Per Second 

(FPS). In contrast, for Aldahoul et al.'s method, the 

speed was 20 fps. In their study, Khan et al. did not 

specify the frame rate for their method. 

Figure 6 shows a graphical comparison of the three 

methods for each type of distortion: defocus blur (a), 

motion blur (b), and smoke (c). The comparison is 

based on accuracy, recall, precision, and F1 score. 

4. Discussion 

The main objective of this study was to develop a 

method for real-time detection and classification of 

defocus blur and smoke in laparoscopic video, which 

can be caused by lens contamination. These distortions 

can impair surgical visibility. For these tasks, 

processing speed is crucial to supporting surgeons. To 

achieve this goal, we introduce a novel cascaded 

Support Vector Machine (SVM) classifier framework 

comprised of three sequentially interconnected SVMs. 

This innovative approach effectively addresses the 

challenges of real-time blur detection and 

classification in laparoscopic video. The first classifier 

is to detect if the video is good or distorted; the second 

is to find the type of distortion: blur or smoke; and the 

third is to distinguish between defocus blur and motion 

blur. We train our method on the LVQ database 

developed by Khan et al. [1]. 

In Section 3.3.1, we observe that the first classifier 

achieves optimal performance when utilizing the 

Table 11. Comparing the performance metrics of our 

method to those of Aldahoul et al.'s [27] and Khan et 

al.'s [1] methods for smoke 

Distortions Accuracy 

% 

Recall 

% 

Precision 

% 

F1-

Score 

% 

Our 

method 
84.5 73.68 92.10 81.86 

Aldahoul et 

al. method 
95.5 90.53 100 95.03 

Khan et al. 

method 
86.2 95 58.46 72.37 

 

 

Figure 6. Graphical comparison between the 

proposed method, Aldahoul et al. method, and 

Khan et al. method [1], tested on the ICIP testing 

dataset, for each distortion: (a) defocus blur; (b) 

motion blur; (c) smoke 
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variance and maximum values of the Laplacian and 

Sobel operators, along with the SAN classifier, as 

features for the image. This configuration yields an 

accuracy of 96.55%, an F1-Score of 96.56%, and a 

CPU execution time of 0.78 seconds, as depicted in 

Figure 3 and summarized in Table 6. In the second 

position, we find that employing the variance and 

maximum value of the Laplacian operator along with 

the SAN classifier results in an accuracy of 95.90%, 

an F1-Score of 95.91%, and a CPU execution time of 

0.93 seconds. These findings underscore the impact of 

feature extraction methods on the evaluation metric 

values and, consequently, on the classification results.  

Additionally, we find that the second classifier has 

an accuracy of 100%, an F1-Score of 100%, and a 

CPU execution time of 0.24 seconds, demonstrating 

that it is highly capable of identifying blurred and 

smoked frames, as shown in Figure 4 and Table 7. The 

third classifier has an accuracy of 99.67%, an F1-

Score of 99.65%, and a CPU execution time of 0.14 

seconds, demonstrating that it is highly capable of 

distinguishing between defocus-blurred and motion-

blurred frames.  

In Section 3.3.2, our evaluation of the method on 

the testing dataset's 200 videos indicates its strong 

ability to detect defocus-blurred videos, among other 

distortions. It achieves an accuracy of 97% and an F1-

Score of 94.23%, as depicted in Figure 5 and Table 8. 

Regarding motion-blurred videos, we can see that this 

method can detect this distortion with a good accuracy 

of 95% and an F1-Score of 88.36%. The few 

misclassified videos have a distortion combination 

between motion blur and uneven illumination or 

motion blur and smoke. The proposed method 

classifies smoke with a reasonable accuracy of 84.5% 

and an F1 score of 81.86%. The high number of videos 

with smoke that were not detected by the framework 

(25 false negatives) contributed to the low 

performance. Notably, 88% of these are distorted by a 

combination of smoke and defocus blur, highlighting 

a limitation of our method in accurately detecting 

smoke in the presence of defocus blur.  

In Section 3.3.3, we find that the metrics 

performance analysis of the compared methods 

reveals that, in the classification of defocus blur (as 

shown in Table 9), our method achieves an accuracy 

of 97%. This accuracy surpasses that of Khan et al. 

(91%) but falls short of that found by Aldahoul et al. 

(100%). Additionally, the F1 score is 94.23%, 

compared with 100% of the Aldahoul et al. method 

and 77.5% of the Khan et al. method, for motion blur 

as depicted in Table 10, our method achieves an 

accuracy of 95%, surpassing both the Aldahoul et al. 

method (90% accuracy) and the Khan et al. method 

(89.5% accuracy). Additionally, the F1 score of our 

method is 88.36%, which is the highest compared to 

74.07% of the Khan et al. method and 71.42% of the 

Aldahoul et al. method. 

These results highlight the robust capabilities of our 

model, not only in accurately detecting blur but also in 

effectively distinguishing between defocus blur and 

motion blur. 

In the classification of smoke, as displayed in Table 

11, the Aldahoul et al. method achieves the highest 

accuracy (95.5%), outperforming the Khan et al. 

method (86.2%) and our method (84.5%). 

Additionally, the F1 score was 95.03%, which is the 

highest, compared to 81.86% of our method and 

72.37% of the Khan et al. method, confirming the 

remark in the previous paragraph. 

With a frame rate of 37 fps, our method surpasses 

the Aldahoul et al. approach, which operates at 20 fps 

in terms of processing time.  

This result underscores the feasibility of 

implementing our algorithm in real-time systems, 

including low-cost computers, facilitating the 

identification of distortions in live-captured 

laparoscopic videos. Consequently, the real-time 

solution can effectively identify distortions in live-

captured videos with a speed of 37 FPS. 

5. Conclusion 

During laparoscopy, the visual field can be 

obstructed by condensation, debris, blood, and smoke, 

which generate defocus blur and smoke distortions in 

the output real-time laparoscopic video. Processing 

speed is crucial to supporting surgeons in the detection 

and elimination of lens contamination.  

The advantage of our method is that it is simple and 

does not require high-performance computer 

hardware. 

In this work, we used machine-learning 

classification to automatically detect distortions in 
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laparoscopic video. The results show a high level of 

performance in terms of accuracy and processing 

speed.  

One drawback of the current approach is its 

dependence on manually crafted features. Looking 

ahead, there is potential for leveraging deep learning 

methods to address this limitation. Deep learning 

algorithms present several advantages over traditional 

machine learning methods, including automatic 

feature learning, robust handling of extensive and 

complex datasets, improved performance, adept 

management of non-linear relationships, versatility in 

processing structured and unstructured data, and 

skillful predictive modeling. Moreover, platforms 

such as Google Colab and Kaggle simplify the 

implementation of these advanced algorithms. 

Acknowledgments 

There are no conflicts to declare. 

No funding was received to conduct this research 

and publication of this article. 

All authors have seen and approved the manuscript. 

References  

1- Z. A. Khan et al., "Towards a Video Quality Assessment 

based Framework for Enhancement of Laparoscopic 

Videos." 2020/3// (2020). 

2- P. Sánchez-González et al., "Laparoscopic video analysis 

for training and image-guided surgery." in Minimally 

Invasive Therapy and Allied Technologies Vol. 20, ed, 

(2011), pp. 311-20. 

3- J. Cartucho, S. Tukra, Y. Li, D. S. Elson, and S. Giannarou, 

"VisionBlender: a tool to efficiently generate computer 

vision datasets for robotic surgery." Computer Methods in 

Biomechanics and Biomedical Engineering: Imaging and 

Visualization, Vol. 9 (No. 4), pp. 331-38, (2021). 

4- S. Voros, J.A. Long, and P. Cinquin, "Automatic detection 

of instruments in laparoscopic images: A first step towards 

high-level command of robotic endoscopic holders." in 

International Journal of Robotics Research, (2007), Vol. 26, 

pp. 1173-90. 

5- D. Owen, M. Grammatikopoulou, I. Luengo, and D. 

Stoyanov, "Automated identification of critical structures in 

laparoscopic cholecystectomy." International Journal of 

Computer Assisted Radiology and Surgery, Vol. 17 (No. 12), 

pp. 2173-81, 2022/12// (2022). 

6- E. Padovan et al., "A deep learning framework for real-time 

3D model registration in robot-assisted laparoscopic 

surgery." International Journal of Medical Robotics and 

Computer Assisted Surgery, Vol. 18 (No. 3), 2022/6// (2022). 

7- M. Carstens et al., "The Dresden Surgical Anatomy Dataset 

for Abdominal Organ Segmentation in Surgical Data 

Science." Scientific Data, Vol. 10 (No. 1), pp. 3-3, 2023/1// 

(2023). 

8- B.F. Allen, F. Kasper, G. Nataneli, E. Dutson, and P. 

Faloutsos, "Visual tracking of laparoscopic instruments in 

standard training environments." in Studies in Health 

Technology and Informatics, (2011), Vol. 163: IOS Press, 

pp. 11-17. 

9- D. Bouget, M. Allan, D. Stoyanov, and P. Jannin, "Vision-

based and marker-less surgical tool detection and tracking: a 

review of the literature." in Medical Image Analysis Vol. 35, 

ed: Elsevier B.V., (2017), pp. 633-54. 

10- M. Ali, G. Ochoa-Ruiz, and S. Ali, "A semi-supervised 

Teacher-Student framework for surgical tool detection and 

localization." 2022/8// (2022). 

11- J. Cartucho, C. Wang, B. Huang, D. S. Elson, A. Darzi, and 

S. Giannarou, "An enhanced marker pattern that achieves 

improved accuracy in surgical tool tracking." Computer 

Methods in Biomechanics and Biomedical Engineering: 

Imaging and Visualization, Vol. 10 (No. 4), pp. 400-08, 

(2022). 

12- S. Bernhardt, S.A. Nicolau, L. Soler, and C. Doignon, "The 

status of augmented reality in laparoscopic surgery as of 

2016." in Medical Image Analysis Vol. 37, ed: Elsevier B.V., 

(2017), pp. 66-90. 

13- F. Joeres, F. Heinrich, D. Schott, and C. Hansen, "Towards 

natural 3D interaction for laparoscopic augmented reality 

registration." Computer Methods in Biomechanics and 

Biomedical Engineering: Imaging and Visualization, Vol. 9 

(No. 4), pp. 384-91, (2021). 

14- J.R. Abbing, F.J. Voskens, B.G. A. Gerats, R.M. Egging, 

F. Milletari, and I.A. M. J. Broeders, "Towards an AI-based 

assessment model of surgical difficulty during early phase 

laparoscopic cholecystectomy." Computer Methods in 

Biomechanics and Biomedical Engineering: Imaging and 

Visualization, (2023). 

15- T.A. Alshirbaji, N.A. Jalal, L. Mündermann, and K. 

Möller, "Classifying smoke in laparoscopic videos using 

SVM." Current Directions in Biomedical Engineering, Vol. 

3 (No. 2), pp. 191-94, 2017/9// (2017). 

16- A. Leibetseder, M.J. Primus, S. Petscharnig, and K. 

Schoeffmann, "Real-time image-based smoke detection in 

endoscopic videos." in Thematic Workshops 2017 - 

Proceedings of the Thematic Workshops of ACM Multimedia 

2017, co-located with MM 2017, (2017): Association for 

Computing Machinery, Inc, pp. 296-304. 

17- A. Leibetseder, M.J. Primus, and K. Schoeffmann, 

"Automatic smoke classification in endoscopic video." in 

Lecture Notes in Computer Science (including subseries 



 Laparoscopic Videos Distortion Detection  

354   FBT, Vol. 12, No. 2 (Spring 2025) 341-354 

Lecture Notes in Artificial Intelligence and Lecture Notes in 

Bioinformatics), (2018), Vol. 10705 LNCS: Springer Verlag, 

pp. 362-66. 

18- W. Reiter, "Improving endoscopic smoke detection with 

semi-supervised noisy student models." Current Directions 

in Biomedical Engineering, Vol. 6 (No. 1), 2020/5// (2020). 

19- S. Salazar-Colores, H. M. Jiménez, C.J. Ortiz-Echeverri, 

and G. Flores, "Desmoking Laparoscopy Surgery Images 

Using an Image-to-Image Translation Guided by an 

Embedded Dark Channel." IEEE Access, Vol. 8pp. 208898-

909, (2020). 

20- N.A. Jalal, T.A. Alshirbaji, L. Mündermann, and K. 

Möller, "Features for detecting smoke in laparoscopic 

videos." Current Directions in Biomedical Engineering, Vol. 

3 (No. 2), pp. 521-24, 2017/9// (2017). 

21- J. Immerkaer, "NOTE: Fast Noise Variance Estimation." 

in "COMPUTER VISION AND IMAGE 

UNDERSTANDING," (1996), Vol. 64. 

22- A. Chetouani, A. Beghdadi, and M. Deriche, "A new 

reference-free image quality index for blur estimation in the 

frequency domain." in IEEE International Symposium on 

Signal Processing and Information Technology, ISSPIT 

2009, (2009), pp. 155-59. 

23- R. Bansal, G. Raj, and T. Choudhury, "Blur image 

detection using Laplacian operator and Open-CV." in 

Proceedings of the 5th International Conference on System 

Modeling and Advancement in Research Trends, SMART 

2016, (2017): Institute of Electrical and Electronics 

Engineers Inc., pp. 63-67. 

24- U. Ali and M.T. Mahmood, "Analysis of blur measure 

operators for single image blur segmentation." Applied 

Sciences (Switzerland), Vol. 8 (No. 5), 2018/5// (2018). 

25- Shun Zhang et al., "Concerns of quality, utility, and 

reliability of laparoscopic gastrectomy for gastric cancer in 

public video sharing platform." Annals of Translational 

Medicine, Vol. 8 (No. 5), p. 196, (2020). 

26- X. Liu, X. Tao, M. Xu, Y. Zhan, and J. Lu, "An EEG-Based 

Study on Perception of Video Distortion Under Various 

Content Motion Conditions." IEEE Transactions on 

Multimedia, Vol. 22 (No. 4), pp. 949-60, (2020). 

27- A. Onan, "Bidirectional convolutional recurrent neural 

network architecture with group-wise enhancement 

mechanism for text sentiment classification." Journal of 

King Saud University - Computer and Information Sciences, 

Vol. 34 (No. 5), pp. 2098-117, 2022/5// (2022). 

28- Z.A. Khan, A. Beghdadi, M. Kaaniche, and F.A. Cheikh, 

"RESIDUAL NETWORKS BASED DISTORTION 

CLASSIFICATION AND RANKING FOR 

LAPAROSCOPIC IMAGE QUALITY ASSESSMENT." in 

"2020 IEEE International Conference on Image Processing 

(ICIP)," (2020). 

29- N. Aldahoul, H. A. Karim, M.J.T. Tan, and J.L. Fermin, 

"Transfer Learning and Decision Fusion for Real Time 

Distortion Classification in Laparoscopic Videos." IEEE 

Access, Vol. 9pp. 115006-18, (2021). 

30- Z.A. Khan, A. Beghdadi, M. Kaaniche, F.A. Cheikh, and 

O. Gharbi, "A Neural Network based Framework for 

Effective Laparoscopic Video Quality Assessment." 

2022/2// (2022). 

31- M. Siddaiah-Subramanya, M. Nyandowe, and K.W. Tiang, 

"Technical problems during laparoscopy: A systematic 

method of troubleshooting for surgeons." Innovative 

Surgical Sciences, Vol. 2 (No. 4), pp. 233-37, 2017/12// 

(2017). 

32- A. Beghdadi, "Real-Time Distortion Classification 

inLaparoscopic Videos ICIP." ed, (2020). 

33- A. Onan, "Consensus Clustering-Based Undersampling 

Approach to Imbalanced Learning." Scientific 

Programming, Vol. 2019(2019). 

34- G. Mahak and K. Jaspreet, "Automation in Blur Image 

Detection with Segmentation using Machine learning." 

IJARCCE, Vol. 8pp. 1-7, 03/30 (2019). 

35- S. Lakshmi Bhavani, "Detection and Classification of Blur 

Images using Multi-Class Support Vector Machine; 

Detection and Classification of Blur Images using Multi-

Class Support Vector Machine." [Online]. Available: 

www.ijert.org. 

36- Andreas Leibetseder, Manfred Jürgen Primus, Stefan 

Petscharnig, and Klaus Schoeffmann, "Image-Based Smoke 

Detection in Laparoscopic Videos." in Lecture Notes in 

Computer Science (including subseries Lecture Notes in 

Artificial Intelligence and Lecture Notes in Bioinformatics), 

(2017), Vol. 10550 LNCS: Springer Verlag, pp. 70-87. 

37- B. Schölkopf, "SVMs - A practical consequence of 

learning theory." IEEE Intelligent Systems and Their 

Applications, Vol. 13 (No. 4), pp. 18-21, 1998/7// (1998). 

38- A. Onan, "An ensemble scheme based on language 

function analysis and feature engineering for text genre 

classification." Journal of Information Science, Vol. 44 (No. 

1), pp. 28-47, 2018/2// (2018). 

39- G. T. Reddy et al., "Analysis of Dimensionality Reduction 

Techniques on Big Data." IEEE Access, Vol. 8pp. 54776-88, 

(2020). 

40- Z.A. Khan, "Learning based quality assessment for 

medical imaging in the context of liver cancer treatment." 

PhD thesis, Sorbonne Paris Nord University Paris XIII, 

2021PA131004, (2021). 

 

 

file:///D:/A/Mrs.Dadbin/FBT-12-2/www.ijert.org

