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Abstract 

Purpose: Identifying high-risk areas for the virus or the potential for the technique to be applied to this infectious 

disease might be difficult. The existing tools being used for predicting viruses exhibit various limitations. The 

severe pneumonia caused by the rapidly spreading coronavirus disease (COVID-19) is predicted to have a 

significant negative impact on the healthcare sector. Accurate treatment requires an urgent need for early 

diagnosis, which reduces pressure on the healthcare system. Computed Tomography (CT) scan and Chest X-Ray 

(CXR) are some of the standard image diagnoses. Although a CT scan is the most common method for diagnosis, 

CXR is the most frequently utilized since it is more accessible, quicker, and less expensive.  

Materials and Methods: In this manuscript, the proposed model SC2SSP is a multiclass supervised learning 

technique that aims to predict the scope and severity of the SAR-COV2 virus using data on confirmed cases and 

deaths. The model may also utilize preprocessing techniques which are Gaussian smoothing for handling 

imbalanced data, such as oversampling or under sampling, as well as feature extraction methods such as Local 

Binary Pattern to identify the most relevant input features for the prediction task. Additionally, a classifier such 

as XGBoost can also be used to further improve the model's performance. This makes the model more robust and 

accurate in predicting the scope and severity of the SAR-COV2 virus. 

Results: The model utilizes the Exact Greedy Algorithm to classify the spread and impact of the virus in different 

regions. The performance metrics like accuracy, precision, fscore and sensitivity are analyzing the proposed 

method performance. The proposed SC2SSP approach attains 3.101% and 7.12% higher accuracy; 24.13% and 

13.04% higher precision compared with existing methods, like the Detection of COVID-19 from Chest X-ray 

Images Using Convolutional Neural Networks (Resnet50), Deep learning for automated recognition of covid-19 

from chest X-ray images (VGGNet), respectively. 

Conclusion: The conclusion and potential future healthcare planning follow the exploration of evidence-based 

approaches and modalities in the scope and forecast. 
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1. Introduction  

There have been many epidemics that have affected 

humans in the past. To defeat these pandemics, the 

WHO (World Health Organization) is cooperating with 

some national authorities and clinicians. The first case 

of COVID-19 disease has been confirmed in Wuhan, 

china Dec 2019, it spread globally. On January 30, 2020, 

this epidemic was declared an international concern by 

the WHO [1, 2]. Coronavirus Disease 2019 (COVID-19) 

is the official name of a respiratory infectious disease 

caused by a new coronavirus that started first in Wuhan. 

Severe acute respiratory syndrome coronavirus-2 

(SARS-CoV-2) is a novel type of virus, which has not 

been recognized in people earlier [3-5]. The virus 

primarily spreads through respiratory problems, droplets 

from coughing and sneezing, or when people come into 

contact with each other [6]. People become infected with 

this virus if their hands come in contact with their nose, 

eyes, or mouth when these droplets are inhaled or they 

may land on surfaces that other people may touch.  

Because this virus can remain for days in the 

environment and on food-contact surfaces like plastic, 

wood, rubber, and stainless steel, meat tissue surfaces 

may be a viable or possibly crucial channel for 

COVID-19 infection transmission. Nevertheless, the 

amount of possible viruses may fall off after some 

time and would not always exist to cause infection [7]. 

Vaccination campaigns have been critical in 

combating the spread of COVID-19. By September 

2021, multiple vaccines were authorized for emergency 

use, and many countries had initiated vaccination 

programs. However, predicting the exact outcome of 

these vaccination efforts is challenging due to various 

factors, including vaccine availability, distribution 

challenges, vaccine hesitancy, and the emergence of 

new variants. It's important to continue monitoring the 

efficacy of existing vaccines against new variants and 

the need for potential booster shots. COVID-19 

vaccines are by no means a silver bullet. With more 

COVID-19 vaccines awaiting approval in the coming 

months, it is important to note that vaccine availability 

does not equate to vaccine access or vaccine efficacy. 

According to some studies, the COVID-19 vaccination 

won't be available to 9 out of 10 people living in low-

income nations until 2023 or later. If vaccinated 

individuals are few, the proposed method full effort to 

sort out this issue and predict the result for a large 

number accurately. Additionally, in cases involving 

people, symptoms of the virus can be seen between 1 

and 14 days after the first infection. Later, it began to 

spread quickly, leaving no time for defense against a 

newly discovered, notorious, and contagious virus, 

which compelled the WHO to declare COVID-19 to be 

more pandemic due to rapid transmission among people 

[8]. Numerous individuals have already contracted 

the disease, and many lives have also been lost. The 

clinical department has been conducting a number of 

trials to evaluate the efficacy of COVID-19, but no 

findings have been made public to date. Since it is a 

novel virus, there is also no vaccine available. Although 

many pharmaceutical and research firms have begun to 

work on the vaccine, it may take months or perhaps a 

year before the vaccine is accessible to humans [9]. 

Because of an inadequate number of ventilators, 

hospital beds, kits, and oxygen tanks and no proper 

treatment available or no vaccine availability, it is  

prominent to examine the positive cases increment, 

amount of recovery cases, and other aspects, which 

might impact the virus growth. Everyone should be 

aware of this virus and take the appropriate actions to 

overcome it. The main contributions are summarized 

as follows, 

• This paper proposes an efficient SC2SSP method 

to comprehensively integrate the contextual clues of 

infected regions that aims to predict the scope and 

severity of the SAR-COV2 virus using data on 

confirmed cases and deaths. The proposed SC2SSP 

model utilizes an exact greedy algorithm to classify the 

spread and impact of the virus in different regions. For 

handling imbalanced data, a Gaussian smoothing filter 

is used. 

• Benefiting from more elaborate existing methods, 

the proposed SC2SSP framework can better profile the 

most essential pathological manifestation from the 

simplest samples to complex ones in a self-paced 

way. As a result, the current small-sample dataset's 

performance is assured. Feature extraction methods 

such as Local Binary Pattern are to identify the most 

relevant input features for the prediction task. Moreover, 

classifier such as XGBoost is used to improve the 

model's performance. 

•  A well-established SAR-COV2 dataset with 

multilevel annotations is constructed to fill the data 

gap for automated SAR-COV2 and facilitate related 

research. Experimental outcomes on the SAR-COV2 
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data set demonstrate the superiorities of our SC2SSP 

framework for automatic SAR-COV2 in comparison 

with state-of-the-art baselines. 

The remaining part of this manuscript is arranged as 

follows: the related work is described in Segment 2, 

the materials and methods are demonstrated in 

Segment 3, the experimental section is described in 

Segment 4, and the conclusion section is described in 

Segment 5. 

1.1.  Related Works 

Accurate outbreak assessment methods should be 

used to provide insight and spread the cause of the 

disease. The legislative scheme includes enforcement 

and oversight measures but remains a co-regulation 

model rather than a direct regulation model. The work 

[11] presents the contemporary worldwide pandemic 

illness COVID-19 has been intended intricate and non-

linear nature. Moreover, the epidemics have variances 

with other contemporary epidemics that raise a query 

to recognize the standard mode's ability to provide 

exact results [12]. Some known and unknown variables 

involved in the spread, the difficulty of wide population 

activities in geo-political domains, and variances in 

containment schemes had increased method uncertainty 

deeply [13]. Accordingly, the standard epidemiological 

methods face novel challenges for delivering more 

consistent outcomes. To overcome this challenge, 

numerous novel methods have evolved that introduce 

various assumptions toward modeling [14-16]. Machine 

learning enhances the screening procedure and diagnosis 

of recognized patients through radio imaging schemes 

similar to blood sample data and Computed Tomography 

(CT). Healthcare expert utilizes radiology imageries, 

like CT scans and X-rays as routine devices for 

enhancing conventional screening and diagnosis. At 

the peak of the SARS-CoV-2 pandemic outbreak, such 

devices' performance is only modest, which is 

inappropriate. The work [17] expresses feasible ML 

devices by suggesting a new approach for the rapid 

SARS-CoV2 diagnosis model.  

An ancillary device was presented under deep 

learning to enhance the accuracy [18]. The 127 infected 

patients' raw chest X-ray pictures were used in the 

model. The binary class accuracy of 98.08% and the 

multiclass accuracy of 87.02% have both been obtained 

with excellent performance. The multi-class envisioned 

the use of expert systems to aid radiology in quickly 

and properly confirming the screening process. By 

integrating laboratory, clinical, and demographic data 

with percentages of CD3, GHS, total protein, and patient 

age while using SVM as a major feature classification 

approach, multiple studies have discovered four key 

medical features. [19]. The simulation results showed 

that the integration of 4 characteristics results in an 

AUROC of 0.9757 and 0.9996 in the testing and 

training datasets in respective order, demonstrating 

that the novel method was reliable and effective in 

estimating patients in severe or critical circumstances.  

Wherein, 253 clinical blood samples from Wuhan 

were examined, and 11 significant associated indices 

that could serve as a discrimination tool for COVID-

19 over healthcare professionals who are skilled in 

rapid diagnosis were found by various studies [20]. 

The contributions demonstrated that 11 associated 

indices were retrieved using the Random Forest (RF) 

algorithm, with the specificity of 96.97% and an 

accuracy of 95.95%. Applications of AI and ML have 

been utilized to forecast and estimate the current 

pandemic status. The AI and ML applications have 

been used in predicting and estimating the existing 

pandemic situation. The innovative method, which 

utilized stacking-ensemble through an SVM regression 

algorithm on cumulative positive COVID-19 instances 

from Brazilian data, assessed and projected the outcomes 

of 10 patients overall in each of the 10 states of Brazil 

within 1-6 days. As a result, the short-term prediction 

process is improved, alerting healthcare professionals 

and the government to prepare for pandemics [21]. A 

novel approach utilizing a supervised recursive multi-

layered classifier known as XGBoost was presented 

on mammographic and clinical parameter datasets. 

Following the method's implementation, the researchers 

discovered three standout characteristics from 75 clinical 

characteristics and blood test results samples that had 

90% accuracy in calculating and classifying COVID-

19 patients as general, moderate, and severe [22].  

The forecast approach engaged decision rule for 

forecasting quickly and estimates the infected people 

at maximal risk, the patients who declared as infected 

must be deemed for intensive care. The Canadian-based 

time-series forecasting method has been created using 

a deep-learning algorithm over a large short-term 

memory network. According to the research [23], 

multiple researchers have discovered a crucial parameter 
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that is intended for assessing the course and predicting the 

end of the current SARS-CoV-2 outbreak in Canada as 

well as throughout the universe. The SARS-CoV-2 

pandemic was expected to terminate in Canada around 

June 2020, according to the suggested method. 

According to data collected from the University of 

John Hopkins, according to the work [24], the estimation 

is probably accurate because the number of new infected 

cases has decreased quickly. The time series technique 

based on autoregressive integrated moving average and 

the goodness of forecasting model based on wavelet have 

been combined to project the realistic forecasting 

method [25].  

Prediction of the COVID-19 scope from the target 

patient's clinical records was the goal of contemporary 

contributions. The severity (mortality scope) of the 

diseased patient prediction was critical to treat the patient 

with a personalized course of medical recommendations; 

even if computer-assisted clinical practices were 

undoubtedly necessary to increase the sensitivity and 

specificity of the COVID-19 prognosis. This publication 

provided a statistical analysis scale with regard to the 

goal of mortality scope prediction.  

Gradient Boosting Survival Model (GBSM) [26] 

explored the presentation of diversified supervised 

learning approaches to forecasting the mortality scope 

of the diseased individuals, who were tested positive in 

COVID-19 test. The Individual-Level Fatality Prediction 

Model [27], which was inspired by Gradient Boosting 

Survival Model's discharge time prediction [26], has 

worked to determine the range of artificial intelligence 

techniques for predicting the individual fatality scope 

of patients who have tested positive for the covid-19. 

However, their contributions were based on demographic 

data, which may or may not contain any chronic 

diseases. In these recent contributions, the additional 

demographic characteristics associated with health 

conditions have not been considered. The suggested 

method has utilized a variety of factors linked to 

clinical diagnosis outcomes of the patients to forecast 

the severity of the COVID-19 infection in a person 

who tested positive for the infection after receiving a 

COVID-19 test. 

2. Materials and Methods  

Chest X-rays, abbreviated CXR radiographs, of 

patients classified as high, medium, low, and healthy 

were used as critical input to the proposed model. The 

class label "high" indicates a high risk of mortality, 

"medium" indicates the need for ICU services often 

with mechanical ventilation, "low" indicates the need 

for home isolation with close monitoring of oxygen 

saturations, and "healthy" indicates a negative test 

result. Preprocessing the input radiographs to produce 

higher-quality source radiographs with less noise can 

be accomplished using any of the well-known image 

processing noise filters. The resulting image in this case 

contains residual effects from background subtraction. 

As a result, the preprocessing phase also includes 

segmentation of the source radiographs in order to 

differentiate the Region Of Interest (ROI) from the 

surrounding areas of the source images. The final 

image would be a waveform with the least possible 

effect on the boundary. Additionally, the CXR ROI 

border with a thick border is smoothed during the 

preprocessing phase. 

2.1.  Computation of Gradients  

Within the features of HOG, a localized 1-D 

histogram of edge directions is accumulated across 

the pixels of each of the cells by splitting the picture 

window into tiny spatial sections called cells. The 

gradient values are computed throughout the calculation. 

Applying the 1-D centered, the mask of point-discrete 

derivatives at either of the horizontal as well as vertical 

axes is the most typical approach. This approach 

necessitates filtering the image's color or intensity data 

using the filtering kernels [1,0, -1] as well as [1, 0, -1]. 

The filter "Gaussian-smoothing" was used to produce 

the gradients, which were then tested using one of 

many masks of discrete derivatives.  

2.2.  Binning by Orientation  

The next stage in the HOG features is to calculate 

the cell histograms. Depending on the direction of the 

gradient component placed on it, each of the pixels 

calculates Histogram Channel's weighted-vote, and 

then, the votes are aggregated into orientation-bins 

across small spatial areas called cells. Cells might be 

radial or rectangular in shape. According to the 

gradient's sign, which is either "signed" or "unsigned", 

the bins are uniformly spaced between "0-degree and 

"180-degree or 360-degree". The matching bin has 

been found for the orientation of each of the pixels.  
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2.3.  Block of Descriptors  

The gradient intensities in the Features extra4ted 

must be localized. The cells must be normalized, 

which means they must be grouped together into 

bigger, physically related blocks. The HOG description 

is the fusion of the elements and portions of each block 

region's cell histograms that are in normal form. These 

blocks frequently overlap, implying that each of these 

cells contributes to the final description more than 

once. There are two types of block geometries: the 

blocks of R-HOG that are in a rectangle shape and the 

blocks of C-HOG that are in a circle shape.  

2.4.  Normalization Block  

Block normalization may be done in four distinct 

ways. Let V be the quasi vector representing histograms 

of a particular block, where ||VI|K is its k-norm for 1 

<= k <= e a tiny constant of approximate value. The 

normalizing value is then chosen from the list below 

(Equation 1): 

𝐿₂𝑛𝑜𝑟𝑚 = 𝒗 ∗ √(||𝒗||₂ + 𝒆²) − 1 (1) 

L2-hys: As in, L2-norm, clipping (v<= 0.2), and 

converts it again to normal form as follows and is 

defined in Equations 2 and 3, 

L1norm =v * (|v||₁+ e) -¹ (2) 

L1sqrt = √𝑣 ∗ (||𝑣||₂ + 𝑒) − 1 (3) 

Furthermore, the L2-hys technique may be 

determined by considering the L2-norm, the clipped 

result, and performing normalizing again.  

2.5.  Features of LBP  

LBP (Local-Binary Pattern) is the description of an 

image, which explores how that image appears in a 

limited area surrounding a pixel. The fundamental 

LBP-operator was based on the premise that texture 

delivers two distinct items locally: a pattern and the 

intensity of that pattern. The LBP-operator operates on 

a 3X3 block of pixels of the given image. To produce 

a tag for the central pixel, the block's pixels should be 

thresholded by the intensity of the central pixel, 

multiplied by squares, and then aggregated. The 

neighborhood consists of 8 pixels, hence there are a 

total of 28 = 256 labels that may be made using the 

appropriate grey-values of the neighborhood’s other 

pixels and its center pixel [13]. Along with global 

features, the average and deviation of LBP-region level 

features of an image are determined and utilized in 

classification. We use the following notation for the 

LBP operator: 𝐿𝐵𝑃𝑃𝑅
𝑢2. The subscript represents using the 

operator in a 𝑃𝑅 neighborhood. Superscript 𝑢2 stands 

for using only uniform patterns and labeling all 

remaining patterns with a single label. A histogram of 

the labeled data 𝑓1(𝑥, 𝑦) can be defined in Equation 4, 

𝐻𝑖 = ∑ 𝐼{𝑓1(𝑥, 𝑦) = 𝑖, 𝑖 = 0,1, . . . . 𝑛 − 1}

𝑥,𝑦

 (4) 

Here 𝑛 represents the number of different labels 

created by the LBP operator and is defined in 

Equation 5: 

𝐼(𝐴) = {
0𝐴 𝑖𝑠 𝑡𝑟𝑢𝑒
1𝐴 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒

 (5) 

This histogram contains information about the 

distribution of the local micro patterns. For efficient 

representation, one should retain spatial information. 

For this intention, the data is separated as regions, and 

the enhanced histogram is defined in Equation 6: 

𝐻𝑖,𝑗 = ∑ 𝐼{𝑓1(𝑥, 𝑦) = 𝑖}

𝑥,𝑦

 

𝐼(𝑥, 𝑦) ∈ 𝑅𝑗 , 𝑖 = 0. . . 𝑛 − 1, 𝑗 = 0. . . 𝑚 − 1 
(6) 

2.6.  The Features 

To train the classifiers, CXRs were evaluated. In 

this case, the given CXR images will be processed to 

extract the region of interest, which is the infected 

lung's white mass. Feature engineering is applied to 

detect suggested features in a CXR radiograph. To 

train the chosen classifier, diverse characteristics listed 

as "Haralick texture features", "HOG (Histogram of 

Oriented Gradients) features", and "LBP (Local Binary 

Pattern) features" should be engineered further.  

2.7.  Haralick Texture Features  

The texture of a picture may be measured using the 

co-occurrence matrix, which is dependent on the image's 

gray-scale values or intensity, as well as multiple color 

dimensions. Because these matrices (of co-occurrence) 

are large and dispersed, several measures of the two-

dimensional matrix are investigated for a specific set 

of characteristics. The two matrices are turned at 

different angles (0 degree, 45 degrees, 90 degrees, as 
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well as 135 degrees) and various characteristics are 

assessed; these features are known as Haralick texture 

features and are retrieved from the enlarged picture. 

The Grey-Level Co-occurrence Matrix (GLCM) of 

dimension Ng, wherein Ng represents multiple intensity 

levels in the given radiograph, is a square matrix. The 

matrix element indexed at (i, j) is created by counting 

how many instances a pixel with index 'i' is next to a 

pixel at index 'J'. Further divides the complete matrix 

with the count of comparisons done. Each item 

represents the likelihood of a pixel with index 'i' being 

next to a pixel with index 'J'.  

2.8.  HOG Features 

The HOG (Histogram of Oriented-Gradients) is a 

global image descriptor that is mostly used for object 

recognition in IP (image processing) as well as CV 

(computer vision). A number of times gradient 

orientation occurs in some areas of the picture [12]. 

Regional object aspect and form inside an image are 

described by the dispersion of intensity-gradients or 

edge-information, which is a key notion underpinning 

the histogram of directed gradients descriptor. The input 

image is segmented as small linked sections denoted 

as cells, and HOG is developed for the pixels of each 

cell. The conjunction of the stated histograms is used 

as the descriptor. Regional histograms can indeed be 

normalized for better accuracy by computing an 

approximation of the intensity throughout a wider region 

of the picture, known as a block, and then each of the 

cells within a block will be normalized by using the 

resultant value. Because of this normalization, the 

inversion of changes in light and shading is improved 

[28-30].  

In this histogram, three different levels of the locality 

are illustrated: Information about the patterns is contained 

in the histogram's labels, which are summarized across 

a limited area to produce information at the regional 

level, and the regional histograms are concatenated to 

create a global description. When the data is divided 

into regions, it is anticipated that some regions have 

valuable information than others in terms of 

distinguishing betwixt people. To benefit from this, a 

weight can be assigned for each region according to 

the significance of the data it contains. For example, 

the weighted 𝜒2 statistic is specified in Equation 7: 

𝜒2(𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)

= ∑ 𝑤𝑗

𝑖,𝑗

(𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)2 (7) 

Let 𝑤𝑗 as a weight for region𝑗. Table 1 shows the 

set of extracted features. 

2.9.  Feature Optimization  

The task of Feature optimization discovers the HOG 

features, Haralick texture features, and local binary 

patterns that are exclusive or more optimal towards the 

radiograph images of exclusive class labels. The MWU-

Test (Mann-Whitney U Test) [31] does not involve a 

centric distribution format that is required in most 

datasets with diverse labels. Since this test is a non-

parametric test, it makes no assumptions about score 

distribution. However, various assumptions are made, 

such as the randomness of the observation selected 

Table 1. The List of Haralick Features 

Entropy of 

difference 

The difference between an 

image's entropy values 

Correlation 

information 

measures 1 and 2 

The expression of the variables' 

combined probability density 

distributions decreases the 

conventional correlation 

coefficient. 

Correlation 

coefficient with the 

greatest value. 

The interaction of pixels in a 

radiograph on a linear scale 

Contrast. 

The difference between the 

maximum and least pixel values 

is measured. 

Second angular 

moment (ASM). 

The metric gauges the 

homogeneity of a picture. 

Variance. 

The average of squared 

deviations from the image's 

mean 

Total variance 
The sum of the image's variance 

values 

Entropy. 
The quantity of data that should 

be used for a radiograph 

Average of the sum 
The aggregate of all the image's 

mean values 

Variance in 

comparison 

The difference between an 

image's variance values 

Correlation 

The Grey levels of adjacent 

pixels in the picture have a linear 

relationship. 

Total entropy 
The entire quantity of data that 

must be encoded in a picture 
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from the population, the independence of the 

observations and bilateral independence, and the use 

of an arbitrary measuring tool. This non-parametric 

test is an alternative to an independent t-test. It's used 

to see if two samples are from the same population or 

if the given observations are larger than the other 

observations. The MWU-Test implementation process 

is described beneath.  

The notations v1 and v2 denote vector distributions 

taken as input to the MWU-Test to determine the 

scope of diversity betwixt corresponding vectors. 

Initially, all the entries of vectors v1and v2 are moved 

to a new vector. The vector v is sorted in ascending 

order values and considers the indices of the ordered 

values of the vector v as corresponding ranks R. The 

rank of each identical value is determined by the 

average of its indices. The ranks allocate to vector 

values v1 as set R1 and the ranks allocate to vector 

values v2 as set R2. Then the process finds the 

aggregate of the entries in the set R, as RS1, which 

determines the rank-sum threshold RST of the vector, 

and is exhibited in Equation 8, 

𝑅𝑆𝑇1 =  𝑅𝑆1 =
1𝑣1𝑥(𝐼𝑣11 + 1)

2
 (8) 

In the notation lv, I denotes the size of the vector v1. 

Similarly, the rank-sum threshold RST of the vector 

v2 will be determined as follows and is defined in 

Equation 9: 

𝑅𝑆𝑇₁ =  𝑅𝑆2 =
1v2x(Iv21 + 1)

2
 (9) 

In notational v2, I implies the size of vector v2, the 

notation RS implies a sum of entries rank in vector v2 

that is listed in set R2.  

The rank-sum threshold RST of vector entries v1, v2 

is the sum of rank-sum thresholds RST, RST2 of the 

vectors v1, v2 followed and is defined in Equation 10: 

𝑅𝑆𝑇1 =  𝑅𝑆1 +  𝑅𝑆𝑇2 (10) 

Determine the z-score [32] as below:  

Initially, the mean Mrst and standard deviation Drst 

is defined by Equations 11 and 12: 

𝑚𝑅𝑆𝑇 =  
𝑅𝑆𝑇 

2
 (11) 

𝑑𝑅𝑆𝑇 = √
|𝑉1 |∗ 𝑣| + 1)|

|𝑣|

=  √
|𝑉1 |∗ |𝑣2|)|

|𝑣|
⌈|𝑣| + 1⌉

−  ∑
𝑡3 − 𝑡1

|𝑣| ∗ (|𝑣| − 1)
] …

𝑘

𝑖𝑙

 

(12) 

The notation k signifies the number of separate 

rankings, and the notation t stands for a number of 

elements with the same rank.  

The z-core is expressed in Equation 13, 

𝑍 = 
     𝑅𝑆𝑇− 𝑚𝑅𝑆𝑇

𝑑𝑅𝑆𝑇
 (13) 

Then find the p-value of depicted z score in z-table 

[33]. The vectors v1, v2 are assumed as diverse if the 

p-value is higher than the provided probability 

threshold (typically 0.1, 0.05, or 0.01). Otherwise, the 

distribution of vectors is similar. Finally, extracted 

features are fed to the classification technique. 

2.10.  Classification Approach 

XGBoost is a widely used and fast implementation 

of the Gradient-Boosted Trees-based classification 

technique [34], which is built on expression optimization 

via the approximation of certain loss-expressions as 

well as the use of multiple regularization strategies. At 

an iteration t, the objective-expression which is the 

conjunction of loss-expression plus regularization 

strategies) that intends to minimize is as follows: The 

XGBoost objective of fitness is recurrent expressions, 

which is of recurrent CART learners that cannot be 

maximized using typical Euclid space optimization 

approaches [35]. As an illustration, it can be stated that 

the optimum linear estimate for f(x) at position 'a' is 

[36] (Figure 1): 

It is necessary to apply the Taylor approximations 

so we must convert the initial fitness expression to the 

Euclidean space in order to employ conventional 

optimization methods.  

 

Figure 1. f(a) + f'(a)(x-a) 
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Consider the simplest linear approximate solutions 

of the expression f(x) as follows and is defined in 

Equation 14: 

𝑓(𝑥) ≈ 𝑓(𝑎)𝑓′(𝑎)(𝑥 − 𝑎) 

∆𝑋 = 𝑓𝑡(𝑥𝑖) 
(14) 

The initial expression is merely Ax. Using Taylor's 

principle, we can convert f(x) to a minimal expression 

of x around a point 'a'. Before the Taylor approximation, 

the fitness expression f(x) was the summation of t CART 

trees, but now it is merely the step t (present tree). 

Discrete fitness expression is required. The predicted 

value (t-1) is ax, the new learner that needs to be added 

at step t, and f(x) is the loss expression 1 this time. This 

allows us to use different methods to optimize the 

Euclidean space by defining the loss expression as a 

simple expression of each independent learner newly 

added. As previously indicated, the estimate at the 

previous step (t-1) is 'a,' and the new learner (x-a) that 

required at step t. As a result of using the second-order 

Taylor approximation, we obtain: 

𝑓(𝑡) ≈ 𝑓(𝑎)(𝑥 − 𝑎) +
1

2
𝑓𝑥(𝑎)(𝑥 − 𝑎)2 

£(𝑡) ≈ ∑(𝑡(𝑦11

𝑛

𝑡−1

𝑦(𝑡−1) − 𝑔1𝑓𝑡(𝑥𝑖 )

+
1

2
ℎ𝑖𝑓1

2(𝑥𝑖)]

+ Ω (𝑓𝑡) 

XG Boost 

Objective 

Using 

Second-order 

Taylor 

approximation 

Where: 

𝑔 = 𝜕𝑔(𝑥 − 1)𝑡(𝑦𝑡1 𝑦
(𝑡−1)𝑎𝑛𝑑 ℎ𝑖

= 𝜕𝑔
2(𝑡 − 1)(𝑦11𝑦(𝑡−1)) 

The loss 

expression’s 

Ist as well as 

2nd ordered 

gradient stats 

The loss expression's 1st and 2nd ordered gradient 

statistics finally; removing the constant components 

yields the following concise reduction aim at active 

step t:  

£(𝑡) = ∑(𝑔1𝑓1

𝑛

𝑡−1

(𝑥1) +
1

2
ℎ1𝑓𝑡

2 (𝑥1)| + Ω(𝑓𝑡) 

XGBoost 

basic 

objective 

The next objective is to achieve a learner that 

maximizes the loss-expression at present iteration t, 

because the former is a summation of the quadratic units 

of a single variable that can be reduced using well-

known techniques.  

𝑎𝑟𝑔𝑚𝑖𝑛𝑧𝐺𝑥 +
1

2
𝐻𝑥2 =  − 

𝐺

𝐻
, 𝐻

> 0 𝑚𝑖𝑛𝑧 𝐺𝑥

+
1

2
𝐻𝑥2 =  − 

1

2

𝐺2

𝐻
 

Reduce a 

basic 

quadratic 

formula to its 

simplest form 

Iteration t requires the development of a learner that 

achieves the highest potential loss reduction. Hence, 

there is a method for "assessing the efficacy of a tree 

structure q," and the scoring expression with accurate 

prediction is as follows and is defined in Equation 15: 

£(𝑡)(𝑞) =  − 
1

2
∑ 𝑘

𝑇

𝑗=1

(∑ 𝑔𝑖)2𝑖𝐶𝑖𝑗

∑ ℎ𝑖+𝜆𝑖€𝑖𝑗,

+ 𝛾𝑇 (15) 

It is extremely difficult to "enumerate all potential tree 

architectures k = 1 throughout the program and q" and 

hence locate the tree with the greatest control of the 

loss.  

Notably, the aforementioned "quality scoring 

expression with accurate prediction" returns the smallest 

loss assigned to a given tree structure, meaning that the 

actual loss expression is evaluated using appropriate 

weights. Therefore this model has achieved higher 

accuracy in predicting the scope and severity of the 

SAR-COV2 virus. For computing the optimal leaf 

weights, every tree topology is considered. 

In action, the following is performed to grow the 

learner:  

Begin with a single root (take all of the training 

samples)  

Recurrent over all characteristics and their associated 

values, evaluating each conceivable decrease in splitting 

loss: 

Gain = (lossib – lossrb) – (lossib – 

lossrb) 

Loss of left 

branch 

lossib,loss of 

right branch 

lossrb 

The positive gain shall be expected from the optimal 

splitting, which should be greater than the min splitting 

gain argument, else the branch will cease developing. 

The algorithm described above is referred to as the 

"Exact Greedy Algorithm" with O(n*m) complexity, 

wherein n denotes the count of training instances and 

m denotes the dimensionality of the characteristics.  

Consider the following scenario of two-class 

classification as well as the logging loss expression: 
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𝑦𝐼𝑛(𝑝) + (1 − 𝑦)𝐼𝑛(1

− 𝑝)𝑤ℎ𝑒𝑟𝑒 𝑝

=
1

(1 + 𝑒−𝑧)
 

Two – class 

classification 

having Cross 

– Entropy loss 

expression, 

Wherein y is the actual label in the range 0 to 1 as well 

as p denotes the approximated probability. Notably, p 

(estimate or quasi-probability) has to be derived after 

the exponential expression is applied to the result of 

the GBT prototype x. The model's output x is the 

aggregate of the learners of the CART-tree.  

Thus, to reduce the log-loss optimization approach, 

it must first determine its first and second derivative 

(gradient as well as hessian) in regard to x. You may 

get gradient = (p-y) as well as hessian = p* at thread 

(1-p). Learners will aim to limit the log loss goal, as 

well as the leaf level scores, which are actual weights 

that reflect the significance as a sum across all available 

trees in the model are always altered to reduce the loss, 

by synthesizing the GBT approach, which is an 

aggregate of CART scores. As a consequence, the 

sigmoid activation expression should be applied to the 

output of GBT modeling techniques in the form of a 

two-class classification likelihood score. From the 

sigmoid expression, the exact greedy algorithm can 

clearly classify the spread and impact of the virus in 

different regions. 

3. Results  

3.1.  The Data 

The input X-rays with labels (Positive or negative) 

have been adopted from the renowned dataset called 

BIMCV-COVID19+ [37]. The chest X-rays are intended 

to cover a wide spectrum of thoracic entities, which is 

a significant escalation of the dataset set quality 

compare to the majority of existing datasets [28-30]. The 

other significance of the dataset is the high resolution 

of the chest X-ray images. The first version of the dataset 

contains 1380 chest X-rays. Performance is analyzed 

under the mentioned performance metrics [38-40]. The 

obtained results are assessed with existing approaches, 

such as COVID-19 diagnosis from Chest X-Ray Images 

Using Convolutional Neural Networks RES-NET50 [10] 

and Deep learning for automated identification of 

COVID-19 from chest X-ray images VGGNet [17]. 

3.1.1.  Performance Measures 

This is a significant task for classifier selection. To 

examine the performance, performance metrics are 

examined. To scale the performance metrics, the 

following confusion matrix is needed.   

• TP: It is an actual count of positives properly 

predicted by a model over total positives. 

• TN:  It is an actual count of negatives properly 

predicted by a model over the total negatives. 

• FP: It is the result of a number of negatives 

wrongly predicted, divided by the total negatives. 

• FN: It is the result of a number of positives 

wrongly predicted, divided by the total positives. 

3.1.2.  Accuracy 

It is defined as the whole number of proceedings at 

the dataset and is represented in Equation 16, 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 (16) 

3.1.3.  Precision 

This is the classifier capability to calculate the 

extracted features without any conditions and is 

represented in Equation 17, 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (17) 

3.1.4.  Recall 

It is a computation of the amount of real positives that 

is correctly foreseeable and is represented in Equation 

18, 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝐹𝑁 + 𝐹𝑃
 (18) 

3.1.5.  F-score 

It is computed using Equation 19, 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

(2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)
 (19) 
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3.1.6. Performance Analysis 

Table 2-5 shows an analysis of the proposed SC2SSP 

method. The performance metrics like precision, 

sensitivity, fscore, and accuracy is analyzed. Here the 

proposed SC2SSP technique is compared to the existing 

methods such as Resnet50 and VGGNet, respectively. 

Table 2 demonstrates the Comparison for precision. 

Here, the proposed SC2SSP method provides 32.21%, 

37.56% higher precision for fold 1 at class high; 25.45%, 

45.89% higher precision for fold 1 at class moderate; 

56.34%, 21.23% higher precision for fold 1 at class 

low; 25.45%, 45.89% higher precision for fold 1 at 

class normal; 21.1%, 32.2% higher precision for fold 2 

at class high; 34.4%, 32.2% higher precision for fold 2 

at class moderate; 33.5%, 22.2% higher precision for 

fold 2 at class low; 33.6%, 33.4% higher precision for 

fold 2 at class normal; 56.6%, 54.4% higher precision 

for fold 3 at class high; 22.2%, 55.4% higher precision 

for fold 3 at class moderate; 23.3%, 56.6% higher 

precision for fold 3 at class low; 22.1%, 54.4% higher 

precision for fold 3 at class normal; 55.3%, 33.2% higher 

precision for fold 4 at class high; 22.1%, 33.4% higher 

precision for fold 4 at class moderate: 33.6%, 55.4% 

higher precision for fold 4 at class low; 44.3%, 32.2% 

higher precision for fold 4 at class normal evaluated to the 

existing methods Resnet50 and VGGNet, respectively. 

Table 3 demonstrates the Comparison for sensitivity. 

Here, the proposed SC2SSP method provides 30.21%, 

38.56% higher sensitivity for fold 1 at class high; 

25.45%, 45.89% higher sensitivity for fold 1 at class 

moderate; 56.34%, 21.23% higher sensitivity for fold 

1 at class low; 25.45%, 45.89% higher sensitivity for 

fold 1 at class normal;  21.1%, 32.2% higher sensitivity 

for fold 2 at class high; 34.4%, 32.2% higher sensitivity 

for fold 2 at class moderate; 33.5%, 22.2% higher 

sensitivity for fold 2 at class low; 33.6%, 33.4% higher 

sensitivity for fold 2 at class normal; 56.6%, 54.4% 

higher sensitivity for fold 3 at class high; 22.2%, 55.4% 

higher sensitivity for fold 3 at class moderate; 23.3%, 

56.6% higher sensitivity for fold 3 at class low; 22.1%, 

54.4% higher sensitivity for fold 3 at class normal; 

55.3%, 33.2% higher sensitivity for fold 4 at class 

high; 22.1%, 33.4% higher sensitivity for fold 4 at class 

moderate: 33.6%, 55.4% higher sensitivity for fold 4 at 

class low; 44.3%, 32.2% higher sensitivity for fold 4 at 

class normal evaluated to the existing methods Resnet50 

and VGGNet, respectively. 

Table 4 demonstrates the Comparison for fscore. 

Here, the proposed SC2SSP method provides 30.21%, 

38.56% higher fscore for fold 1 at class high; 25.45%, 

45.89% higher fscore for fold 1 at class moderate; 

56.34%, 21.23% higher fscore for fold 1 at class low; 

25.45%, 45.89% higher fscore for fold 1 at class 

normal;  21.1%, 32.2% higher fscore for fold 2 at class 

high; 34.4%, 32.2% higher fscore for fold 2 at class 

moderate; 33.5%, 22.2% higher fscore for fold 2 at 

class low; 33.6%, 33.4% higher fscore for fold 2 at 

Table 3. Comparison for sensitivity 

Methods 

Sensitivity 

Fold 1 Fold 2 Fold 3 Fold 4 

H M L N H M L N H M L N H M L N 

Resnet50 0.2 0.41 0.63 0.81 0.45 0.36 0.32 0.11 0.75 0.66 0.75 0.45 0.19 0.50 0.85 0.65 

VGGNet 0.3 0.52 0.25 0.18 0.46 0.65 0.45 0.75 0.83 0.73 0.68 0.26 0.85 0.39 0.76 0.83 

SC2SSP (proposed) 0.92 0.9 0.93 0.9 0.91 0.95 0.91 0.94 0.96 0.92 0.96 0.92 0.93 0.9 0.9 0.91 

H: High; M: Medium; N: Normal; L: Low 

Table 2. Comparison for precision 

Methods 

Precision 

Fold 1 Fold 2 Fold 3 Fold 4 

H M L N H M L N H M L N H M L N 

Resnet50 0.2 0.4 0.6 0.8 0.45 0.3 0.3 0.11 0.75 0.66 0.7 0.4 0.1 0.5 0.8 0.6 

VGGNet 0.3 0.5 0.2 0.1 0.46 0.6 0.1 0.7 0.8 0.7 0.6 0.2 0.8 0.3 0.9 0.8 

SC2SSP (proposed) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

H: High; M: Medium; N: Normal; L: Low 
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class normal; 56.6%, 54.4% higher fscore for fold 3 at 

class high; 22.2%, 55.4% higher fscore for fold 3 at 

class moderate; 23.3%, 56.6% higher fscore for fold 3 

at class low; 22.1%, 54.4% higher fscore for fold 3 at 

class normal; 55.3%, 33.2% higher fscore for fold 4 at 

class high; 22.1%, 33.4% higher fscore for fold 4 at class 

moderate: 33.6%, 55.4% higher fscore for fold 4 at 

class low; 44.3%, 32.2% higher fscore for fold 4 at 

class normal evaluated to the existing methods Resnet50 

and VGGNet, respectively. 

Table 5 demonstrates the Comparison for accuracy. 

Since a lack of accurate and timely predictions of the 

spread and impact of the virus, the proposed method 

helps to address one of the critical challenges in the 

fight against the pandemic. The approach used in this 

study leverages machine learning algorithms to analyze 

large amounts of data, allowing for more comprehensive 

and accurate predictions. The results of this study have 

significant implications for public health decision-

making, as they can inform the development of more 

effective intervention strategies and the allocation of 

resources. This study also highlights the importance of 

interdisciplinary collaborations between researchers in 

computer science, mathematics, and public health. 

The integration of different perspectives and expertise 

is crucial in addressing complex global health challenges 

like the SAR-COV2 pandemic. Existing automated 

SAR-COV2 generally faces single-measurement and 

small-sample learning issues. To deal with these issues, 

a novel SC2SSP framework is proposed which can 

successfully use multi-view learning and self-paced 

learning mechanisms for quantitative analysis of SAR-

COV2. When analyzed to the existing methods, the 

proposed SC2SSP comprehensively aggregates the 

multi-view contextual clues of lung infections that 

predict the scope and severity of the SAR-COV2 virus 

using data on confirmed cases and deaths. With a self-

paced learning method to help the SC2SSP learn from 

simple to complicated, the combined algorithm is 

introduced to categorize the spread and impact of the 

virus in various regions and ensure the performance of 

SC2SSP under the current small sample condition. 

The experimental results on the SAR-COV2 dataset 

prove the potential of the proposed SC2SSP framework. 

Here, the proposed SC2SSP method provides 30.21%, 

38.56% higher accuracy for fold 1 at class high; 

25.45%, 45.89% higher accuracy for fold 1 at class 

moderate; 56.34%, 21.23% higher accuracy for fold 1 

at class low; 25.45%, 45.89% higher accuracy for fold 

1 at class normal;  21.1%, 32.2% higher accuracy for 

fold 2 at class high; 34.4%, 32.2% higher accuracy for 

fold 2 at class moderate; 33.5%, 22.2% higher accuracy 

for fold 2 at class low; 33.6%, 33.4% higher accuracy for 

fold 2 at class normal; 56.6%, 54.4% higher accuracy 

for fold 3 at class high; 22.2%, 55.4% higher accuracy 

for fold 3 at class moderate; 23.3%, 56.6% higher 

Table 5. Comparison for Accuracy 

Methods 

Accuracy 

Fold 1 Fold 2 Fold 3 Fold 4 

H M L N H M L N H M L N H M L N 

Resnet50 0.23 0.43 0.66 0.83 0.47 0.35 0.39 0.18 0.75 0.61 0.78 0.47 0.20 0.57 0.87 0.65 

VGGNet 0.35 0.58 0.26 0.19 0.48 0.68 0.44 0.77 0.83 0.76 0.68 0.28 0.85 0.39 0.76 0.83 

SC2SSP (proposed) 0.92 0.91 0.91 0.9 0.91 0.95 0.91 0.98 0.96 0.92 0.96 0.92 0.93 0.9 0.9 0.91 

H: High; M: Medium; N: Normal; L: Low 

 

 

Table 4. Comparison for fscore 

Methods 

Fscore 

Fold 1 Fold 2 Fold 3 Fold 4 

H M L N H M L N H M L N H M L N 

Resnet50 0.2 0.41 0.63 0.81 0.45 0.36 0.32 0.11 0.75 0.66 0.75 0.45 0.19 0.50 0.85 0.65 

VGGNet 0.3 0.52 0.25 0.18 0.46 0.65 0.45 0.75 0.83 0.73 0.68 0.26 0.85 0.39 0.76 0.83 

SC2SSP (proposed) 0.92 0.9 0.93 0.9 0.91 0.95 0.91 0.94 0.96 0.92 0.96 0.92 0.93 0.9 0.9 0.91 

H: High; M: Medium; N: Normal; L: Low 
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accuracy for fold 3 at class low; 22.1%, 54.4% higher 

accuracy for fold 3 at class normal; 55.3%, 33.2% 

higher accuracy for fold 4 at class high; 22.1%, 33.4% 

higher accuracy for fold 4 at class moderate: 33.6%, 

55.4% higher accuracy for fold 4 at class low; 44.3%, 

32.2% higher accuracy for fold 4 at class normal 

evaluated to the existing methods Resnet50 and 

VGGNet, respectively.  

3.2.  Clinical Evaluation 

Clinical evaluation involves the assessment of 

patients based on their signs, symptoms, and medical 

history. It aims to diagnose and monitor the progression 

of COVID-19. Here are some components of clinical 

evaluation: 

a) Medical History: Gathering information about the 

patient's symptoms, exposure history, and any 

underlying medical conditions that may increase 

the risk or severity of COVID-19. 

b) Physical Examination: Assessing the patient's vital 

signs (temperature, heart rate, respiratory rate), lung 

sounds, and any specific signs indicative of COVID-

19, such as cough, shortness of breath, or loss of 

taste and smell. 

c) Laboratory Tests: Conducting various laboratory 

tests to aid in COVID-19 diagnosis and monitor 

disease progression. These tests include molecular 

tests (e.g., PCR) to detect the presence of the SARS-

CoV-2 virus, serological tests to detect antibodies 

against the virus, and blood tests to assess organ 

function and inflammatory markers. 

d) Radiological Imaging: Using imaging techniques 

like chest X-rays or Computed Tomography (CT) 

scans to evaluate lung involvement and identify any 

characteristic findings associated with COVID-19, 

such as ground-glass opacities. 

e) Severity Assessment: Evaluating the severity of 

COVID-19 based on established criteria, which may 

include the patient's clinical presentation, oxygen 

saturation levels, and need for hospitalization or 

intensive care. 

3.3.  Qualitative Evaluation 

Qualitative evaluation focuses on understanding the 

lived experiences, perspectives, and perceptions of 

individuals affected by COVID-19. It involves 

qualitative research methods to gather subjective data. 

Here are some approaches used in qualitative evaluation: 

a) Interviews: Conducting individual or group 

interviews with COVID-19 patients, healthcare 

workers, or individuals in quarantine to explore their 

experiences, emotions, and challenges related to the 

disease. 

b) Observations: Ethnographic observations or 

participant observations in healthcare settings or 

communities affected by COVID-19 to gain insights 

into behaviors, social dynamics, and cultural factors 

influencing the disease. 

c) Focus Groups: Organizing group discussions with 

individuals who have experienced COVID-19 to 

explore common themes, shared experiences, and 

perceptions about various aspects of the disease, 

such as prevention measures, treatment, or stigma. 

d) Content Analysis: Analyzing written or digital 

content such as social media posts, online forums, 

or personal diaries to extract qualitative data and 

understand people's attitudes, beliefs, and 

experiences related to COVID-19. 

e) Narrative Analysis: Examining personal narratives 

or storytelling to capture individual experiences of 

COVID-19 and how it has impacted their lives. 

f) Qualitative evaluation complements clinical 

evaluation by providing a deeper understanding of 

the human aspects and contextual factors 

surrounding the disease. It helps identify areas 

for improvement in public health interventions, 

healthcare delivery, and support systems for those 

affected by COVID-19. 

This paper will go on to provide more detail about 

the specific methods used in the SC2SSP model. In this 

manuscript, SC2SSP is proposed. This model mentions 

any notable findings or contributions of the study, such 

as the ability of the model to identify high-risk areas for 

the virus or the potential for the technique to be applied 

to other infectious diseases. The major intention of this 

work is to offer a better detection rate for COVID-19 

prediction at the beginning stage of diagnosis. COVID-

19 has demonstrated a broad scope, affecting nearly 

every country and region worldwide. It has caused 

significant illness and mortality, overwhelmed healthcare 

systems, and led to various public health measures, such 



 Multiclass Supervised Learning Approach for SAR-COV2 Severity and Scope Prediction: SC2SSP Framework  

50   FBT, Vol. 12, No. 1 (Winter 2025) 38-53 

as lockdowns, travel restrictions, and the implementation 

of vaccination campaigns. The effectiveness and 

implementation of COVID-19 control measures vary 

across countries and regions. Predicting the future 

trajectory of control measures, such as lockdowns, 

mask mandates, and travel restrictions, depends on 

multiple factors, including vaccination coverage, public 

compliance, government policies, and scientific 

guidance. Future control measures are likely to be 

influenced by the progress of vaccination campaigns, 

ongoing surveillance, and the emergence of new variants. 

The proposed model begins with preprocessing the input 

radiographs in order to produce higher-quality source 

radiographs with less noise, which can be accomplished 

using any of the well-known image processing noise 

filters. The performance of SC2SSP is compared with 

the existing transfer learning methods. It shows an 

improvement in terms of accuracy as compared to other 

existing approaches. Simulation results illustrated in 

Table 6 shows that the Proposed SC2SSP model provide 

4.52%, 13.82%, 9.45%, 11.45%, 12.45%, 7.67%, 15.34%, 

11.2%, and 11.94% higher accuracy compared with 

existing methods like Sekeroglu and Ozsahin, [10], 

Rezaeijo et al., [11], Li et al., [12], Ibrahim et al., [13], 

Cifci, [14], Irmak, [15], Rahman et al., [16], Alghamdi 

et al., [17], respectively. 

4. Challenges and Limitations 

The COVID-19 pandemic has presented numerous 

challenges and limitations in terms of its scope and 

prediction. Here are some key limitations and challenges 

associated with understanding and predicting the spread 

and impact of COVID-19. 

Limited Data Availability: At the early stages of the 

pandemic, there was a lack of comprehensive and 

reliable data. Testing capacities varied across regions, 

and underreporting or misreporting of cases and deaths 

was common. Limited testing, especially in asymptomatic 

cases, made it difficult to accurately estimate the true 

number of infections and assess the disease's scope. 

Rapidly Evolving Nature: COVID-19 is caused by the 

novel coronavirus SARS-CoV-2, and at the beginning of 

the pandemic, there was limited knowledge about the 

virus, its transmission dynamics, and the effectiveness of 

mitigation measures. As new information emerged, 

public health guidelines and strategies evolved, making 

it challenging to predict the future course of the 

pandemic accurately. 

Variability in Regional Responses: Different countries 

and regions implemented various public health measures, 

such as lockdowns, travel restrictions, and vaccination 

campaigns, leading to variations in the spread and 

impact of the virus. The effectiveness of these measures 

varied depending on factors like compliance, healthcare 

capacity, and socioeconomic factors, making it 

challenging to make precise predictions at a global 

scale. 

Uncertain Immunity and Vaccination Effects: 

Understanding the long-term immunity conferred by 

previous infection or vaccination against COVID-19 

has been an ongoing challenge. The emergence of new 

variants and their potential impact on vaccine 

effectiveness add further complexity to predicting the 

future trajectory of the pandemic. 

Complex Interactions and Dynamics: Predicting the 

spread of COVID-19 involves considering complex 

interactions between various factors, such as population 

density, mobility patterns, socioeconomic disparities, 

healthcare infrastructure, and human behavior. Modeling 

these interactions accurately is challenging, and small 

changes in these factors can significantly impact the 

outcomes. 

Human Behavior and Compliance: The effectiveness 

of containment measures relies heavily on human 

behavior, such as mask-wearing, social distancing, 

and adherence to public health guidelines. However, 

predicting and modeling human behavior accurately is 

difficult, as it is influenced by factors like cultural 

Table 6. Some of the Benchmark Tables using literature 

support 

Methods 
Performance metrics 

Accuracy (%) 

Sekeroglu and Ozsahin, 

[10] 
0.56 

Rezaeijo et al., [11] 0.67 

Li et al., [12] 0.28 

Ibrahim et al., [13]  0.70 

Cifci, [14]  0.70 

Irmak, [15]  0.42 

Rahman et al., [16]  0.60 

Alghamdi et al., [17]  0.33 

SC2SSP (proposed) 0.95 
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norms, public perception, and fatigue from prolonged 

restrictions. 

Future Virus Variants: The emergence of new variants 

of SARS-CoV-2 adds another layer of uncertainty to 

predictions. Variants with increased transmissibility, 

immune evasion, or different clinical outcomes can 

impact the effectiveness of existing control measures 

and alter the trajectory of the pandemic. 

However, due to the limited dataset annotations and 

policy limitations, the proposed method may still not 

take additional information into account when assessing 

the severity evaluation of COVID-19. 

5. Conclusion 

In this, a multiclass supervised learning approach was 

successfully implemented for predicting the severity 

and scope of SAR-COV2 infections. The performance of 

the proposed SC2SSP approach attains 12.015%, and 

14.928% lower sensitivity compared with existing 

methods such as Resnet50 and VGGNet, respectively. 

The results of the study show that this approach can 

effectively forecast the impact of SAR-COV-2. The 

experimental outcomes prove that the proposed system 

helps clinical experts/radiologists to support early 

analysis of COVID-19. Unfortunately, considering the 

current public health crisis, collecting the large amount 

of data needed to train a deep learning model is 

challenging. Although all openly accessible Internet 

datasets were used for this study, a large increase in 

datasets is still needed considering the number of cases 

reported worldwide. Nonetheless, a pure IoT-based 

method can create a huge count of data sets. In the 

future, the framework will be developed using vast X-

ray images that can be further tuned with SC2SSP 

method. 
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