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Abstract 

Purpose: This study aims to determine whether Himalayan singing bowl vibrations could lead to deeper and faster 

relaxation than supine silence. Numerous civilizations have used singing bowls, gongs, bells, didgeridoos, and 

voice sounds and chants as instruments for sound healing for ages in religious rites, festivals, social celebrations, 

and meditation activities.  

Materials and Methods: The effect of sound vibrations on physical and mental wellness is supported by scientific 

research. Although various pieces of research have demonstrated the effect of meditation on humans, very few 

studies have been done on the beneficial effects of singing bowls on the body and the mind (decrease in unease 

and temperament, Electroencephalogram, etc.). This study suggests two Machine Learning (ML) models for the 

automatic classification of the meditative state from the normal state using the Heart Rate Variability (HRV) data. 

Results: To pick suitable inputs for the ML models a statistics-based t-test and Principal Component Analysis 

(PCA) was applied. In the statistics-based t-test method, the HRV parameters were subjected to choose 

appropriate input for the ML model. 

Conclusion: In this case study there are two models that were considered the most effective models based on their 

accuracy, that are MLP 31-13-2 and RBF 31-17-2 model having a training accuracy of 83.75% and 68.75% 

respectively. In the second case study, the PCA approach was applied to the HRV parameters, and as a result 

MLP 4-6-2 and MLP 4-10-2 were the most effective models, with an accuracy of 69.6% and 71.4% respectively. 

Keywords: Meditation; Heart Rate Variability; Autonomic Nervous System; Machine Learning; Radial Basis 

Function. 
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1. Introduction  

Meditation, often known as yoga, is a mind-body 

activity that originates in many different cultures, 

spiritual societies, and therapeutic methods 

worldwide. Its origins likely date back more than five 

thousand years [1]. This complicated physiological 

procedure affects various neurological, psychological, 

behavioral, and autonomic roles. This is a different 

state of perception than wakefulness, slackening at 

rest, and sleep [2] and is therefore denoted as a 

transformed state of consciousness [3]. It's possible to 

meditate in a variety of ways, and the term 

"meditation" can have a variety of various 

connotations in different situations. Some of them are 

Chi, Chakra, Kundalini, Zen, etc.     

The harmful effects of anxiety on both the mind and 

the body are supported by evidence from scientific 

studies [4, 5]. The effects of stress are not limited to 

the neurological and endocrine systems; instead, it can 

also negatively affect cognitive function and the 

immunological system and lead to an increased risk of 

developing long-lasting sicknesses [6]. The autonomic 

nervous system is one of the pathways that is affected 

by stress. More specifically, the action of the 

sympathetic nervous system is elevated, while the 

action of the parasympathetic nervous system is 

reduced [7, 8]. 

Since ancient times, significant outcomes have been 

accredited to the communication of sound with living 

beings. Notably, specific tools were produced to go 

together with meditation, and sacred and social rituals, 

where the sound was utilized to synchronize minds 

and souls as well as to establish an omnipresent 

consistency of the entire community throughout 

earnest festivities [9]. Sound, a bodily vibrational 

phenomenon that induces reverberation, travels 

through both audible-ranged and non-audible tissues 

in the human body. The term "Sound Massage" refers 

to the awareness of vibration by the entire organism. 

Remarkably, "Sound Therapy" varies from "Music 

Therapy" in that "sound" is a perceptible vibration, 

while "music" is a contrived creation composed of 

sounds containing harmony, melody, and rhythm [3]. 

"Sound Therapy" creates the appropriate timbre 

amongst the vibrations of the singing bells and the 

pulsation of the individual receiver by using audio like 

a physical phenomenon with no rhythm or tune. Sound 

therapists avoid harmonic patterns that may evoke 

memories of earlier experiences. Gongs and Tibetan 

Singing Bowls are ancient sound therapy instruments. 

The resonance of their vibrations determines the ideal 

mode of sound treatment with the body of the receiver 

[10, 11]. 

Several articles [12-15] have reported on the 

mechanics of Singing Bowls and Gongs. Resonance is 

described as the instance in which a wavering 

architecture may engross energy from an exterior 

source with a high degree of efficiency at only one 

frequency. 

As a stress-reduction method, meditation is 

commonly referred to as an effective practice. 

Researchers have paid close attention to the 

prospective health advantages and impacts on the 

neuro autonomic function of several meditations and 

relaxation approaches. According to recent 

electrophysiological studies, a better understanding of 

physiology as a whole requires an additional study on 

the consequences of meditation on physiological 

states. Most meditation practices affect the Autonomic 

Nervous System (ANS), indirectly controlling various 

organs and muscles and their jobs [16]. Heart Rate 

Variability (HRV) is a metric utilized to quantify 

Autonomous Nervous System (ANS) functioning. The 

modifications of the activity of the ANS have been 

extensively examined using HRV, which is designated 

by the mining of the bodily rhythms encoded inside its 

signal. It is difficult to measure HRV because of its 

non-stability in dynamic situations such as functional 

testing [17]. When the quantitative and spectral 

measures of HRV were applied, it was discovered that 

practicing mindfulness might have diverse 

consequences on health reliant on the frequencies of 

the resonant peaks. This finding was made possible as 

a result of the fact that different meditation techniques 

produce different HRV patterns [18]. 

There are very few studies on categorizing 

meditative and non-meditative states among 

contemporary techniques. Therefore, this research 

proposes two different ML techniques that can 

automatically differentiate between the state of 

meditation and the regular state by utilizing HRV 

information. The t-test approach, based on statistical 

analysis, was applied to the HRV parameters so 

adequate inputs could be selected for the ML 

algorithms. Section 2 of this study discusses several 
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state-of-the-art related works. The methods for the 

experimental study are presented in section 3. The 

detailed HRV analysis is described in the next portion 

of this article. Machine learning model development 

has been discussed  in section 5. The upcoming 

sections present the outcome of the experimental study 

and its detailed discussions. Section 8 concludes the 

study. 

One of the most prominent and well-known 

instances of complicated physiologic variations is the 

beating of the human heart. The behavior of brain 

control of the cardiovascular system can be described 

as complex and nonlinear. According to Bai et al. 

(2008), the constant interaction between sympathetic 

and parasympathetic nerve processes, which serves to 

regulate the impulsive beat-to-beat dynamics of 

cardiac rhythm, is an example of a type of behavior 

known as nonlinear behavior [19]. Relations are 

thought to be nonlinear because of the involvement of 

autonomic nervous system regulation through the 

physical circumstances on the basis of the dynamic 

and instantaneous action of the sympathetic and 

pneumogastric rejoinders to physical environmental 

tensions [20, 21].  

In recent years, meditation has garnered significant 

interest from researchers in the scientific community. 

Because of this, the HRV signals have been used to 

investigate the physiological impact of diverse 

meditating approaches on the circulatory system. In 

the past, the dynamics of HRV during the meditative 

phase were investigated with the help of nonlinear 

features, such as Hilbert transform [22], Poincare plots 

[23, 24], dynamical complexity [25],  multi-fractal 

analysis [26], fractal scaling [27], recurrence plot 

analysis [28], higher-order spectra [29], Lyapunov 

exponents [30], and wavelet entropy analysis [31]. 

Conventional Kundalini Yoga and Chinese Chi 

meditating practices were studied by Peng et al. 

(1999), who used spectrum analysis and a unique 

analytical-based project upon the Hilbert transform to 

assess pulse rate patterns linked with deep breathing 

[22]. When compared to the stage earlier than the 

meditation control stage, and the other non-meditation 

control groups, the magnitude of these fluctuations 

was dramatically increased when seen throughout the 

meditating stage. Another study by Li et al. (2011) on 

similar meditative practices reveals that, across two 

distinct types of meditating stages, dynamic 

complexity diminishes in meditative phases [25]. 

Furthermore, they found that the spectrum of m-word 

probabilities shifts throughout the meditating phase, 

and accounted for this shift by analogy with the sine 

function's likelihood dispersal. The impact of various 

latencies upon the breadth of Poincare graphs in 

cardiac signals throughout meditating state was 

analyzed by Goshvarpour et al. (2011) [23]. They 

analyzed the Physionet dataset for cardiac signals. 

Using two separate datasets, the breadth of the 

Poincare graph was determined for everyone six 

potential delays. The information reveals that when 

the delay lengthens, the breadth of the Poincare graph 

inclines to rise throughout the meditating state. In their 

study, Song et al. (2013) calculated the extent of the 

singularity intensity among normal youths who 

practiced Chinese Chi meditating [26]. This allowed 

researchers to examine the multifractality of cardiac 

pulse dynamics. They discovered that the multifractal 

singularity continuum throughout mindfulness 

practice was substantially shorter than those observed 

before the meditative phase. This suggests that 

throughout mindfulness practice, the heart rate 

becomes frequent, which also demonstrates that the 

mindfulness practice can assertively alter the 

regulation of the heart and lungs. 

Music-based interventions have been steadily 

integrated into medical practice [32]. It has been 

demonstrated that this non-pharmacological therapy 

can alleviate many symptoms, including agony, 

nervousness, and tension, and improve pediatric 

quality of life [33]. In addition, therapeutic effects of 

music therapy have been described for adults, namely 

in the setting of clinical depression [34-36] and 

neurological illnesses [37, 38]. Traditional methods 

employing acoustic cues due to the introduction of 

meditative states, like the sound of singing bowls, 

were further researched [39] as more evidence 

emerged supporting the therapeutic benefits of the 

mindfulness concept [40]. Comparing pretreatment 

parameters to post-treatment parameters using 

analysis of variance allowed several studies to provide 

the first perceptions into the biological and spiritual 

impacts of singing bowl sound [41, 42]. 



 R. Upadhyay, et al.  

FBT, Vol. 12, No. 2 (Spring 2025) 292-308 295 

2. Materials and Methods  

2.1. Volunteers 

Volunteers for the study included 56 ADYPU 

University undergraduates vacillating in age from 18 

to 22 years old. Detailed information about the 

research work was provided to the participants. The 

participants agreeing to become a volunteer were 

requested to fill out a written consent for their 

involvement in the study. The engagement was 

completely voluntary, and the already agreed 

participants were also allowed to cancel their 

participation in the study if they changed their mood 

later. The volunteer inclusion conditions comprised of 

non-occurrence of any cardiac diseases, age group of 

18-22 years, and living an active life. The health 

condition, self-stated by the volunteers based on their 

earlier health records, was deemed to be correct, and 

no additional health check-up was carried out. 

During the Himalayan Singing Bowls sessions, the 

participants were instructed to be in a reclining 

position and close their eyes for fifteen minutes at a 

time. A Tingsha and seven Himalayan Singing Bowls 

(Full Moon Singing Bowls) were employed for this 

experimental study. The diameter of the bowls ranged 

from 18 centimeters to 29.5 centimeters. The bowls 

were struck with a mallet (an instrument that looks like 

a hammer but has a plush, puffed end used for hitting), 

and there was a minimum gap of five seconds between 

each succeeding strike. The bowl was initially placed 

in the position that was furthest from the head, which 

was between the legs. The bowl's position was 

gradually changed to one closer to the head, all the 

time switching sides of the body. The pattern started 

with a sound with medium intensity (roughly half of 

the maximum), and the volume was gradually lowered 

with each succeeding cycle of seven bowl hits and one 

Tingsha hit (for example, 50%, 40%, etc.). The 

sequence concluded with a low-intensity sound (about 

10% of the maximum). After reaching its minimum 

level (at 10%), the succeeding cycles gradually raised 

the intensity until it reached its maximum level (at 

50%), and this pattern was repeated for 15 minutes. 

Following the completion of each cycle was the sound 

of Tingsha. The participant stayed supine for the entire 

practice with their eyes closed; however, their eyes 

were not covered at any point during any of the two 

types of sessions. 

2.2. ECG Signal Acquiring and RR Interval 

Mining 

The student volunteers were requested to make at 

least one trip to the adjacent ECG recording station to 

record the ECG signals. It was recommended that the 

volunteers lie supine on a wooden bed to get the 

highest level of comfort. Before, during, and after the 

singing bowl meditation session, the participants' heart 

rates were monitored with a 12-lead 

electrocardiogram for a period of five minutes each 

[43].  

The ECG attributes were extracted using the 

Biomedical Workbench toolbox (National 

Instruments Corporation, USA). The ECG attribute 

Extractor first locates the QRS-complexes via the 

implementation of filtering and rectification in the 

ECG before moving on to the method for extracting 

HRV properties. The articles published by National 

Instruments Corporation stated that the QRS 

complexes are extracted using a band-pass filter with 

a 10–25 Hz bandwidth. As a result, during the RR 

interval (RRI) signal extraction, the information 

contained in the QRS complexes is considered [44]. 

The band-pass filter is set up in this manner by default 

in the software, and it is advised to leave it that way. 

The default band-pass filter bandwidth of 10-25 Hz 

was employed in a number of research studies, 

including Kaur et al. (2014), Zaidi et al. (2017), 

Khong et al. (2019), and Jain et al. (2014) to extract 

QRS-complexes from ECG signals [45-48]. As a 

result, during the pre-processing of the ECG, the band-

pass filter by a frequency range of 10–25 Hz was 

utilized. The rectification process can be executed 

through the absolute or the square technique. In our 

research, the square technique was used to rectify the 

preprocessed ECG signals for the extraction of the 

QRS complexes, followed by the HRV signal.  

2.3. HRV Analysis 

The typical linear HRV analytic study was executed 

according to the worldwide recommendations that 

were published by the mission group of the North 

American Society of Pacing and Electrophysiology 

and the European Society of Cardiology [49]. The 
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linear HRV attributes included the time and frequency 

arena characteristics [50]. In addition, the nonlinear 

HRV parameters were determined in accordance with 

the guidelines provided by the most recent research in 

the field [51-53]. The Biomedical Workbench toolset 

of LabVIEW was utilized in the execution of both the 

linear and nonlinear HRV studies (Figure 1). Every 

one of the volunteers created a feature vector with a 

total of 31 different features. Since our study had 56 

participants, we were able to generate 56 feature 

vectors. The testing of hypotheses required the 

utilization of these feature vectors, which were then 

utilized in building machine learning models. 

2.3.1. Time-Domain HRV Attributes 

The time-domain attributes consist of the features 

derived from the HRV signals through statistical and 

geometrical approaches [49]. The time-domain 

statistical attributes can be determined either straight 

from the HRV signals or by subtracting them from the 

RR intermissions [54]. The time-domain statistical 

attributes, which include the average pulse rate, the 

standard deviation of the pulse rate, and the average, 

as well as the standard aberration of the NN 

intermissions (SD NN), can be derived straight out of 

those signals (Table 1). In this instance, the attributes 

HR SD and SD NN disclose data regarding the 

distribution of the HR and NN interval (or RRI) values 

from their respective averages. Alternatively, the 

parameters RMSSD, NN50, and pNN50 provide 

information about the high-frequency deviation in the 

heart rate. These parameters are generated from the 

difference between the RR interludes and show how 

the heart rate might vary. The root means square 

standard deviation or RMSSD is the average variation 

in the interval amid beats and is represented by the 

square root of the sequential alteration amid the RR 

intermissions. The value of NN50 provides data about 

the amount of consecutive NN intermission variances, 

which had a total period of longer than 50 

milliseconds. The value of the parameter pNN50 can 

be calculated by dividing NN50 by the overall sum of 

NN intermissions that are longer than 50 milliseconds. 

TINN, which stands for "triangular interpolation of 

NN interval histogram," as well as HRV triangular 

directory are both examples of time-domain 

geometrical parameters. The HRV triangular index is 

produced using the RRI histogram (Figure 2). The RRI 

histogram, also known as the NN interval histogram, 

can be produced using triangular interpolation. TINN 

denotes the baseline width of the RRI histogram [55]. 

We divide the sum of RRIs by the highest value in the 

RRI histogram to compute the RR triangular index 

[49]. 

2.3.2. Frequency-Domain HRV Attributes 

The calculation of the Power Spectral Density 

(PSD) of the HRV signals serves as the foundation for 

the frequency domain attributes. Utilizing the Fast 

Fourier transform (FFT) (Figure 3) and 

Autoregressive (AR) modeling, the frequency-domain 

attributes were calculated (Figure 4). Very low 

frequency of 0-0.04 Hz, low frequency of 0.04-0.15 

Hz, and high frequency of 0.15-0.4 Hz components of 

the PSD were included in the parameters. Typically, 

absolute power units (ms2) and related components 

(percent) are used to quantify the VLF, LF, and HF 

power components (Table 1). However, the 

normalized units can also be used to measure the LF 

and HF components (n.u.). The autonomic modulation 

of the heart has the potential to change the power 

dispersal among the numerous components of the  

 

Figure 1. Methods of HRV Analysis 

 

Figure 2. An example of a regular RRI histogram derived 

from a 5-minute HRV signal. Using the Biomedical 

Workbench tools that come with LabVIEW, a plot of the 

RRI distribution was created 
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PSD, which is not static [49]. The precise 

physiological mechanism generating the VLF power 

component is not yet known with certainty [49]. The 

VLF power component is thought to be a sign of 

parasympathetic activity, but atropine abolishes it 

[54]. According to some reports, HF power is a sign of 

parasympathetic action. Nonetheless, the LF power 

constituent is contrived due to parasympathetic and 

sympathetic nerve innervations to the Sino-atrial node, 

which complicates it [54]. Henceforth, the LF/HF 

proportion is typically utilized in its place of the LF 

power component unaided to designate the 

sympathetic actions [54] or the sympathovagal 

equilibrium [56]. 

 

 

Figure 3. The frequency domain Fourier transform (FFT) band of a 5-minute HRV signal. LabVIEW's Biomedical 

Workbench package was utilized to generate a graphical representation of the FFT spectrum 

 

Figure 4. A typical example of an AR spectrum derived from a 5-minute HRV signal. LabVIEW's Biomedical 

Workbench (National Instruments Corporation, USA) toolset was utilized to generate a plot of the AR spectrum 

Table 1. Statistical characteristics of significant HRV features t-Test Before and During the Meditation Session 

T-Tests Grouping: Category (B & M-HRV parameters sheet-final for analysis) 

Variable 

Mean ± SD 
p 

(< 0.1) Without Stimulus (B) 
With Stimulus 

(M) 

HF Power-AR 1904.339 ± 973.502 1582.489 ± 984.874 0.084790 

LF (%)-AR 33.821 ± 7.732 37.179 ±7.007 0.017720 

HF (%)-AR 32.821 ± 8.834 28.929 ±6.246 0.008199 

LF/HF-AR 0.737 ± 0.332 0.876 ±0.518 0.093943 
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2.3.3. Nonlinear HRV Parameters 

Only utilizing linear approaches to describe the 

HRV is insufficient because the heart is a complex 

control mechanism. As a result, nonlinear approaches 

have also been suggested to explain the characteristics 

of HRV [29] accurately. In this research, the Poincare 

plot and the Detrended Fluctuation Analysis were used 

to do the nonlinear HRV analysis (DFA). The 

Poincare plot illustrates the association amongst the 

following RRIs in a visual way (Figure 5). Two 

nonlinear HRV characteristics, SD1 and SD2, are 

extracted from the data by fitting an ellipse laterally 

with the line of individuality to the data points (Table 

1) [57]. The width and length of the ellipse are used to 

calculate the parameters SD1 and SD2, respectively. 

These factors are taken into consideration to be an 

indicator of both the short-term and the long-term 

variability, correspondingly [58]. 

The DFA approach is a nonlinear method for 

quantifying relationships in any moving functional 

time series information [59]. In the context of an HRV 

analytical study, correlations are classified as either 

short-term or long-term variations, depending on the 

time frame under consideration. These variations are 

measured and quantified by the DFA method with the 

help of the parameters alpha1 (1) and alpha2 (2), 

respectively (Table 1) [55]. The slope of the log-log 

graph is employed to determine the values for 

parameters 1 and 2. These metrics offer a 

measurement of correlation (in terms of fluctuation 

Fn) that is dependent on the amount of data that was 

collected (n) (Figure 6). 

2.4. Statistical Analysis 

The median (MD), standard deviation (SD), and 

25th and 75th percentiles of the values were used to 

establish the dispersion of HRV characteristics. These 

actions were taken for both the C and B categories. We 

used the t-test, implemented with the help of the 

TIBCO StatSoft Statistica software (StatSoft Europe, 

2022), to look into the parameters' statistical 

significance in light of the data's properties. T-tests are 

inferential statistics used to examine the possibility of 

a statistically substantial distinction between the 

means of two different groups or models and the 

nature of their correlation [60]. T-tests use the 

proportion of the variance in means between two 

categories over the combined standard error of those 

two groups to estimate the genuine difference between 

 

Figure 5. A Poincare plot of a 5-minute HRV signal is 

presented in the standard format. LabVIEW's 

Biomedical Workbench was used as the plotting tool 

for the Poincare diagram 

 

Figure 6. An example representation of a DFA plot using a 5-minute HRV signal. Utilizing the Biomedical Workbench 

tools (National Instruments Corporation, USA) that is included in LabVIEW, the DFA plot was created 
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those groups. If the data sets have a normal 

distribution with unspecified variances, then t-tests 

can be performed to analyze the data. The calculation 

of the t-value (t) is presented in Equation 1. 

𝑡 =
𝑥1 − 𝑥2

√(𝑠2 (
1
𝑛1

+
1

𝑛2
))

 
(1) 

where x1 and x2 depict the average of two categories 

for comparison, s indicates the standard error between 

the categories, and n1 and n2 present the number of 

samples of those categories. 

Next, we use the Principal Component Analysis 

(PCA) method. Data analysis and machine learning 

both use the dimensionality-reduction method known 

as Principal Component Analysis (PCA). It is used to 

reduce the number of dimensions in a high-

dimensional dataset while keeping the most 

significant facts or patterns. 

Data standardization is necessary to ensure that 

each feature in the dataset contributes equally to the 

analysis. This is especially true if the characteristics in 

the dataset have varied scales. This entails dividing by 

the standard deviation for each feature and subtracting 

the mean for each feature. 

To estimate the pairwise covariance between the 

various features in the dataset, compute the covariance 

matrix. It divulges details on the connections and 

interdependencies between the features. 

Determine the eigenvalues and eigenvectors: The 

covariance matrix serves as the source for the 

eigenvectors and eigenvalues. The eigenvalues 

quantify the variance explained by each eigenvector, 

whereas the eigenvectors describe the directions or 

components with the largest variance in the data. 

Finding the principal components—also known as 

the directions in which the data fluctuates most—is the 

primary objective of PCA. These major components 

are orthogonal to one another and ordered according 

to how much variance in the initial data explained. The 

mean or average (μ) value of the data samples (xi) can 

be calculated during the implementation of PCA is 

given in Equation 2: 

µ =
1

𝑛
∑  𝑛

𝑖=1 (𝑥𝑖) (2) 

where xi represents the data samples  

The deviation (𝜙𝑖 ) for the data set can be 

mathematically expressed using Equation 3.   

𝜙𝑖 = 𝑥𝑖 - µ (3) 

where xi represents the data samples, and μ 

represents the deviation  

2.5. Developing ML Models 

Machine learning is a subdivision of computer 

science that delivers computer learning capability 

without the necessity for obvious programming [61]. 

Muti-Layer Perceptron (MLP) and Radial Basis 

Function (RBF) were utilized for the development of 

systems that can distinguish the meditative state 

features of a volunteer in an automatic way using the 

HRV parameters [62]. These ML methods were 

applied utilizing the TIBCO StatSoft Statistica 

software (StatSoft Europe, 2022).  

2.5.1. MLP 

Multi-Layer Perception (abbreviated as MLP) 

describes how an individual takes in information from 

multiple sources. It consists of dense, fully connected 

layers that may map one dimension to another. 

Layered neural networks, which create multi-layer 

perceptions, are a relatively recent development in the 

field of artificial intelligence. We use a network of 

neurons in which the outcomes of certain neurons are 

used as inputs by other neurons to achieve a desired 

goal. 

 

Figure 7. A simple layout of a multi-layer perceptron 

system [63] 
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2.5.2. RBF 

Input, hidden, and an output layer are the 

components that make up a Radial Basis Function 

(RBF) neural network. The neurons that make up the 

hidden layer all have Gaussian transfer functions 

inside of them, and the outputs of these functions are 

inversely related to the separation from the neuron's 

center. The fundamental concept behind this analysis 

is that an estimated target value for an item is 

anticipated to be approximately the same as a 

predicted target value for other objects with quantities 

of predictors comparable to one another. 

3. Results 

The research involves collecting the single-lead 

Electrocardiogram (ECG) signals from 56 volunteers 

between the ages of 18 to 25, all of whom had to meet 

certain inclusion criteria and give their written 

agreement to take part in the research. The mining of 

the RR intermissions was done utilizing the lead-II 

ECG signals, and the HRV analysis was executed. The 

HRV analysis brought about 31 features, which fit into 

frequency, time, and nonlinear domains. The MD ± 

SD and the 25th and the 75th percentiles for all the HRV 

features were calculated from all the groups. Hence, 

the statistics-based significance of the HRV features 

was investigated utilizing the statistical technique 

named the t-test, with a perilous p-value of 0.1. The 

outcomes recommended that the HF Power-AR, LF 

(%)-AR, HF (%)-AR, LF/HF-AR, RMSSD, Sd1, LF 

n.u.-AR, and HF n.u.-AR as the features which 

fluctuate pointedly among the aforementioned groups. 

Table 1 presents the statistical characteristics of 

significant HRV features from the t-test before and 

during the meditation session. Table 2 shows the  

 

statistical characteristics of significant HRV features 

from the t-test during and after the meditation session. 

To simplify the automatic classification of the 

meditative and normal states employing the HRV 

information, numerous ML models were developed. 

The input attributes for the ML methods were selected 

by the characteristics of the parameters, which had 

lesser p-values than 0.1. These values were acquired 

by using a t-test. After that, numerous ML models 

were established utilizing individual attribute 

selection techniques based on RBF and MLP neural 

networks. There were two case studies done in this 

experimental research. One of the studies was done for 

‘before’ and ‘during’ the meditation session data, and 

the other one was done utilizing ‘during’ and ‘after’ 

the meditation session data. We chose the two most 

suited-valued models out of all those models based on 

their performances for both case studies. These models 

came out to be RBF 31-15-2 and MLP 31-13-2 from 

the first case study (Table 3). From the second case 

study, we acquired RBF 31-17-2 and MLP 31-7-2 

models (Table 4). The software generated the models' 

training, test, and validation performance values using 

different error functions, hidden activation, and output 

activation function values (Tables 3 and 4). The 

models were evaluated using the models’ confusion 

matrices (Tables 5 and 6).  

3.1. Sensitivity 

The sensitivity refers to the ability to determine the 

patient cases correctly. It is estimated as the ratio 

between accurately classified correct observations to 

the total number of correct observations. It is also 

known as a True positive rate or recall. 

Table 2. Statistical characteristics of significant HRV features t-Test During and After the Meditation session 

T-Tests Grouping: Category (M & A-HRV parameters sheet-final for analysis) 

Variable 
Mean ± SD 

p(< 0.1) 
With Stimulus (M) Without Stimulus (A) 

RMSSD (ms) 171.339 ± 40.502 187.964±48.295 0.050912 

Sd1(ms) 121.393 ± 28.759 133.750±34.659 0.042420 

LF (%)-AR 37.179 ± 7.007 34.536±7.628 0.058804 

LF n.u.-AR 23.818 ± 7.956 21.009±6.934 0.048897 

HF n.u.-AR 46.893 ± 9.164 50.382±11.354 0.076277 
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Table 3. Detailed Construction and Outcomes of the ML Models for Before and During Meditation Data 

ML 

Models 
Variables 

Training 

Pref. 

Test 

Pref. 

Validation 

Pref. 

Training 

Algorithm 

Error 

Function 

Hidden 

Activation 

Output 

Activation 

RBF 31-15-

2 

HF Power-

AR 

LF (%)-AR 

HF (%)-AR 

LF/HF-AR 

50.00% 37.5% 68.75% RBFT Entropy Gaussian Softmax 

MLP 31-13-

2 

HF Power-

AR 

LF (%)-AR 

HF (%)-AR 

LF/HF-AR 

83.75% 56.25% 62.50% BFGS 0 SOS Exponential Logistic 

 

Table 4. Detailed Construction and Outcomes of the ML Models for During and After Meditation Data 

ML 

Models 
Variables 

Training 

Pref. 

Test 

Pref. 

Validation 

Pref. 

Training 

Algorithm 

Error 

Function 

Hidden 

Activation 

Output 

Activation 

RBF 31-17-

2 

RMSSD 

Sd1 

LF (%)-AR 

LF n.u.-AR 

HF n.u.-AR 

65.00% 68.75% 56.25% RBFT SOS Gaussian Identity 

MLP 31-7-2 

RMSSD 

Sd1 

LF (%)-AR 

LF n.u.-AR 

HF n.u.-AR 

75.00% 31.25% 62.50% BFGS 0 SOS Exponential Exponential 

 

 Table 5. Confusion Matrix for Classifier ANN in Case of Before and During Meditation Data 

Model Name Type Category-B Category-M Category-All 

RBF 31-15-2 

Total 56.0000 56.0000 112.00000 

Correct 23.0000 34.0000 57.00000 

Incorrect 33.0000 22.0000 55.00000 

Correct (%) 41.0714 60.7143 50.89286 

MLP 31-13-2 

Total 56.0000 56.0000 112.00000 

Correct 42.0000 44.0000 86.00000 

Incorrect 14.0000 12.0000 26.00000 

Correct (%) 75.0000 78.5714 76.78571 

 

Table 6. Confusion Matrix for Classifier ANN in Case of During and After Meditation Data 

Model Name Type Category-B Category-M Category-All 

RBF 31-17-2 

Total 56.000000 56.000000 112 

Correct 47.000000 25.000000 72 

Incorrect 9.000000 31.000000 40 

Correct (%) 83.928571 44.642857 64.28 

MLP 31-7-2 

Total 56.000000 56.000000 112 

Correct 39.000000 36.000000 75 

Incorrect 17.000000 20.000000 37 

Correct (%) 69.642857 64.285714 66.96 
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3.2. Sensitivity 

The sensitivity refers to the ability to determine the 

patient cases correctly. It is estimated as the ratio 

between accurately classified correct observations to 

the total number of correct observations. It is also 

known as a True positive rate or recall. 

Mathematically, this can be stated as (Equation 4): 

 

Sensitivity = 
TP

TP + FN
 (4) 

where TP and FN refer to the true positive value and 

the false negative value, respectively.  

So, it is important to calculate the sensitivity for all 

the models like sensitivity for RBF between Category 

B and D and between Category D and A, also 

sensitivity for MLP between Category B and D and 

Table 7. Detailed Construction and Outcomes of the ML Models for Before and During Meditation Data Using PCA 

ML 

Models 

Training 

Pref. 

Test 

Pref. 

Validation 

Pref. 

Training 

Algorithm 

Error 

Function 

Hidden 

Activation 

Output 

Activation 

RBF 4-18-2 73.75000 81.25000 62.50000 RBFT Entropy Gaussian Softmax 

MLP 4-8-2 72.50000 62.50000 62.50000 BFGS 0 Entropy Tanh Softmax 

RBF 4-19-2 48.75000 62.50000 56.25000 RBFT Entropy Gaussian Softmax 

MLP 4-9-2 77.50000 68.75000 62.50000 BFGS 36 SOS Tanh Logistic 

RBF 4-17-2 65.00000 25.00000 56.25000 RBFT SOS Gaussian Identity 

 

Table 8. Detailed Construction and Outcomes of the ML Models for During and After Meditation Data Using PCA 

ML 

Models 

Training 

Pref. 

Test 

Pref. 

Validation 

Pref. 

Training 

Algorithm 

Error 

Function 

Hidden 

Activation 

Output 

Activation 

MLP 4-6-2 58.75000 62.50000 43.75000 BFGS 7 Entropy Exponential Softmax 

MLP 4-6-2 63.75000 68.75000 56.25000 BFGS 11 SOS Exponential Identity 

RBF 4-15-2 51.25000 31.25000 56.25000 RBFT SOS Gaussian Identity 

MLP 4-6-2 71.25000 75.00000 56.25000 BFGS 37 SOS Logistic Identity 

RBF 4-19-2 55.00000 43.75000 62.50000 RBFT Entropy Gaussian Softmax 

 

Table 9. Confusion Matrix for Classifier ANN in Case of Before and During Meditation Data Using PCA 

Model Name Type Category-B Category-M Category-All 

MLP 4-6-2 

Total 56.000000 56.000000 112.0000 

Correct 43.000000 35.00000 78.0000 

Incorrect 13.000000 21.00000 34.0000 

Correct (%) 76.78571 62.50000 69.6429 

MLP 4-19-2 

Total 56.000000 56.00000 112.0000 

Correct 30.000000 31.00000 61.0000 

Incorrect 26.000000 25.00000 51.0000 

Correct (%) 53.57143 55.35714 54.4643 

 

 Table 10. Confusion Matrix for Classifier ANN in Case of During and After Meditation Data Using PCA 

Model Name Type Category-B Category-M Category-All 

RBF 4-19-2 

Total 56.000000 56.000000 112.0000 

Correct 41.000000 37.000000 78.0000 

Incorrect 15.000000 19.000000 34.0000 

Correct (%) 73.21429 66.07143 69.6429 

MLP 4-10-2 

Total 56.000000 56.000000 112.0000 

Correct 42.000000 38.000000 80.0000 

Incorrect 14.000000 18.000000 32.0000 

Correct (%) 75.00000 67.85714 71.4286 
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between Category D and A. This calculation is also 

capable of estimating the performance of the machine 

learning models. Comparing the sensitivity of both the 

models while dealing with the T-test, it seems that the 

sensitivity of RBF (between Category B and D) works 

best with 0.59 whereas RBF (between Category D and 

Category A) sensitivity falls short with 0.3472. 

Coming on to MLP, a 0.51 sensitivity of the MLP 

(between Category B and Category D) was slightly 

better than the MLP (between Category D and 

Category A) which was 0.48. 

While using PCA, the sensitivity of RBF (between 

Category B and D) was 0.5 as compared with the 0.47 

sensitivity of RBF (between Category D and Category 

A). Although, both the MLP models, i.e., between 

Category B and D and between Category D and A 

sensitivities were almost equal, i.e., 0.44 and 0.47, 

respectively. Table 11 shows a better understanding of 

the data. 

3.3. Specificity  

Specificity corresponds to the ratio of accurately 

classified negative observations to the total number of 

negative observations. It is also known as a True 

Negative Rate (Equation 5). 

Specificity =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (5) 

where, TN and FP refer to the true negative value 

and the false positive value, respectively. 

Same as sensitivity, specificity was calculated for 

all four models with the T-test and PCA analysis 

respectively. In T-test with RBF, there is a substantial 

improvement in the specificity of RBF (between 

Category B and D) calculated as 0.6 with respect to 

RBF (between Category D and A) which was 0.32. 

But MLP model’s specificity was almost neck to neck 

for both the Categories i.e., 0.53 for Category B and D 

and 0.45 for Category D and A. 

Considering PCA, RBF (between Category B and 

D) contains a specificity of 0.5 and has greater 

performance as compared with RBF (between 

Category D and A) which was 0.44. Moreover, the 

MLP model between Categories D and A with 

specificity of 0.43 was preferred over a model between 

Categories D and A having a specificity of 0.38. Table 

12 shows the sensitivity values. 

4. Discussion 

This chapter explored the effects of singing bowls 

on the physical and psychological states and projected 

models for the automated classification of the 

meditative state from the normal state based on their 

HRV data. The HRV study was executed to identify 

any changes in the physiological functioning of the 

ANS. As per the recommendation of the European 

Society of Cardiology and the North American 

Society of Pacing and Electrophysiology Committee, 

the short-term HRV analysis must be executed with at 

least 5 minutes of ECG sections. This is because the 

VLF spectral constituent (<5 minutes) of ECG 

sections may become a questionable measure when it 

comes to interpreting the power spectral density [49]. 

Therefore, ECG segments of five minutes were 

employed to generate the HRV features. The HRV 

analysis produced a total of 31 features, which were 

split between the time domain, the frequency domain, 

and the nonlinear domain. It is an eminent fact that the 

presence of any variance in the information of the two 

populaces may be demonstrated from their test 

specimens (which are of comparatively tiny size) 

employing hypothesis testing [64]. Statistical methods 

such as the t-test have been proposed to evaluate 

hypotheses, provided that the dataset fits the normally 

distributed plot. In light of this, the statistical method 

Table 11. Sensitivity calculated using T-test and PCA models for different categories 

Models RBF (B and M) RBF (M and A) MLP (B and M) MLP (M and A) 

Using T-test 0.59 0.34 0.51 0.48 

Using PCA 0.5 0.47 0.44 0.47 

 

Table 12. Specificity calculated using T-test and PCA models 

for different Categories 

Models 
RBF (B 

and M) 

RBF (M 

and A) 

MLP (B 

and M) 

MLP 

(M and 

A) 

Using T-

test 
0.6 0.32 0.53 0.45 

Using PCA 0.5 0.44 0.43 0.38 
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named the t-test was implemented to identify the HRV 

properties that substantially differed from one another. 

The findings of the t-test (with a critical p-value of 

0.1) indicated statistically important HRV features in 

our study. These attributes are the HF Power-AR, the 

LF (%)-AR, the HF (%)-AR, the LF/HF-AR, RMSSD, 

Sd1, LF n.u.-AR, and HF n.u.-AR. We observed that 

56 participants' Autonomic Nervous System (ANS) 

activity varied significantly due to the meditation 

practiced during singing-bowl sessions. An in-depth 

analysis of these HRV aspects was performed with the 

help of the available research literature to understand 

better the precise variability in the pathophysiology of 

the ANS. All of the statistically significant HRV 

attributes had lesser or higher mean and standard 

deviation values while comparing the before, during, 

and after the meditation sessions. The average heart 

rate (HR Mean) was significantly correlated; also, the 

standard deviation of the heart rate displayed a 

substantial shift between both the Category-B (Before 

Mediation), Category M (During Mediation), and 

Category-C (After Mediation) groups. The properties 

of the parameters that had p-values that were lower 

than 0.1 were taken into consideration when deciding 

which input parameters could be used by the machine 

learning approaches. The t-test was utilized to obtain 

these values. 

RMSSD is an abbreviation for the root-mean-

square of consecutive deviations between regular 

heartbeats. According to several studies, the reduced 

levels of RMSSD are greater in healthy populations 

than in sick populations [70]. The presence of a rise in 

RMSSD denotes the presence of a rise in PNS. An 

upsurge in PNS (Parasympathetic Nervous System) 

parameters is associated with a drop in SNS 

(Sympathetic Nervous System) activation-related 

metrics, such as a reduction in heart rate. We can see 

that this value increases from 171.339 ms with a 

standard deviation of 40.502 ms to 187.964 with a 

standard deviation of 48.295 ms after the meditation 

session.   

According to the findings of the t-test analysis, HF 

n.u AR and LF n.u AR (HF n.u and LF n.u computed 

utilizing the AR technique) and LF%-AR, HF (%)-AR 

(LF% and HF% computed utilizing the AR method) 

are all statistically significant variables. Very Low 

Frequency (VLF), Low Frequency (LF), and High 

Frequency (HF) components make the power spectra 

of the brief-term (e.g., 5-minute) HRV analysis. These 

components are represented by very low frequency 

(VLF), low frequency (LF), and high frequency (HF), 

respectively. In addition to being given in absolute 

numbers (ms2), these components are also expressed 

as a percentage of the overall power (i.e., VLF%, 

LF%, and HF%). In addition, the low-frequency and 

high-frequency power components are articulated in a 

normalized unit (i.e., LF n.u. and HF n.u.). It has been 

observed that very low frequency (VLF) power and 

high frequency (HF) power are both markers of 

parasympathetic activity. Still, low frequency (LF) 

power is an indicator of sympathetic activity [65]. 

Here, the LF (%) AR increases during the meditative 

session and decreases again after the session. The HF 

(%) -AR value decreases during the session. LF n.u. 

and HF n.u. values decrease after the session ends. HF 

power obtained through the AR method honestly 

represents vagal control of the heart rate [68]. During 

our case study, we found that the HF power calculated 

using the AR method declines during the meditation 

session.   

LF/HF-AR is the proportion of the LF band power 

to the HF band power of AR. The proportion of LF to 

HF changed based on the patient's heart rate, being 

lower for reduced heart rates and higher for rapid heart 

rates. Therefore, the heart's pace can alter LF/HF 

independently of variations in the activity of the 

cardiac autonomic nerves [69]. In our case study, 

during the meditation session, this parameter value 

increases. 

In its most basic form, the Poincare plot is a graphic 

depiction that compares the present RR intermissions 

to its previous one [66]. This figure was adjusted using 

the ellipse-fitting method, which resulted in the 

generation of three indicators: SD1, SD2, and the 

proportion of SD1/SD2 (SD12).  SD1 is the instant 

beat-to-beat interval changeability's standard 

deviation. In contrast hand, SD2 is representative of 

the persistent long-term abnormalities in the RR 

interval. The Poincare plot has seen a lot of use in 

recent years for analyzing the behavior of the ANS. 

Indicators of parasympathetic modulation have been 

found for SD1, while an inverse function of 

sympathetic activation has been considered for SD2 

[66, 67]. In this study, we found that SD1 shows an 

increased value "after" the meditation than that of 

"during" the meditative session. In gist, the in-depth 
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interpretation of the HRV analysis recommended that 

the HRV parameters show various changes during and 

after the meditation session. 

ML techniques are increasingly being used as 

independent decision-making tools for a variety of 

biomedical applications these days [70]. This chapter 

aims to present an effective ML algorithm for the 

classification of meditative and normal states using 

HRV information collected from individuals who 

have participated in Himalayan Singing Bowl 

sessions. Selecting a small set of highly discriminant 

features is crucial to an ML model's design and 

modifications [71]. The reason is that the simpler 

models require fewer features as it simplifies the 

theoretical difficulties of the feature set. As a bonus, it 

reduces the overall signal noise level [71]. Several ML 

systems were created utilizing individual feature 

selection approaches based on RBF and MLP neural 

networks. In the course of this experimental 

investigation, two case studies were carried out. The 

first study collected data ‘before’ and ‘during’ 

meditation sessions, while the second collected data 

‘during’ and ‘after’. Both sets of data were used to 

analyze the effects of meditation. Out of all those 

models, we narrowed our selection down to the two 

that offered the best combination of appropriateness 

and value. This was done by comparing how well each 

model performed in both case studies. 

So, a statistical technique like a t-test is 

implemented to figure out the features that ought to be 

utilized to create ML models. The characteristics that 

were selected from each method were used to 

construct and test several different machine-learning 

models. Of all the models, 4 showed an accuracy of at 

least 55% (Tables 3 and 4). Therefore, those were the 

ones that were put through additional inspection so 

that we could pick the best model. According to the 

results, we can see that the model based on RBFT 

neurons (RBF 31-15-2) developed using Gaussian 

hidden activation and SoftMax output activation 

shows an inferior performance to that of the MLP 31-

15-2 model. MLP 31-15-2 model was created using an 

exponential as hidden activation with a logistic output 

activation. This approach presents a training accuracy 

of 83.75% and a validation accuracy of 62.50%. As a 

result, this model has been suggested for automatically 

classifying the HRV data pertaining to the meditative 

state over the normal condition 'before' and 'during' the 

meditative session case study. On the other hand, two 

significant models came out of the experimental study 

for the second case study, whose input data was 

accumulated during and after the meditation session. 

One model, RBF 31-17-2, formed utilizing the RBFT 

approach with Gaussian activation in the hidden layer 

and Identity as output activation, showed an accuracy 

of 65% during training and 56.25% during validation. 

Similarly, another model named MLP 31-7-2 was 

created based on the BFGS technique with exponential 

hidden and output functions, but this model showed a 

superior output with a training accuracy of 75% and 

62.50% during validation. So, it is preferred for the 

second case study [72].  

Finally, the popular dimensionality reduction 

method PCA was implemented to understand its 

suitability in finding the various changes occurring in 

the HRV signal behavior before, during, and after the 

meditation. While using PCA approach an accuracy of 

69.6% and 59.4 % was depicted from the models MLP 

4-6-2 and RBF 4-19-2 respectively when before and 

after meditation data was considered. Whereas, an 

accuracy of 69.6% and 71.4% obtained from the 

models RBF 4-19-2 and MLP 4-10-2 respectively 

when during mediation and after meditation data was 

considered. 

5. Conclusion 

The main objective of this study was to identify the 

existence of changes in the ANS activities due to 

singing bowl meditation. To the best of our 

knowledge, this study is the 1st study that has 

established the use of in-depth HRV analysis for 

understanding the impact of singing bowl meditation 

on ANS activity. The results reported in this study will 

guide future researchers in deep diving into further 

analysis of singing bowl meditation. In addition, an 

effort was put forth to come up with an effective ML 

model for the automatic categorization of the 

meditation state as opposed to the regular state using 

the HRV data that had been collected. A p-value check 

was implemented to choose the input features for said 

ML algorithms (RBF and MLP). The statistical 

technique known as the t-test was used to determine 

which HRV characteristics were significantly distinct 

from one another. Based on the comparison of all of 

the models' performance metrics, it appeared that the 
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MLP 31-13-2 model developed by utilizing the input 

features chosen via the t-test approach having a 

training accuracy of 83.75% was the most effective 

model for prediction for the first case study. The RBF 

31-17-2 model was the best approach for the second 

case study, with a testing accuracy of 68.75%. The 

classification accuracies reported in this study can be 

further improved in upcoming studies. Creating ML 

models was the secondary objective for this study, the 

main objective being the identification of the existence 

of changes in the ANS activities due to singing bowl 

meditation. Hence. our effort for ML model creation 

to classify the effect of singing bowl meditation can be 

considered as preliminary work in this regard and the 

accuracies will be improved further in future studies. 
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