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Abstract 

Purpose: Tumor-induced angiogenesis is a dangerous state of the tumor growth process in which solid tumors 

have a blood supply. Modeling has been a very important tool in studying tumor growth and angiogenesis. In this 

paper, we developed a cancer model by introducing tumor angiogenesis agents to better highlight the role of these 

chemical substances in tumor-induced vascularization. Our model can reconstruct the transition from a pre-

angiogenic to a post-angiogenic state.  

Materials and Methods: The proposed model comprises five variables: host cells (normal cells), immune cells, 

tumor cells, endothelial cells, and tumor angiogenesis agents. Chaotic behavior in the production of different 

populations of cells during vascular growth may confer survival advantages to tumors. Our model has a chaotic 

regime, which is an indication of tumor-induced angiogenesis dynamics. The fixed points are analyzed 

biologically, and stability analysis is performed via their eigenvalues. We analyzed the model dynamics via 

observability and bifurcation analysis. 

Results: The numerical simulations illustrate biological and clinical findings about vascular tumors. The results 

show that the proposed model with the existence of tumor angiogenesis agents could capture both avascular and 

vascular stages of tumor growth. There is no effect of tumor cell killing rate via immune cells on the system 

dynamics. However, the increase of inhibitory factors of tumor angiogenesis agents leads to the termination of 

chaos. 

Conclusion: Our results show the ineffectiveness of targeted treatments on the immune system, which has been 

confirmed by many negative treatment methods in immunotherapies. Tumor-secreted inhibitor factors are 

essential to regulating the angiogenesis process. However, increasing inhibitor factors via anti-angiogenic drugs 

would be a more effective therapeutic approach to eradicate metastasis. 

Keywords: Chaos; Angiogenesis; Mathematical Model; Vascular Tumor; Tumor Angiogenesis Agents; 

Numerical Simulation. 
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1. Introduction  

A tumor mass results from an uncontrolled cell 

division. A tumor mass can be benign or malignant. 

Tumor cells can attack the surrounding tissue. Tumor 

cells need oxygen and nutrients from neighboring 

tissue via diffusion and removal of waste products to 

grow [1]. The need for nutrients in the tumor is 

proportional to the volume of the tumor; however, its 

absorption is proportional to its surface. Tumor growth 

has two stages: avascular growth and vascular growth. 

Vascular growth is related to the blood supply to the 

tumor. New blood vessels provide nutrients, oxygen, 

and access to pathways through which tumor cells may 

travel to other locations in the host (metastasis). 

Angiogenesis is the process in which new capillaries 

are created from the existing blood vessels. This 

process plays an important role in physiological events 

such as growth, wound healing, and reproduction [2]. 

Angiogenesis depends on the exact balance between 

its natural stimulants and inhibitors in the body. If this 

balance is perturbed, conditions for diseases such as 

endometriosis, obesity, atherosclerosis, psoriasis, 

tumor growth, and metastasis are provided. In general, 

this process involves a series of cellular events such as 

migration, proliferation, and differentiation of 

endothelial cells and ultimately vascular formation 

[2]. The complex and fascinating process of 

angiogenesis and neo-vascularization has also aroused 

the interest of researchers in the field of mathematical 

biology. The challenge in mathematical biology is to 

produce a model that captures the basic elements and 

dependencies of a biological system. Such a 

mathematical model can give a real conception of the 

parameters and may eventually be used as a predicting 

tool. 

In 1971, Folkman published a paper discussing a 

new theory of angiogenesis [3]. It was stated in this 

work that "Tumors never grow beyond a certain size 

unless their arteries enlarge.". Endothelial cells are 

genetically more stable than cancer cells. This stability 

has the advantage of targeting endothelial cells using 

anti-angiogenic drugs compared to chemotherapy for 

cancer cells, which mutate rapidly and cause drug 

resistance [4]. Because of this, endothelial cells are an 

ideal target for therapies. The angiogenesis process is 

extensively modeled by Anderson and Chaplain [5]. 

This model incorporates both continuous and discrete 

mathematical models that represent the formation of a 

capillary network in response to chemical stimuli 

(Tumor Angiogenic Factor, TAF) fed by a solid tumor. 

By properly separating their continuous mixed 

differential equations model, they created a 

continuous stochastic model that allows them to track 

the motion of individual cells. This provides a 

modeling framework that can include branching and 

blood vessel formation in a process known as 

anastomosis. 

In the past 30 years, several mathematical models 

have been proposed to describe the various stages of 

tumor growth. Continuous cell population models 

consider interactions between cell concentrations and 

some form of chemical stimulus (e.g., oxygen or 

nutrients). These models generally consist of reaction-

diffusion-convection equations [6]. Previous models 

of this form calculated the nutrient concentration 

profile as a factor of the spherical radius of the tumor, 

which varied according to the rate of cancer cell 

proliferation [7, 8]. The following models cover some 

features of cellular movement and are divided into one 

of three forms: exposure [9], active penetration [10], 

or chemotactic [11]. Discrete cell population models 

could simulate cancer growth on a single-cell scale 

[12-14]. In general, this type of model uses the cellular 

automaton model to simulate cell behavior, although 

there are other possibilities, such as the Potts method 

[15] and the Fokker-Planck method [16, 17]. 

In 2003, a mathematical cancer model was 

introduced comprising three variables as normal cells, 

effector immune cells, and tumor cells [18]. This 

model was the developed form a model consisting of 

two cell populations, namely immune cells and tumor 

cells presented by Kuznetsov et al. [19]. Even for just 

two cell populations, the model can show rich 

dynamics and explain important aspects of cancer 

progression. De Pillis and Radunskaya [18] were 

interested in studying how to keep cell population 

fluctuations to a minimum and finding ways to move 

the system into the basin of absorbing stable and 

healthy equilibrium states. The main emphasis of 

phase space analysis is to classify fixed locations and 

fixed points and perform traditional linear analysis 

with the help of powerful theorems. Itik and Banks 

[20], reported specific chaos in the cancer model 

proposed by De Pillis and Radunskaya. They found a 

chaotic attractor for a particular point in the parameter 
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space, calculated Lyapunov indices for this point, and 

argued that the system is what they refer to as a 

Shilnikovlike connection. Their work was completed 

and expanded by Duarte et al. [21], who reported 

turbulence at certain intervals in the control space. The 

authors introduce symbolic dynamics and Lyapunov's 

indicators to study chaos in this system. At the same 

time, Letellier et al. [22] performed a topological 

analysis of the model to show a new trend in 

understanding interactions between tumor cells. 

Instead of a single interval, chaos is reported for 

intervals of specific parameters of host cell growth rate 

and tumor cell killing rate. In particular, they showed 

that increasing the growth rate of host cells increases 

population fluctuations and creates rare but rapid 

tumors. Lopez et al. [23] further found chaotic 

behavior by selecting specific parameters of the 

system. As the immune system's response to tumor 

cells diminished, they found a boundary crisis that led 

to transient chaotic dynamics, with the system 

behaving chaotically for a limited time to avoid the 

inevitable extinction of healthy and immune cell 

populations. They proposed a control method to 

prevent extinction. The well-known cancer tumor 

model studied by De Pillis and Radunskaya [18] is a 

chaotic dynamic tumor model. However, this model 

cannot demonstrate angiogenesis, which is an 

important issue in malignant tumor growth. There is 

an alternative biological model of metastases in cancer 

that suggests that these complex organs in dynamic 

equilibrium are close to a chaotic boundary. Besides, 

mathematics studies the nonlinear dynamics of chaos 

theory to describe the nature of cancer and metastasis. 

The main task in understanding this model was 

Folkman's pioneering work in tumor angiogenesis [2, 

24]. Baum et al. [25] proposed a mathematical model 

that describes chaos as working with micrometastatic 

tumor angiogenesis. 

Anderson and Chaplain [26], also proposed a 

mathematical model that describes the angiogenic 

response of endothelial cells to a secondary tumor. 

Their model assumes that endothelial cells react 

chemically to two opposing chemical gradients: the 

tumor angiogenic gradient, which is produced by the 

secretion of angiogenic cytokines from the secondary 

tumor; and a gradient of angiostatin (a specific 

angiogenesis inhibitor), which is located in the tissue 

around nearby arteries. O'Reilly et al. [27] observed in 

mice models that tumorsalso produced substances like 

angiostatin as an inhibitor to regulate the formation of 

neovascularization. In another study by Maggelakis 

[28], they examined the effect of TAF and Tumor 

Inhibitor Factors (TIFs) on neovascularization via a 

mathematical model. They believe that in the pre-

vascular stage, the tumor produces both TAF and 

TIFs.  

In recent years some mathematical models with 

applications in cancer treatment have been introduced. 

Shafiekhani et al. [29] combined distinct treatment 

modalities in a mathematical model for Pancreatic 

Ductal Adenocarcinoma (PDAC), including 5-FU 

chemotherapy and anti-CD25 immunotherapy to 

improve therapeutic effectiveness. Jung et al. [30] 

developed a model of the mitotic cell cycle. They have 

used their generalized model to analyze the cancer cell 

cycle progress under various gene perturbations. 

Shafiekhani et al. [31] developed a mathematical 

model using a set of ordinary Differential Equations 

(ODEs) to test the efficiency of anti-PD-L1 and 

radiotherapy combined treatments. Shafiekhani et al. 

[32] developed a mathematical model that can 

properly simulate a dynamical complex network of 

tumor-immune interactions that is appropriate to 

evaluate different immunology hypotheses. 

Shafiekhani et al. [33] used the Fuzzy Stochastic Petri 

Net (FSPN) method with uncertain kinetic parameters 

for Tumor-Immune System modeling. 

A 4-dimensional mathematical model including 

host cell status, immune cells, tumor cells, and 

endothelial cells was introduced by Viger et al. [34]. 

This model was developed from the three-dimensional 

cancer model performed by De Pillis and Radunskaya. 

They examined their model to show the change in non-

vascular and vascular phases of tumor growth 

(angiogenic switch) with chaotic dynamics. In the 

vascular phase of tumor growth, the tumor cell 

population and endothelial cells have chaotic 

behavior. Letellier et al. [35] added a therapy action 

into Viger's cancer model to study the impact of 

chemotherapy and antiangiogenic drugs in the cancer 

model. Starkov [36] studied ultimate dynamics and 

derived tumor annihilation circumstances by using the 

localization method for the model proposed by Viger 

et al. [34]. Das et al. [37] developed and analyzed a 

mathematical model of tumor-immune interactions 

with combined optimal therapy strategies via a 

formulated optimal control function. Mohseni et al. 
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[38] introduced tumor angiogenesis agents and created 

a 4-D model for angiogenesis without the existence of 

host cells.  

The modeling of vascular tumor growth by 

introducing the endothelial cell population has been 

performed by Viger et al. [34]; however, they did not 

consider the tumor angiogenesis agents in the model 

which is essential to study the angiogenesis 

phenomena. The innovation of this paper is to expand 

their work and explore the effect of tumor 

angiogenesis agents on tumor vascularization. We 

introduced a five-dimensional single tumor site model 

by including tumor angiogenesis agents. We 

considered five variables including host cells, immune 

cells, tumor cells, endothelial cells, and tumor 

angiogenesis agents. TAF and TIF as tumor 

angiogenesis agents were introduced to the model. 

Then, we investigated the avascular and vascular 

stages of tumor growth with the bifurcation analysis of 

the model dynamics. The next sections of this paper 

are organized as follows. In section 2 we introduce our 

5D cancer model and its parameter values. Section 2.1 

comprises the fixed point analysis of the proposed 

model. The time series, chaotic attractors, and first 

return map of the model are illustrated in section 3. 

Observability analysis via differential embedding of 

each variable is done in section 3.1. To show the 

impact of the parameter variations on systems 

dynamics, bifurcation analysis has been performed in 

section 3.2. In section 4 we discussed our developed 

model and the results from the numerical simulations. 

Section 5 is the conclusion part of this paper. 

2. Materials and Methods  

We proposed a cancer model that can make a better 

understanding of the angiogenesis process by taking 

into account the tumor angiogenesis agents besides the 

endothelial cells. The proposed model incorporates 

TAF and TIF as tumor angiogenesis agents which are 

effective in the onset of vascularization. Most cancer 

models do not consider the interactions between 

angiogenesis and host cells. In metastasis only tumor 

cells can proliferate through angiogenesis; so, they are 

more related to the angiogenesis process. The process 

of neo-vascularization starts via secreting tumor 

angiogenesis agents via tumor cells. Therefore, tumor 

cells are more dependent on tumor angiogenesis 

agents than host cells. On the other hand, our main 

focus is to reproduce tumor angiogenesis; so, the 

interactions with host cells are not relevant in the 

context of our presented model.  Based on the flow 

graph in Figure 1, our 5D proposed Ordinary 

Differential Equation (ODE) model is written as 

(Equation 1): 

�̇� = 𝜌1𝐻(1 − 𝐻) − 𝛼13𝐻𝑇                                                    

 𝐼 ̇ =
𝜌2𝐼𝑇

1 + 𝑇
− 𝛼23𝐼𝑇 − 𝛿2𝐼  + 𝛼24𝐼𝐸                                  

�̇� = 𝜌3𝑇(1 − 𝑇) − 𝛼31𝐻𝑇 − 𝛼32𝐼𝑇 +
𝛼34𝐸𝑇

1 + 𝐸
−  𝛼33𝑉𝑇

                   

�̇� =
𝜌4𝑉𝐸

1 + 𝑉
− 𝛿4𝐸 − 𝛼41𝑉𝐸                                                     

�̇� =
𝜌5𝑇𝑉

1 + 𝑇
− 𝛼51𝐸𝑉                                                                  

 (1) 

where H is the population of host cells, I is the 

population of effector immune cells, T represents the 

population of tumor cells, E is the endothelial cell 

population, and V corresponds with tumor 

angiogenesis agents secreted by the tumor in the pre-

vascular stage: 

Unlike the presented model by Viger et al., in our 

model, due to the existence of tumor angiogenesis 

agents' variable, there is no direct impact on 

endothelial cell proliferation from tumor in the 

endothelial cell equation. The tumor cells are 

producing tumor angiogenesis agents via a hill 

 

Figure 1. The model flow graph. The interactions are 

between host cells, immune cells, tumor cells, endothelial 

cells, and tumor angiogenesis agents 
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function like  
𝝆𝟓𝑻𝑽

𝟏+𝑻
. Instead, the tumor-induced 

angiogenesis agents have a direct impact on 

endothelial cell proliferation via the term  
𝝆𝟒𝑽𝑬

𝟏+𝑽
. In the 

process of vascular tumor growth, tumor cells secrete 

TAF substances, such as Vascular Endothelial Growth 

Factors (VEGF), to stimulate vascularization. 

However, tumor cells also produce smaller amounts of 

inhibitors which are called TIFs such as angiostatin 

that can regulate the formation of new blood vessels 

[27]. When a tumor reaches a critical size, it begins to 

spread tumor angiogenesis agents with growth rate 𝝆𝟓 

to surrounding tissues, which spread to neighboring 

blood vessels, creating a chemical gradient. This 

interaction is shown in arrow 1 on the flow graph 

(Figure 1). VEGF molecules bind to the receptor of 

endothelial cells to make them proliferate; however, 

there exists a negative impact on endothelial 

proliferation by TIF agents. The tumor angiogenesis 

agents' interactions with endothelial cells are shown 

by arrow 2 in Figure 1. When endothelial cells migrate 

through the extracellular matrix, the endothelial cells 

consume tumor angiogenesis agents via the rate 

of 𝜶𝟓𝟏. The minor negative effect of TIF secreted by 

tumor cells on endothelial cells is considered by the 

additional term 𝜶𝟒𝟏𝑽𝑬 to the fourth equation. This 

minor negative effect is also considered on the tumor 

cell population with 𝜶𝟑𝟑𝑽𝑻 additional term. This 

interaction corresponds to arrow 3 in Figure 1. There 

is no positive feedback loop of tumor angiogenesis 

agents to themselves since their proliferation is only 

related to the tumor cells. In our model, the stimulation 

impact of TAF agents on tumor cells is considered by 

the indirect impact through endothelial cells. Capillary 

sprouts form in the walls of blood vessels and release 

endothelial cells. The sprouts then grow toward the 

tumor and each other; so, the rings are formed in a 

process known as anastomosis, creating the source of 

blood for the tumor [39]. The proliferation rate of the 

endothelial cell population via tumor angiogenesis 

agents is considered by 𝝆𝟒. Then the endothelial cells 

intake tumor angiogenesis agents while traveling to 

the tumor site [4]. This interaction corresponds to 

arrow 4 depicted in the flow graph (Figure 1) and is 

considered with the term 𝜶𝟓𝟏𝑬𝑽. The endothelial 

cells' natural death is quantified by the coefficient 𝜹𝟒. 

The endothelial cells have no positive impact on 

themselves since their growth depends on their 

interactions with tumor angiogenesis agents. The 

tumor cells have a logistic growth with a growth rate 

of 𝝆𝟑. The tumor cell proliferation is also related to the 

presence of the endothelial cells in a Hill-function 

as 
𝜶𝟑𝟒𝑬𝑻

𝟏+𝑬
. The impact of endothelial cells on the 

immune cells is positive since the effector immune 

cells are migrating through new blood vessels to reach 

the tumor cells [34]. So, this interaction is considered 

via parameter 𝜶𝟐𝟒. In the context of our model, the 

other interactions between immune cells and 

endothelial cells are not relevant because this work 

aims to model tumor angiogenesis. For example, we 

assume that the impact of effector immune cells on the 

production of endothelial cells is very limited or 

nothing; so, we neglected that which has been done in 

the study by [40]. Besides, in our model, the tumor 

angiogenesis agents have an indirect impact on 

effector immune cells. This indirect interaction 

corresponds to the interactions that they have with the 

endothelial cell population. 

The model assumptions are listed below: 

• In the presented model, the positive impact of 

TAF agents on tumor cell growth is considered 

by the endothelial cells' indirect impact. 

• The impact of tumor cells on endothelial cell 

growth is indirect and through tumor 

angiogenesis agents. 

• The impact of tumor angiogenesis agents on 

immune response development is indirect from 

the endothelial cells. 

• In our model, we did not consider the other 

interactions between immune cells and 

endothelial cells because they are not relevant 

in the context of tumor angiogenesis modeling. 

• The proposed model is for a single tumor site. 

So the interaction between cells and tissues and 

cell migration through diffusion or by 

circulating over the blood vessels is not 

considered. 

• Both TAF and TIF substances are considered 

tumor angiogenesis agents' variables.  

Biologically, it is not unusual for chemical to 

have both positive and negative impacts on the 

growth process. 

• We do not consider the interactions between 

angiogenesis and host cells in the context of our 
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presented model. Because, in metastasis, only 

tumor cells can proliferate through 

angiogenesis.  

Our 5D model is investigated via parameter 

values 𝝆𝟒, 𝜶𝟒𝟏, 𝝆𝟓, 𝜶𝟓𝟏, and 𝜶𝟑𝟑. The other parameters 

are equal to the values of the model presented by Viger 

et al. [34]. As in most mathematical models at the 

tissue level, the biological meaning of the parameter 

values is not certain [18, 34]. These parameter values 

are considered to achieve a chaotic attractor solution. 

We use them to analyze the qualitative dynamics of 

tumor growth as performed in [18, 22, 34, 35]. What 

is relevant is the impact of the parameter variations on 

the system's dynamics which will be explored via 

bifurcation diagrams in section 3.2.  

2.1. Fixed Point Stability Analysis 

The equilibria are calculated numerically. There are 

twenty-nine equilibrium points via the mentioned 

parameter values. Fourteen fixed points have at least 

one negative coordinate that is biologically irrelevant. 

Our model is population-based; so, the equilibrium 

points located in the positive phase space domain must 

be considered. Two fixed points are duplicated. So, 

there are thirteen equilibrium points with non-negative 

coordinates that are not duplicated and correspond to 

the mentioned parameter values (Table 1) as follows 

(Equation 2): 

• The equilibrium point 𝑆0 is located at the 

origin of the phase space that shows no 

population existence. This point must be 

unstable because it is an empty site and has 

no biological meaning.  

• 𝑆1 is associated with a site occupied by only 

host cells. For a healthy patient, it must be 

stable. 

• 𝑆2 is associated with a site where tumor 

angiogenesis agents, endothelial cells, and 

tumor cells correspond to vascular tumor 

growth without an immune response. This 

shouldn't be stable since the immune 

response will engage in the vascular tumor 

growth process.  

• 𝑆3 corresponds to a site where host cells, 

tumor cells, endothelial cells, and tumor 

angiogenesis agents exist without an 

immune response. Compared with 𝑆2, the 

existence of host cells in 𝑆3 made the 

number of tumor cells and endothelial cells 

less. 

• 𝑆4 is inhabited in a site where only tumor 

cells exist. This corresponds to a 

pathological state in which tumor cells are in 

a hypoxic condition and should be unstable 

by definition. 

• 𝑆5, 𝑆6, 𝑆7, and 𝑆8 correspond to a site 

inhabited by only tumor angiogenesis agents 

or tumor angiogenesis agents and host cells 

that have no biological description. A steady 

state without tumor cells cannot represent 

the vascular stage of a tumor disease. Most 

tumor diseases start with avascular growth, 

i.e. tumor cells are present when the vascular 

stage starts. 

• 𝑆9 represents a domain where the tumor cells 

and effector immune cells exist that are 

associated with the avascular stage of tumor 

growth.  So, metastasis does not occur, and 

the patient could be treated completely by 

for example radiotherapy treatments. 

• 𝑆10 is located in an area with host cells, 

immune cells, and tumor cells that could 

correspond to a tumor before 

𝑆0 = |
|

0
0
0
0
0

,     𝑆1 = |
|

1
0
0
0
0

,   𝑆2 = |
|

0
0
1.2
0.39
0.12

,    𝑆3 = |
|

0.989
0

0.003
0.002
0.12

,    𝑆4 = |
|

0
0
1
0
0

,   𝑆5 = |
|

0
0
0
0

37.37

,     𝑆6 = |
|

1
0
0
0

37.37

,   𝑆7 = |
|

0
0
0
0
0.12

,

       𝑆8 = |
|

1
0
0
0
0.12

,    𝑆9 = |
|

0
0.34
0.13
0
0

,      𝑆10 = |
|

0.61
0.1
0.13
0
0

, 𝑆11 = |
|

0
0.36
0.125
0.08
0.12

, 𝑆12 = |
|

0.637
0.114
0.125
0.08
0.12

,       

(2) 
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vascularization. The host cells are dominant 

at this point; so, if this point is unstable, the 

tumor cannot increase its size to reach the 

vascularization state. 

• 𝑆11 inhabited a site where tumor cells, 

immune cells, endothelial cells, and tumor 

angiogenesis agents exist. This point can be 

stable since in this situation metastasis 

happens due to vascularization produced by 

tumor angiogenesis agents and endothelial 

cells. 

• 𝑆12 is associated with a domain in which all 

five populations exist corresponding to a 

stage in which angiogenesis already started 

(the vascular stage of tumor growth). 

In all equilibrium points, we can see that the 

existence of endothelial cells is directly related to 

tumor angiogenesis agents. There is no state in which 

endothelial cells exist without tumor angiogenesis 

agents. 

The Jacobin matrix for the stability analysis is 

achieved as follows (Equation 3): 

whose eigenvalues are (Equation 4): 

3. Results 

We investigated the dynamical behavior of the 

proposed model (1) by plotting the system's time 

series and phase portraits and using analysis tools like 

the first-return map to confirm the chaotic behavior, 

observability, and bifurcation. The numerical 

simulations are implemented in Matlab R2013a. The 

system's time series versus arbitrary time units via 

mentioned parameter values (Table 1) are shown in 

Figure 2. 

In Figure 2, the time series for five variables 

associated with initial conditions as 𝑯𝟎 = 𝟏,  𝑰𝟎 =

𝟎. 𝟎𝟏,  𝑻𝟎 = 𝟎. 𝟎𝟒,  𝑬𝟎 = 𝟎. 𝟏, and  𝑽𝟎 = 𝟎. 𝟐𝟒 are 

depicted. After a little peak, the tumor cells decrease 

due to being necrotic in the pre-vascular stage. 

Following, tumor cells release tumor angiogenesis 

agents to start vascularization and make a high peak to 

tumor angiogenesis agents. Then the population of 

endothelial cells grows rapidly to make a second high-

peak in the tumor cell population. Then, tumor 

angiogenesis agents decrease since the endothelial 

cells intake tumor angiogenesis agents [5]. The tumor 

cells grow rapidly and decrease the host cells to about 

𝐽 =

(

 
 
 
 
 
 
 
 

259

500
 −  

3𝑇

2
 −  

259𝐻

250
0 −

3𝐻

2
0 0

0
3𝐸

10
−  
𝑇

5
 +

9𝑇

2(𝑇 + 1)
−
1

2

9𝐼

2(𝑇 + 1)
−
𝐼

5
−

9𝐼𝑇

2(𝑇 + 1)2
3𝐼

10
0

−𝑇 −
5𝑇

2

3𝐸

4(𝐸 + 1)
−  𝐻 −  2𝑇 −  

7𝑉

100
−
5𝐼

2
+ 1

3𝑇

4(𝐸 + 1)
−

3𝑇𝐸

4(𝐸 + 1)2
−
7𝑇

100

0 0 0
43𝑉

50(𝑉 + 1)
−
𝑉

50
− 0.09

43𝐸

50(𝑉 + 1)
−
𝐸

50
−

43𝑉𝐸

50(𝑉 + 1)2

0 0
359𝑉

500(𝑇 + 1)
−

359𝑇𝑉

500(𝑇 + 1)2
−𝑉

359𝑇

500(𝑇 + 1)
− 𝐸

)

 
 
 
 
 
 
 
 

 

 

(3) 

 

𝛬0 = |
|

−0.5
−0.09
0

0.518
1

, 𝛬1 = |
|

−0.518
−0.5
−0.09
0
0

, 𝛬2 = |

1.834
−0.0013 ± 0.17𝑖

−1.2
−1.28

, 𝛬3 = |

0.0073
−0.0004 ± 0.015𝑖

−0.48
−0.52

, 

𝛬4 = |
|

−1
−0.98
−0.09
0.35
1.55

, 𝛬5 = |
|

−0.5
0

0.518
−1.6

−1.11𝑒−16

, 𝛬6 = |
|

−0.518
−0.5
0
0

−2.61

, 𝛬7 = |
|

−0.5
0

0.518
0.99

−7.21𝑒−16

, 𝛬8 = |
|

−0.518
−0.5
0
0

−0.0084

, 𝛬9 =

|

−0.09
0.32
0.084

−0.066 ± 0.613𝑖

, 𝛬10 = |

−0.09
0.084
−0.52

−0.035 ± 0.25𝑖

, 𝛬11 = |
0.33

−0.063 ± 0.619𝑖
−0.0004 ± 0.082𝑖

, 𝛬12 = |
−0.52

0.031 ± 0.27𝑖
0.001 ± 0.082𝑖

 

 

(4) 
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zero. The immune response activates due to a quick 

reaction against tumor proliferation. We can see the 

oscillations of all populations in the time series. The 

evolution of tumor angiogenesis agents followed by 

endothelial cells increases their population in each 

oscillation. Then it affects the tumor cells and immune 

cell dynamics. The endothelial cells are ready to build 

blood vessels into the tumor. This results in vascular 

tumor growth thus the metastasis happens during 

arbitrary time units. Clinically, prediction of 

metastasis can be done by investigating the ability of 

a patient to produce endothelial cells via the tumor 

angiogenesis agents, which is not clinically assessed, 

and leaving the opinion that the cancer evolution is 

only qualified by stochastic laws. 

With the mentioned parameter values (Table 1) the 

chaotic attractor solution characterized by the first 

return maps built from the maxima of the model 

variables can be observed (Figure 3 and Figure 4). The 

smooth shape of return maps present the period-

doubling cascade that refers to the chaos [41]. 

3.1. Observability Analysis 

For dynamical analysis, we used five differential 

embedding induced by each variable of the model (1). 

Assume that a dynamical system is �̇�(𝒕) = 𝒇(𝒙(𝒕)) 

and the state vector is 𝒎 ∈ 𝑹𝒏. When 𝑛 = 5 the 

system can be detailed (Equation 5): 

{
 
 

 
 
�̇� = 𝑓1(𝑥, 𝑦, 𝑧, 𝑤, 𝑣)

�̇� = 𝑓2(𝑥, 𝑦, 𝑧, 𝑤, 𝑣)

�̇� = 𝑓3(𝑥, 𝑦, 𝑧, 𝑤, 𝑣)

�̇� = 𝑓4(𝑥, 𝑦, 𝑧, 𝑤, 𝑣)

�̇� = 𝑓5(𝑥, 𝑦, 𝑧, 𝑤, 𝑣)

 (5) 

where 𝑥 = 𝐻(𝑡), 𝑦 = 𝐼(𝑡), 𝑧 = 𝑇(𝑡), 𝑤 = 𝐸(𝑡), 

and 𝑣 = 𝑉(𝑡). The time series (𝑠) is acquired by 

measurement function 𝑐 that is 𝒔(𝒕) = 𝒄(𝒙(𝒕)). So the  

 

Table 1. The parameter values of the model 

Parameters Descriptions Values References 

ρ1 Host cell growth rate 0.518 [18] 

α13 
Host cell killing rate by 

tumor cells 
1.5 [18] 

ρ2 Immune cell growth rate 4.5 [20] 

α23 
Immune cell inhibition rate 

by tumor cells 
0.2 [18] 

δ2 
Immune cell natural death 

rate 
0.5 [22] 

α24 
Immune cell stimulation by 

endothelial cells 
0.3 [34] 

ρ3 Tumor growth rate 1 [18] 

α31 
Tumor cell killing rate by 

host cells 
1 [18] 

α32 
Tumor cell killing rate by 

immune cells 
2.5 [22] 

α33 

Tumor cell inhibition rate 

via tumor angiogenesis 

agents 

0.07 Estimated 

α34 
Tumor cell growth rate by 

endothelial cells 
0.75 [34] 

ρ4 
Endothelial cell growth 

rate 
0.86 [34] 

δ4 
Endothelial cell natural 

death rate 
1/11 [34] 

α41 

Endothelial cell inhibition 

rate by tumor angiogenesis 

agents 

0.02 Estimated 

ρ5 
Tumor angiogenesis 

agents' growth rate 
0.718 Estimated 

α51 
Tumor angiogenesis intake 

rate by endothelial cells 
0.9 Estimated 
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Figure 2. The response of the system with the mentioned parameter values in time series versus arbitrary time units 

  

a                                                                                              b 

 

c                                                                                                 d 

Figure 3. The phase portraits of the proposed model (1). a) Phase portrait of host cells versus tumor cell population. 

b) Tumor angiogenesis agents versus tumor cells. c) Endothelial cell population versus tumor angiogenesis agents. d) 

Effector immune cells versus endothelial cells 
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a                                                                         b 

Figure 4. First-return maps for the model (1) with mentioned parameter values. a) Tumor angiogenesis agents. b) 

Endothelial cells 

 

a                                                                               b 

  

c                                                                               d 

 

e 

Figure 5. Differential embedding reconstructed portraits. a) From host cells. b) From effector immune cells. c) From 

tumor cells. d) From endothelial cells. e) From tumor angiogenesis agents 
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reconstruction of the phase portraits can be done by 

derivative coordinates (Equation 6): 

{
 
 

 
 
𝑋 = 𝑠
𝑌 = �̇�
𝑍 = �̈�
𝑊 = 𝑠
𝑉 = 𝑠

....

 (6) 

∅ is the transformation between the original 

variables and derivative coordinates, consequently ∅ ∶

 𝑅5(𝑥, 𝑦, 𝑧, 𝑤, 𝑣)  →  𝑅5(𝑋, 𝑌, 𝑍,𝑊, 𝑉). 

The 5 X-Y embedding projections shown in Figure 

5 correspond to the attractors in Figure 3. The tumor 

cell has the best observability in our model dynamics 

because its embedding projection is less squeezed 

between all variables embedding projections. 

Therefore, the dynamics of our cancer model are 

observed with more excellent reliability from the 

tumor cell population. So we investigated its growth 

rate (𝝆𝟑) variation on the system's dynamics. Immune 

cells have very poor observability of our system's 

dynamics. Therefore, to investigate the system's 

dynamics, measuring only the population of effector 

immune cells is not efficient.  

3.2. Bifurcation Analysis 

The bifurcation diagrams of the endothelial cell and 

tumor angiogenesis agents versus tumor growth 

rate 𝝆𝟑 are depicted in Figure 6. 

The increase in the tumor growth rate leads to the 

rise of the tumor angiogenesis agents and endothelial 

cells in Figure 6. We can observe that the increase in 

tumor cells' growth rate consequences in an increase 

in the populations' fluctuations range. When  𝝆𝟑 >

𝟐. 𝟕, the trajectory ejected to infinity. In this case, it 

can be assumed that the metastasis happens [22, 34]. 

To explore patient situations, we consider varying the 

parameter values as 𝝆𝟓, and 𝜶𝟑𝟑 to study the impact of 

tumor angiogenesis agents on the system's dynamics. 

We also investigate the 𝜶𝟑𝟐 variation to evaluate the 

impact of the killing rate of the tumor cells via effector 

immune cells' impacts on the model dynamics. Our 

model is population-based; so, the bifurcation diagram 

should be computed as a modified version as described 

in [22]. Indeed, the minimal and maximal values at 

each oscillation of the given variables H, I, T, E, and 

V were taken to obtain their range of variability versus 

the mentioned parameters. The bifurcation diagrams 

 
a 

 

b 

Figure 6. The bifurcation diagrams versus 𝝆𝟑. a) Exterma of endothelial cells. b) Exterma of tumor angiogenesis agents 
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versus angiogenesis agents' growth rate (𝝆𝟓) are 

depicted in Figure 7. By increase of  𝝆𝟓, the 

population of endothelial cells increases. There is no 

period-doubling cascade by 𝝆𝟓̅̅ ̅ < 𝟎. 𝟓𝟖𝟖 which means 

that in this range the tumor growth is non-vascular. 

When 𝝆𝟓 ≥ 𝝆𝟓̅̅̅̅ , the period-doubling cascade takes 

place. This shows chaotic behavior representing the 

vascular phase of tumor growth. The mentioned 

threshold value depends on the other parameter values 

that can be varied for other patient conditions. 

For 𝝆𝟓 ≥ 𝟏. 𝟏𝟓, the neo-vascularization becomes 

dominant enough. In this case, the endothelial cells 

proliferate significantly, and the tumor cells saturate 

the area and migrate to other sites. 

 
a 

 

b 

 

c 

Figure 7. The bifurcation diagrams versus 𝝆𝟓. a) Exterma of endothelial cells. b) Exterma of tumor angiogenesis agents. 

c) Exterma of tumor cells population 
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There is no bifurcation by variation of 

parameter 𝜶𝟑𝟐 (Figure 8). Therefore, the tumor cell 

killing rate by immune cells (𝜶𝟑𝟐) does not have any 

impact on the system dynamics. However, this value 

cannot be zero since the trajectory would be ejected to 

infinity. This result shows the inefficiency of immune 

system-targeted therapies [42], [43].  

The bifurcation diagram versus tumor cell 

inhibition rate via tumor angiogenesis agents 𝜶𝟑𝟑 is 

shown in Figure 9. When 𝜶𝟑𝟑 < 𝟎. 𝟎𝟑𝟕, the trajectory 

goes to infinity. This may correspond to the 

significance of TIF presence in regulating tumor-

induced vascularization. By increasing the 

parameter 𝜶𝟑𝟑, the amount of tumor angiogenesis 

agents decreases; so, the population of endothelial 

cells decreases. When 𝜶𝟑𝟑 ≥ 𝟎. 𝟎𝟗𝟔, there is no 

period-doubling cascade. So, the impact of the 

inhibition factor on angiogenesis can be enough to 

avoid angiogenesis (Figure 9). Clinically this can be 

the effect of anti-angiogenic drugs like angiostatin to 

terminate tumor vascularization. 

4. Discussion 

In the present work, we proposed a 5D cancer model 

including tumor angiogenesis agents to study the impact 

of these substances on vascularization dynamics. The 

proposed model governs both pre-vascular and vascular 

tumor growth. Avascular growth results when the tumor 

does not have its blood supply; so, instead relies on the 

diffusion of nutrients and oxygen through the 

surrounding tissue across the tumor surface for growth. 

When the demand for nutrients and oxygen exceeds the 

amount of supply and thus becomes stable (appears to be 

approximately 1-3 mm in diameter), the stage of 

avascular growth ends [39]. The solid tumor survives via 

the angiogenesis process. To obtain the tumor 

angiogenesis agents' equation, we first consider the 

primary event of tumor-induced angiogenesis. When the 

tumor angiogenesis agents are secreted from the tumor, 

they enter the surrounding tissue. While endothelial cells 

migrate to the tumor site they intake tumor angiogenesis 

agents [5]. Vascular growth happens when the tumor 

provides blood vessels that carry nutrients and oxygen 

directly to the tumor cells [44]. This formation of blood 

capillaries to the tumor is known as angiogenesis. 

Angiogenesis is an example of a pathological state in 

tumor growth that results in metastasis. One of the most 

interesting phenomena in characterizing the vascular 

phase of tumor growth is chaos [22, 34].  

Previous studies have shown that vascular tumor 

growth has chaotic dynamics [18, 20, 22, 34]. In this 

paper, it is theorized that tumors use a diffuse factor 

called the tumor angiogenesis agent to initiate its 

vascular growth. It is proved that the tumor also produces 

a slight amount of substances like angiostatin as Tumor 

Inhibitor Factors (TIF) to regulate the formation of tumor 

vascularization [27]. Hence, the effect of tumor 

angiogenesis agents could be interesting to study their 

role in tumor-induced angiogenesis. It has been proposed 

that the presence of endothelial cell population as a key 

variable for angiogenesis in the cancer model is more 

effective in studying both avascular and vascular tumor 

growth [34]. The impact of endothelial cells on tumor 

vascularization is completely positive. So, they couldn't 

study the negativities of inhibition factors by just 

introducing endothelial cells as only a key variable for 

vascularization in their mathematical model. Inspired by 

this research, we introduced the generalized cancer 

model in which tumor angiogenesis agents exist. 

 

Figure 8. Bifurcation diagram of the tumor cells versus 𝜶𝟑𝟐 
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For this purpose, we presented a variable as tumor 

angiogenesis agents that have both stimulant and 

inhibitor factors on tumor vascularization. The default 

parameter values of the model are equal to the values of 

the presented models by Viger et al. [34] and Letellier et 

al. [22]. They select the parameter values to achieve a 

chaotic attractor since the dynamic of their model is  

 

studied qualitatively [20, 22, 34]. Our parameter values 

( 𝝆𝟒, 𝜶𝟒𝟏, 𝝆𝟓, 𝜶𝟓𝟏, and 𝜶𝟑𝟑) are chosen to achieve a 

chaotic attractor solution, too (Figure 3). So, their 

biological meaning is nonspecific like the studies by [19, 

20, 22, 34, 35]. What is relevant is investigating the 

impact of parameter variations on the system's dynamics. 

For this purpose, we used some bifurcation diagrams. 

 

a 

 

b 

 
c 

Figure 9. The bifurcation diagrams versus 𝜶𝟑𝟑. a) Exterma of endothelial cells. b) Exterma of tumor angiogenesis 

agents. c) Exterma of tumor cells population 
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The smooth character of the return maps built from the 

variables' maxima is the route to the existence of chaos 

in our model (Figure 4), exactly as observed in the 

models by [22, 34] with the same parameter values. The 

variable of the tumor cell population is less clasped in the 

differential embedding projection portraits (Figure 5). 

Hence, it is more observable between all model 

variables. We explored the variation of tumor cell growth 

rate on the system's dynamics using bifurcation diagrams 

(Figure 6). Our model also indicates that the increase in 

the tumor cells' growth rate increases the fluctuations 

range in endothelial cells and tumor angiogenesis agents' 

populations. 

The presented dynamical model could capture the 

biological behavior of the tumor-induced angiogenesis 

process and retain the intrinsic features of its biological 

process. Based on the time series in Figure 3, when the 

growth of tumor cells stopped in a range, they secreted 

tumor angiogenesis agents; so, the population of these 

agents rose. After that, the TAF overcomes TIF and 

stimulates the proliferation of the endothelial cells that 

results in more increase in the tumor cell population to a 

higher peak. On the other hand, an increase in the tumor 

cells stimulates the growth of effector immune cells. 

After, the growth of immune cell populations, they 

suppress the population of tumor cells (Figure 3). The 

tumor cells secret the tumor angiogenesis agents to 

survive being necrotic. So by the increase of this 

substance, the endothelial cells begin to proliferate from 

the neighbor vessels and form blood vessels to the tumor 

gradient. The chaos that occurs due to the increase of 

𝝆𝟓 ≥ 𝝆𝟓̅̅ ̅ would capture this biological process in the 

system (Figure 7). Naturally, the effect of tumor 

angiogenesis agents as angiogenesis stimulants (TAF) is 

much more than their impact as angiogenesis inhibitors 

(TIF) [28]; however, the increase of their TIF agents can 

result in the termination of the chaos in the system's 

dynamics and vascularization on the patient's tumor. The 

most share of parameter 𝝆𝟓 is for the stimulant factors 

since the most share of tumor angiogenesis agents is for 

TAF. It is not uncommon in biology to observe a 

chemical species having both a positive and a negative 

effect on another species or on some process, via the 

activation of different signaling pathways, therefore this 

aspect is sometimes captured in models so as to reflect 

biology. When we talk about TIFs and their slight 

negative impacts, we point to the negative impact of 

tumor angiogenesis agents on the system that can be 

considered biologically as inhibitor factors of tumor 

angiogenesis agents. We biologically described the TAF 

and TIF but considered tumor angiogenesis agents, 

which comprise both, as one variable with a huge 

positive impact on endothelial cell proliferation and a 

small negative impact on the inhibition of 

vascularization which is just for the regulation of the 

vessel formations. The increase of the negative impact is 

not happening naturally by the tumor and can be done 

only via external inhibitors like anti-angiogenic drugs. 

Clinically, different conditions of a patient can be 

assumed based on the model (1) parameter values. First, 

we can assume the patient with tumor angiogenesis 

agents' growth rate 𝝆𝟓 < 𝝆𝟓̅̅ ̅ and keep the other parameter 

values as mentioned previously. In this case, the patient 

has few tumor cells without any metastasis as long as his 

parameter values do not change. When the parameter 

𝝆𝟓 ≥ 𝝆𝟓̅̅ ̅, the evolution of endothelial cells occurs; thus, 

the patient has vascular tumor growth. From a dynamical 

point of view, beyond the threshold amount of tumor 

angiogenesis agents' growth rate (𝝆𝟓̅̅ ̅), the period-

doubling cascade in populations begins which leads to 

chaos. This is clear that the threshold values depend on 

other parameter values, that would be, other conditions 

of a patient. 

Ecological models include non-linear interactions 

between tumor cells and their environment; so, their 

qualitative analysis could be valuable for therapeutic 

approaches such as non-tumoral-cell-targeted treatments 

like anti-angiogenic treatments. Therefore, the 

contribution of non-tumor cells in cancer dynamics 

appears to be very important in the global behavior of the 

system. There are a few therapeutic ways to encounter 

cancer. One of them is immune system-targeted 

therapies. The killing rate of the tumor cells via effector 

immune cells (𝜶𝟑𝟐) is not affecting the dynamic of our 

model (Figure 8). This finding is in line with the 

biologically/clinically observed lack of efficiency of a 

large number of therapies targeting the immune system 

[39, 42, 43]. Another type of cancer therapy is targeting 

tumor-induced vascularization by injecting anti-

angiogenic drugs like angiostatin into the body to prevent 

vascularization. In the dynamical analysis, our model 

recommends that angiogenesis-targeted therapies are 

strongly more effective in the termination of tumor 

vascularization. Tumor cell inhibition rate via tumor 

angiogenesis agents is specified by 𝜶𝟑𝟑. This inhibition 

rate is naturally secreted from tumors in very small 

doses; however, increasing that with external inhibitor 

drugs like angiostatin, endostatin, and placket factor 4 
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(PF4) would be effective in terminating the chaotic 

behavior of the model (1) that corresponds to the 

termination of vascularization (Figure 9). Employing 

anti-angiogenic agents is still a promising therapeutic 

target; however, further studies are necessary to deliver 

multi-targeted approaches and combinatorial therapy. 

5. Conclusion 

The 4D model introduced by Viger et al. was 

developed from the 3D model proposed by de Pillis 

and Radunskaya. They introduced the endothelial cell 

population to reproduce the angiogenesis 

phenomenon. However, the presence of tumor 

angiogenesis agents is important in investigating their 

roles in tumor-induced angiogenesis. For this purpose, 

we expanded their model and introduced the tumor 

angiogenesis agents in their 4D model to create a new 

generalized 5D model. We also considered the role of 

tumor angiogenesis agents in the proliferation of 

endothelial cells; so, the equation of endothelial cells 

becomes different from the model presented by Viger 

et al. [34]. Our model can be employed to realize better 

the tumor vascularization dynamics with tumor 

angiogenesis agents' interference and qualitatively 

capture the features of its process. Observability and 

bifurcation analysis have been performed to study the 

model dynamics. Angiogenesis is a complex 

biological phenomenon involving several types of 

cells, agents, and interacting fields at different scales. 

Moreover, it comprises various migration mechanisms 

and transport processes. Spatial dynamics and 

heterogeneity are thus essential to adequately describe 

angiogenesis and its relation to tumor growth. Our 

model reproduces the dynamical transfer between pre-

vascular and vascular stages of tumor growth which is 

very important in metastasis and tissue invasion. So, it 

should be employed before considering a tumor spatial 

model. In conclusion, the existence of tumor 

angiogenesis agents is crucial for the beginning of 

neo-vascularization. Our model does not consider the 

biological complexity of cancer like genomic 

instability; however, it considers the term of a given 

inhibition factor like TIF agents. Our model focuses 

on the interactions between different cell populations. 

Therefore, it allows reproducing situations observed in 

vivo or in clinics like non-vascular and vascular tumor 

growth. Our model recommends that increasing the 

inhibition factors of tumor angiogenesis agents can 

terminate vascularization; however, TIF agents are 

rarely secreted from the tumor to regulate 

vascularization. While chemotherapy destroys cancer 

cells, it also affects host cells. By combining 

chemotherapy and anti-angiogenic drugs, the 

treatment will be more successful and reduce side 

effects. So, introducing the process of chemotherapy 

to our proposed model by adding a drug variable and 

applying its effect in the equations can suggest a 

successful study comparing the use of immune-

system-enhancing drugs and anti-angiogenic drugs in 

the course of chemotherapy. 
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