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Abstract 

Breast Cancer (BC) is the leading cause of cancer-related deaths in women and the most common cancer worldwide. 

It is classified based on its anatomical origin, the presence of Human Epidermal Growth Factor Receptor 2 (HER-

2), and the presence of Estrogen Receptor (ER) and/or Progesterone Receptor (PR). Around 20% of breast cancers 

are HER-2 positive. While biopsy-based diagnoses are valuable in clinical settings, they have limitations in terms 

of sampling and interpretation. However, laboratory tests such as Immunohistochemistry (IHC) or Fluorescence 

In Situ Hybridization (FISH) are also limited, including being time-consuming, expensive, and requiring specialized 

equipment. Ongoing research and technological advancements aim to address the challenges associated with biopsy-

based diagnoses and laboratory tests to develop more accurate and efficient methods for assessing HER-2 status. To 

this end, various radioactively labeled proteins and small compounds, such as single-chain variable Fragments (scFv), 

F(ab')2, affibody, and nanobody, have been developed to target HER-2 using molecular array techniques. These 

smaller targeted compounds offer improved image quality, shorter circulating half-life, and reduced immunogenicity 

compared to their larger counterparts. This is due to their better biodistribution, clearance, and stability. This study 

investigates the current understanding and ongoing efforts in utilizing antibody fragments for molecular imaging. 

The specific objectives were to evaluate the advantages of antibody fragments over full-length antibodies regarding 

biodistribution, clearance, and stability. Additionally, this study aims to assess the current knowledge and ongoing 

research in utilizing antibody fragments for molecular imaging.  

Keywords: Breast Cancer; Antibody-Based Imaging; Radiolabel; Molecular Imaging; Nanobody. 
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1. Introduction  

Breast Cancer (BC) is the most common type among 

women and the second leading cause of worldwide 

cancer-related death. While BC rates are increasing 

globally, they are particularly high in industrialized 

nations for women. The survival rates for BC have greatly 

improved due to early detection and advancements 

in treatment. However, much must be done regarding 

prevention, early detection, and treatment [1, 2].  

Breast cancer is classified according to its anatomical 

origin, which helps determine the disease's specific type 

and stage. The primary classification is based on where 

the cancerous cells first develop within the breast tissue. 

This information is crucial for clinicians to devise 

appropriate treatment plans and determine patients' 

prognoses [3, 4]. The most common type of breast cancer 

is ductal carcinoma, which originates in the milk ducts 

that carry milk from the lobules to the nipple. This type 

accounts for approximately 80% of all breast cancer cases. 

Another type is lobular carcinoma, which starts in the 

breast's milk-producing lobules. Although less common, 

lobular carcinoma requires a distinct approach due to its 

unique characteristics. Apart from ductal and lobular 

carcinomas, there are other less frequent types of 

breast cancer. These include inflammatory breast cancer, 

characterized by redness, swelling, and warmth in the 

breast; medullary carcinoma, known for its distinct 

borders and immune system response; and mucinous 

carcinoma, formed by mucus-producing cancer cells. Less 

common yet important classifications include tubular, 

papillary, and cribriform carcinoma. Each type has 

specific features and growth patterns, influencing the 

treatment options and outcomes. Furthermore, breast 

cancer can be categorized into different stages based on 

the size of the tumor, its spread to nearby lymph nodes, 

and whether it has metastasized to other parts of the body. 

The stages range from 0 to IV, with stage 0 indicating 

non-invasive cancer and stage IV representing metastatic 

cancer spreading to distant organs [5, 6]. Understanding 

breast cancer's anatomical origin and classification 

is crucial for healthcare professionals to provide 

personalized care and make informed treatment decisions. 

Identifying the specific type and stage of breast cancer 

allows physicians to customize therapies, including 

surgery, radiation, chemotherapy, targeted therapies, and 

hormone therapy, to maximize the chances of successful 

treatment and long-term survival [7-9].  

More precisely, breast cancer is categorized based on 

its anatomical origin, expression of the Human epidermal 

growth factor receptor 2 (HER-2), and the presence of 

Estrogen Receptor (ER) and/or Progesterone Receptor 

(PR) [10, 11]. 

Generally, the diagnosis of breast cancer relies on the 

expression of HER-2, ER, and PR. Around 20% of 

BC patients have HER-2-positive status, linked to a 

poor prognosis [12, 13]. Trastuzumab, Epratuzumab, 

Trastuzumab-emtansine (a combination of antibody and 

drug), and Lapatinib (a tyrosine kinase inhibitor) are all 

approved treatments for HER-2-positive breast cancer. 

Histopathological investigations and ER, PR, and HER-

2 status assessments are the only reliable biomarkers 

for predicting therapy response [14, 15]. However, the 

variability of BC tissues and the lack of reproducibility in 

studies limit the usefulness of immunohistochemistry 

research in determining HER-2 status. Newer approaches 

are being explored to overcome the limitations of 

immunohistochemistry in determining HER-2 status in 

breast cancer. One such approach is utilizing molecular 

methods like FISH and Polymerase Chain Reaction 

(PCR). These techniques provide a more accurate 

assessment of HER-2 gene amplification and expression 

levels. Targeted therapies are also being developed to 

address the heterogeneity of breast cancer tissues [16, 

17]. For instance, new HER-2-targeted therapies such 

as Pertuzumab and Neratinib have shown promise in 

clinical trials. These drugs, in combination with existing 

treatments like Trastuzumab, offer improved outcomes 

for patients with HER-2-positive breast cancer [18, 19]. 

New diagnostic imaging methods have been developed 

to improve the early detection of breast cancer lesions 

using molecular imaging studies. These approaches aim 

to enhance our understanding of breast cancer pathology 

and enable the visualization and analysis of the disease 

in vivo [20, 21]. By harnessing the power of molecular 

imaging, researchers hope to significantly reduce the 

death rate from breast cancer by detecting it in its early 

stages and facilitating timely intervention, thereby 

improving patient outcomes [22, 23]. 

By combining pathology and molecular imaging, 

medical professionals can gain valuable insights into 

HER-2 expression throughout the body while prioritizing 

patient comfort and convenience. Numerous efforts 

have been made to discover and produce radiolabeled 

compounds that can enhance the diagnosis and treatment 

of breast cancer [24, 25]. Radiolabeled anti-HER2 
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antibody fragments offer a promising approach to 

improving the diagnosis and management of breast 

cancer. These efforts have resulted in the development 

of radiolabeled compounds targeting HER-2, an 

overexpressed protein in certain breast cancer cases. 

Attaching a radioactive label to these antibody fragments 

enables the visualization and quantification of HER-2 

expression through non-invasive imaging techniques 

[26, 27]. This approach holds great potential for breast 

cancer diagnosis. By accurately assessing HER-2 

expression throughout the body, clinicians can make 

informed decisions about treatment options, such as 

targeted therapies or personalized medicine. Moreover, 

this technique can assist in monitoring treatment response 

and identifying potential metastases or recurrence [28, 29]. 

Ten percent of BC cases are attributable to inherited 

mutations in specific genes, most notably the Breast 

cancer gene (BRCA)-1 and -2. BC risk factors are obesity 

and a high Body Mass Index (BMI), early sexual maturity, 

a first pregnancy before the age of 30, a history of ductal 

carcinoma, a family history of BC or Ovarian Cancer 

(OC), late menopause, and postmenopausal hormone 

treatment (mainly in white women) [11-15]. Several 

breast cancer subtypes are associated with different 

histology and prognoses (Table 1). The hormone 

receptivity of a breast cancer sample depends on the 

presence or absence of ER and PR expression, as well 

as the type of BC (lobular versus ductal). HER-2 is a 

protein that maps to chromosome 17q21; it belongs to the 

EGFR family of receptors for epidermal growth factors. 

Lymph node metastases, high-grade malignancies, and 

an increased risk of death are linked to HER-2 genetic 

alterations, making them a negative prognostic indicator 

[30, 31]. 

Most patients with invasive breast cancer are diagnosed 

with Infiltrating Ductal Carcinomas (IDCs), which 

account for about 80% of non-invasive carcinomas. In 

contrast, Invasive Lobular Carcinoma (ILC) is the most 

common form of lung cancer. Approximately 10% of 

breast carcinomas are also lobular carcinomas [32]. 

Around 70% of women with IDC show HR+/HER-2 

incidences. It is essential to mention that ILCs are more 

common in postmenopausal women and tend to develop 

bilaterally. ER and PR are typically used in most cases. 

Ductal Carcinoma In Situ (DCIS) is a type of BC limited 

to the ducts where it originated. In rare instances, the DCIS 

phenotype may be observed with IDC on mammography 

or histopathology [19]. Morphological and cytological 

criteria are utilized for the classification of DCIS into 

subgroups. However, Lobular Carcinoma In Situ (LCIS) 

has a higher likelihood of being bilateral compared to 

Ductal Carcinoma In Situ (DCIS) (LCIS). Both DCIS 

and LCIS commonly exhibit HR+ and HER-2- negative 

characteristics. Young women with BRCA-1 mutation 

face an elevated risk of developing ductal breast cancer. 

Although inflammatory breast cancer is less prevalent 

than other forms, it poses a greater danger and has a worse 

prognosis [33]. Tubular, papillary, and mucinous breast 

cancer are rarer than Phylloides tumors [34]. 

Previously, it was demonstrated that HR+/HER-2- 

BC is the most common subtype [21]. The absence of 

hormone sensitivity and HER-2 expression characterizes 

the Triple-Negative Breast Cancer (TNBC) subtype. 

Approximately 12% of breast cancer cases occur in 

women with TNBC genes [22]. Non-Hispanic black 

women under 40 have the highest incidence and earliest 

detection rates of HER2-positive breast cancer. TNBC 

in women is more aggressive and typically diagnosed at 

a later stage compared to HR+/HER-2- cases. TNBC can 

be further classified into six subtypes: Basal-Like 1 (BL-

1), Basal-Like 2 (BL-2), Mesenchymal Stem Cell-Like 

(MSL), mesenchymal (M), Luminous Androgen Receptor 

(LAR), and Immunomodulatory (IM) [35].  

Table 1. Main molecular subtypes of breast cancer 

Type Expression Characteristics Prognosis 

Luminal A HR+/HER-2- Less aggressive than other subtypes Good 

Luminal B HR+/HER-2+ Positive for Ki-67 or HER2; tends to be higher-grade Fair 

Triple-negative HR-/HER-2- 

The incidence of this disease is higher in black women than in 

white women; premenopausal women and those with BRCA1 

mutations are at a greater risk 

Poor 

HER2-enriched HR-/HER-2+ More aggressive than other subtypes Poor 
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Histopathological markers, such as tumor size, 

metastasis, and axillary lymph node status exhibit breast 

cancer's biological characteristics and prognosis. Both 

the Tumor Microenvironment (TME) and disease 

progression play a role in tumor growth and lymph node 

involvement [36]. Among the early prognostic indicators 

of breast disease, the presence of microcalcifications is 

of utmost importance [25]. Microcalcifications in the 

breast are defined as calcium minerals smaller than 1 mm. 

The Breast Imaging Reporting and Data System (BI-

RADS) of the American College of Radiology (ACR) 

describes breast microcalcifications radiologically [37]. 

Detecting micro- and macrocalcifications through 

mammography is a reliable predictor of developing ductal 

breast carcinomas [27]. Histopathological studies and 

the evaluation of ER, PR, Ki67, and HER-2 status are the 

only proven biomarkers for predicting therapy response 

[38]. Immunohistochemistry (IHC) is employed to assess 

the ER, PR, Ki67, and HER-2 status, aiding in prognosis 

determination and selecting the most suitable therapy 

strategy for BC patients [28]. 

This article explores research on radiolabeled antibody 

fragments as a tracer for breast cancer. It aims to provide 

a comprehensive overview of this molecular imaging 

technique's current understanding and potential. This 

study also explores the potential applications of antibody 

fragments in targeted therapy and diagnosis, aiming to 

utilize their improved biodistribution characteristics for 

more effective treatment strategies in various diseases. 

2. Molecular Imaging 

Molecular imaging, a medical technique, provides 

detailed images of cellular and molecular processes in 

the human body. Its ability to detect real-time changes in 

tissue structure is valuable for physicians in personalizing 

patient care. Furthermore, molecular imaging has the 

potential for non-invasive diagnosis and monitoring [39, 

40]. It also aids drug delivery and enables experimentation 

with novel disease tracking and treatment methods. 

Molecular imaging advances our understanding of disease 

progression and treatment response. By visualizing the 

intricate workings of cells and molecules, this medical 

technique provides valuable insights into the underlying 

mechanisms of various diseases [41, 42]. With its ability 

to capture real-time changes in tissue structure, molecular 

imaging empowers physicians to make informed 

decisions about personalized patient care. One of the 

key advantages of molecular imaging is its potential for 

non-invasive diagnosis and monitoring [43, 44]. Medical 

professionals can accurately detect and track disease 

progression using specialized imaging agents without 

requiring invasive procedures. This reduces patient 

discomfort and allows for early detection and intervention, 

leading to improved treatment outcomes. Moreover, 

molecular imaging plays a vital role in drug delivery 

research [45, 46]. Scientists can optimize drug 

formulations and delivery methods by visualizing how 

drugs interact with target cells and tissues. This knowledge 

enables the development of more effective and targeted 

therapies, minimizing side effects, and maximizing 

therapeutic benefits. Additionally, molecular imaging 

opens up new possibilities for experimentation with novel 

disease tracking and treatment methods. Researchers can 

use this technique to investigate the efficacy of emerging 

therapies and develop innovative approaches to combat 

various diseases. By continuously pushing the boundaries 

of medical knowledge, molecular imaging paves the way 

for groundbreaking advancements in healthcare [47, 48]. 

Recent advancements in breast cancer molecular 

imaging have revolutionized diagnosing and treating 

this devastating disease. One significant breakthrough 

is the development of novel imaging techniques that 

enable the visualization of specific molecular targets 

within breast tumors. This breakthrough has provided 

researchers and clinicians with detailed information about 

the biological characteristics of the cancer, leading to 

more personalized and effective treatment strategies. One 

such advancement is Positron Emission Tomography 

(PET) imaging with radiotracers targeting molecular 

markers expressed by breast cancer cells. By injecting 

a radiotracer into the patient's bloodstream, PET scans 

can detect and map the distribution of these markers 

[36, 49]. This provides valuable insights into tumor 

metabolism, receptor status, and treatment response. 

This non-invasive approach has dramatically improved 

our ability to detect breast cancer at an early stage and 

monitor its progression over time. Another promising 

technique in molecular imaging is Magnetic Resonance 

Imaging (MRI) with contrast agents specifically designed 

to target breast cancer biomarkers. These contrast agents 

can bind to molecules or receptors expressed by cancer 

cells, enhancing the visibility of tumors on MRI scans. 

By combining the high spatial resolution of MRI with 

molecular targeting, clinicians can accurately assess tumor 

size, invasiveness, and the presence of metastases [50]. 

This information guides treatment decisions and improves 
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patient outcomes. Moreover, molecular imaging has 

opened doors for developing theranostic agents, which 

possess diagnostic and therapeutic properties (Figure 1). 

These agents can deliver targeted therapies directly to 

cancer cells while simultaneously providing real-time 

imaging of the treatment response. This approach holds 

great promise for personalized medicine, as it allows 

clinicians to tailor treatments based on the unique 

molecular characteristics of each patient's tumor [51-53]. 

Approximately 20% of breast cancers are HER-2 

positive (HER-2+). HER-2 is a receptor belonging to 

the ERbB/HER family of receptors, functioning as a 

transmembrane tyrosine kinase [55, 56]. HER-2 homo- 

or heterodimerization significantly impacts intracellular 

signaling, influencing various aspects such as apoptosis, 

proliferation, adhesion, and motility. To identify patients 

who may benefit from anti-HER-2 therapy, the American 

Society of Clinical Oncology (ASCO) and the College 

of American Pathologists (CAP) recommend testing 

all individuals with invasive breast cancer for HER-2 

expression [35, 36] . IHC or FISH are the methods 

employed to determine HER-2 expression. In the case 

of breast cancer, HER-2 positivity can be indicated by 

either protein overexpression (3+ IHC status) or an 

elevated copy number of the HER-2 gene (identified as 

six or more by FISH). If conflicting results are obtained 

using the first method, the second method should 

determine the HER-2 status [57]. 

While biopsy-based diagnoses have proven valuable 

in clinical settings, they have limitations. One significant 

drawback is the potential for sampling error, as the small 

tissue sample obtained during a biopsy may not accurately 

represent the entire tumor. Moreover, inconsistency in 

interpretation and subsequent treatment decisions may 

arise due to inter-observer variability among pathologists 

[58]. 

Although biopsies have been clinically proven useful 

for diagnoses, the quality and representativeness of the 

biopsied material are crucial factors . However, despite 

their high frequency, it is notoriously challenging to 

determine the presence or absence of bone metastases 

in individuals with breast cancer using IHC [39, 59]. 

Significant challenges arise from biopsy-based methods, 

such as heterogeneity within and between tumors, as 

well as discrepancies in status between primary and 

metastatic tissues [60, 61]. The HER-2 status can also 

change the course of the disease or result from treatment-

induced clonal selection [62]. To overcome these 

challenges, researchers propose collecting multiple 

samples from the same lesion, sampling at regular 

intervals to monitor disease progression, and obtaining 

samples from various metastatic sites [63, 64]. However, 

the significant hurdle in implementing these criteria lies 

in the associated morbidity of the biopsy procedure. 

Moreover, these tests can be time-consuming and costly, 

as they require specialized laboratory equipment and 

expertise. However, despite these limitations, IHC or 

FISH remains essential in determining HER-2 status and 

guiding treatment decisions for breast cancer patients. 

Management of metastatic breast cancer still lacks a 

reliable, accurate, and non-invasive method for assessing 

HER-2 [65, 66]. Therefore, several ongoing research 

projects aim to develop in-vivo diagnostic procedures. 

PET using 18F-Fluorodeoxyglucose (FDG) has 

revolutionized the imaging evaluation of breast lesions 

in managing breast cancer patients. Currently, PET 

and Computed Tomography (CT) scans are frequently 

performed together [67-69]. Consequently, 18FDG-

PET/CT analysis has become the established practice 

for evaluating the effectiveness of cancer treatment, 

as well as diagnosing, staging, and predicting patient 

outcomes in BC. The 18F-FDG PET/CT scan is a sensitive 

technique for staging BC. This scan compassionately 

provides valuable insights into the scope and progression 

of BC [70]. 

Metastases were detected in the peritoneal lymph 

nodes, left liver lobe, and uterine cervix using FDG-

PET/CT (Figure 2). The liver metastases exhibited notable 

ABY-025 uptake, while the peritoneal metastases showed 

moderate uptake, and the cervical metastases showed 

none. Only the liver revealed a positive result on IHC, 

 

Figure 1. A schematic structure of targeted theranostic 

radiopharmaceuticals: In this targeted radionuclide, γ- or 

β+ emitters are used for diagnosis, and β- and α emitters 

are operated for diagnosis and treatment, respectively [54] 
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whereas the other two locations yielded negative findings 

[70].  

As an added benefit, this technique has the potential to 

provide valuable data for monitoring therapy response 

[71], which can be challenging when investigating 

multiple biopsies [72-74]. However, the primary method 

in this field for PET imaging is 89Zr-trastuzumab. 

Research has demonstrated that 89Zr-trastuzumab PET/CT 

analysis can detect HER-2 expression in the entire tumor 

burden of breast cancer patients, eliminating the 

need for repeated tissue samples to assess intra-patient 

heterogeneity of HER-2 status. In cases where the 

HER-2 status cannot be determined through standard 

diagnostic procedures [49], 89Zr-trastuzumab PET 

scanning can assist clinicians in making decisions [75]. 

Additionally, Tamura described PET imaging using 
64Cu-DOTA trastuzumab in six HER-2+ breast 

cancer patients. The radiation dose from 64Cu-DOTA 

trastuzumab was comparable to that from 18F-FDG 

PET/CT [76]. With its favorable safety and efficacy 

profile, this radiopharmaceutical could diagnose primary 

and secondary breast cancer lesions and predict the 

biological response to anti-HER-2 monoclonal antibodies. 

This information could be valuable in choosing between 

anti-HER-2 antibodies and HER-2 tyrosine kinase 

inhibitors. When used as labels, 99mTc also ensures safety 

in regular settings [77]. Because of developments in 

biotechnology and the discovery of multifunctional 

nanoparticles that can be loaded with a wide range of 

therapeutic chemicals, novel therapeutic and diagnostic 

concepts are now at our disposal [78]. Radiolabeled 

trastuzumab and epratuzumab are promising tracers 

because they accumulate in HER-2+ tumor tissue. There 

is still time to make significant treatment adjustments; 

therefore, they could be more helpful. Since then, many 

other radiolabeled proteins and tiny compounds that 

specifically target HER have been developed [79], such 

as the Single-chain variable fragment (scFv), F(ab')2, 

affibodies, nanobodies, minibodies, and diabodies. Better 

image quality, a shorter circulation half-life, and less 

immunogenicity are all possible because of the improved 

biodistributions and clearance mechanisms displayed 

by small targeted agents. They undergo less complex 

chemical transformations, making them better suited and 

supporting decision -makers for routine therapeutic use 

[80, 81]. Bansch et al., regarding the possibility of human 

epidermal growth factor receptor 2 (HER2) status in 

breast cancer using 89Zr-trastuzumab PET, designed a 

test to see if this radiopharmaceutical compares to 18F-

FDG PET in cases when HER2 status cannot be defined 

by ordinary work up. Substantial results were obtained 

to determine the standard, as shown in Figure 3. They 

concluded that the effect of CTC HER2 status should 

be further investigated [75].  

 

Figure 2. Demonstration of uptake levels in FDG and [68Ga]ABY-025 in coronal PET imaging for breast cancer 

metastases: left lobe of the liver (1), peritoneum (2), and cervix (3) (left-sided images); The images consist of axial CT 

scans, PET with FDG, and PET/CT with [68Ga]ABY-025, along with IHC to display HER2 expression in the liver (upper 

right images-1), peritoneal metastasis (middle right-2), and cervical metastatic cancer (lower right axial images-3). The 

results reveal high ABY-025 absorption in liver metastases, low uptake in peritoneal metastases, and no uptake in the 

cervical area. IHC confirms the 68Ga findings [70] 
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3. Fragments of Antibodies for Molecular 

Imaging of Breast Cancer 

3.1.  Fab and F(ab')2 Tracers 

An antibody's Y-shaped structure consists of two 

antigen-binding fragments (Fab) and a crystallizable Fc 

fragment. The hinge region between the heavy chain's 

variable (Fc) and fixed (Fab) domains allows the antibody 

to form complexes with distantly located epitopes, such 

as dimers and trimmers [82, 83]. The Fab fragment of 

antibodies, which is responsible for binding antigens, 

is composed of the Light (L) chain's Variable (V) domain 

and the Heavy (H) chain's Constant (C) domain. The 

paratope, or antigen-binding site, is located in the V 

domain at the amino-terminal end of each monomer and 

comprises a series of Complementarity-Determining 

Regions (CDR). As a result, the Y-shaped antibody 

can recognize a specific antigen region to which it can 

bind. Both Fc and Fab fragments can be produced 

in a laboratory setting [84]. Papain can cleave an 

immunoglobulin monomer into two Fab fragments 

and one Fc fragment, while pepsin cleaves the protein 

into an F(ab')2 and a pFc' below the hinge. Several 

enzymes, including IdeS (Immunoglobulin degrading 

enzyme) from Streptococcus pyogenes, have recently 

been introduced for producing F(ab')2. IdeS cleaves 

the IgG sequence specifically at neutral pH [85]. 

Several radionuclides were tested on F(ab′)2 and Fab 

fragments of trastuzumab and pertuzumab for imaging in 

animal models [86-91]. The labeling chemical affected 

the tracer uptake in both tumor and healthy tissue. 

However, all tested probes showed acceptable imaging 

within 24 hours of injection. In their study, Smith-Jones 

et al. compared 111In-DOTA-(Fab)2-trastuzumab to 
111In-DOTA-trastuzumab [87]. Compared to 111In-

DOTA-trastuzumab, which had a maximum value of 

around 6.5 at 72 h, 111In-DOTA-(Fab)2 achieved a 

tumor-to-blood standard uptake ratio (SUR) of 10 as 

early as 24 hours after injection. Therefore, F(ab′)2 

and Fab fragments can mitigate the significant delay 

between the injection of fully radiolabeled antibodies and 

imaging (Figure 4). There have been reports of tumor-

to-blood ratios as high as 19:8 after administering 
64Cu-NOTA-(Fab)2 epratuzumab [86]. 

Beylergil et al. developed the PET imaging tracer 
68Ga-DOTA-F(ab′)2-trastuzumab to assess HER-2 

expression in living organisms [61]. In this study, 15 

women with BC (7 HER2- and 8 HER2+) participated. 

Seven of the eight patients with HER-2+ status had prior 

trastuzumab therapy, and one did not. Four of the eight 

patients showed tumor-targeting and good tolerance 

to 68Ga-DOTA-F(ab′)2-trastuzumab. Additionally, 
68Ga-DOTA-F(ab′)2-trastuzumab effectively detected 

metastatic disease. The hypothesis suggests that high 

levels of circulating trastuzumab hindered tumor targeting 

by 68Ga-DOTA-F(ab′)2-trastuzumab, explaining only 

50% of the confirmed lesions (18F-FDG established) 

[92].  

 

Figure 3. Comparison of PET images using two 

radiopharmaceuticals 18F-FDG (left) and 89Zr-trastuzumab 

PET scan (right) from three different patients with breast 

cancer to show the foci of metastasis: A right side of a 

patient with 89Zr-trastuzumab PET scan shows that it was 

considered HER2-positive (a). In contrast, the middle 

image on the right illustrates an 89Zr-trastuzumab HER2 

PET scan that was considered HER2-negative (b), and 

the bottom right image of a PET scan displays 89Zr-

trastuzumab in an intermediate and ambiguous state (c) 

[75] 
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3.2.  scFv Tracers 

When the variable sections of the heavy and light 

chains are combined, they form a single-chain variable 

fragment (scFv) that retains the original immunoglobulin's 

specificity. The development of specific scFv has enabled 

the creation of small imaging probes. In a study involving 

mice with SKOV-3 xenografts, it was found that 24 hours 

after injection with radioiodinated anti-HER-2 scFv 

741F8 and C6.5, the tumor-to-blood and tumor-to-liver 

ratios were higher compared to imaging agents based 

on total antibodies [93, 94]. In another investigation, 

fluorescent Quantum Dots (QD) were utilized for passive 

and active targeting in a HER-2/neu+ BC model. Active 

targeting of tumors was achieved using anti-HER-2/neu 

4D5scFv antibodies, while contrast agents (QD-4D5scFv) 

consisted of 705 nontargeted QDs coated with Polyethylene 

Glycol (PEG). The concentration of the probes (QD-

PEG and QD-4D5scFv) at the tumor site was examined 

using whole-body fluorescence imaging in vivo. Both 

passive and active administration techniques proved 

effective for tumor imaging, with QD-4D5scFv exhibiting 

a significantly stronger fluorescent signal than QD-

PEG [95].  

3.3.  Affibody Tracers 

Synthetic antibody fragments called "affibodies" 

have multiple applications in medicine and diagnosis. 

Affibodies that target staphylococcal Surface Protein 

A (SPA) adopt a stable three-helix structure consisting 

of 58 amino acids without disulfide bonds (SS-bond), 

which enhances their stability. Regarding molecular 

imaging, affibody molecules are well-suited due to their 

 

Figure 4. Micro PET/CT images of breast cancer and human ovarian cancer-induced tumor mice and their quantitative 

analysis were obtained at different time points following a specific therapy protocol using 64Cu-NOTA-pertuzumab F(ab')2 

containing pertuzumab. In panel (A), the images were obtained 24 hours (left) and one week (right) after the injection 

of theranostic agents in human breast cancer following the initiation of trastuzumab treatment. Panel (B) presents the 

quantitative analysis of normalized uptake changes at the corresponding tumor site in BT-474 tumors after injecting 
64Cu-NOTA-pertuzumab F(ab')2. Panel (C) displays the quantitative analysis of the tumor growth index after one week. 

Panel (D) shows the MicroPET/CT images captured 24 hours after administration of 64Cu-NOTA-pertuzumab F(ab')2 

in mice bearing ovarian cancer xenografts at baseline, one week, and three weeks after the initiation of trastuzumab 

treatment. Panel (E) illustrates the corresponding changes in ovarian tumor uptake normalized relative to baseline using 
64Cu-NOTA-pertuzumab F(ab')2. Finally, panel (F) presents the tumor growth index [86] 
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small size, fast turnover rate, high affinity, and ability 

to tolerate extreme temperatures and low pH [96, 97]. 

Clinical trials were conducted to evaluate the use of 

HER-2 affibodies, which demonstrated their effectiveness 

in targeting and visualizing tumors. The initial clinical 

trial of radiolabeled HER-2-affibody ABY-002 (DOTA 

ZHER2:342 pep2) in patients with advanced BC yielded 

promising results [98-101]. SPECT and PET images of 

ABY-002, labeled with indium-111 and gallium-68, were 

obtained within 2 hours post-injection. In most cases, the 

radioactive affibody confirmed the presence of lesions 

identified by 18F-FDG-PET. However, due to significant 

background uptake, only structures near the kidney and 

liver could be accurately recognized [102]. 

The ongoing advancement of affibodies has resulted 

in enhanced blood clearance and an increased ratio of 

background to tumor. Another affibody, ABY-025 

(ZHER2:2891) (NCT01216033), has completed clinical 

trials. Patients with HER-2+ metastatic breast cancer 

exhibited a positive response to the 111In-labeled affibody 

in terms of safety, bioavailability, and tumor targeting. 

Notably, high-contrast SPECT images were obtained 

between 4 and 24 hours after injection, despite the 

kidneys exhibiting the highest absorption in normal 

tissue, followed by the liver and spleen [79]. 

Two additional clinical studies were conducted 

using a 68Ga-labeled version of a similar affibody 

(NCT02095210, NCT01858116). To assess the impact on 

tumor uptake, two doses of the tracer were administered: 

100 g and 500 g. PET scans performed 2 to 4 hours 

after injecting 500 g of 68Ga-ABY-025 demonstrated 

improved specificity and enhanced detection of metastasis 

[70, 103]. Currently, a phase II/III clinical trial 

(NCT03655353) is underway to evaluate the correlation 

between HER-2 expression, as measured by 68Ga-ABY-

025 PET, and conventional histology obtained from 

relevant tumor samples. 

HER-2-targeting affibody, ABH2, labeled with 99mTc, 

demonstrated a specificity of 60% overall in an open-

label phase I clinical study (NCT03546478) involving 

HER-2+ BC patients. No Severe Adverse Events (SAE) 

were reported. Despite the liver significantly absorbing 

the radiotracer [104], high-contrast SPECT images were 

obtained at 1.5 and 4.5 hours after injection. Radiolabeled 

affibodies are currently being utilized in several ongoing 

clinical trials for molecular imaging of BC. For example, 

a phase I clinical trial (NCT04267900) is currently 

underway to evaluate the affibody HPArk2, tagged with 
99mTc. Additionally, another open-label, non-randomized 

clinical investigation (NCT03827317) is assessing the 

efficacy of 18FGE-226 in measuring HER-2 expression 

in patients with metastatic BC [105]. 

The benefits of affibodies for molecular imaging are 

not without challenges. One example is the relatively low 

target affinity of affibodies, which is a serious concern 

[106]. To address this, modifications to the molecular 

design of the affibody would be necessary to reduce off-

target interactions or background radioactivity [107]. 

Moreover, there are costs associated with creating 

radioactively labeled affibodies, and the production 

process faces challenges in scaling up. Additionally, the 

labeling procedures may increase lipophilicity, leading 

to unintended reactions with normal tissue and binding to 

blood proteins. Repeated therapeutic administration to 

patients also increases the risk of immunogenicity due to 

the bacterial origin of the protein scaffolds [107, 108]. 

3.4.  Nanobody Tracers 

As mentioned, antibodies have a Y shape consisting 

of two heavy and light chains. Sharks and camelids 

produce Heavy Chain Antibodies (HcAb) in addition 

to the more frequent light chain antibodies [109, 110]. 

Due to their lack of a light chain, HcAbs rely on the 

direct interaction between their variable domain and 

the Fc domain (CH2 and CH3) to bind antigens. In camels, 

the variable heavy domain is known as VHH, whereas in 

sharks, it is known as Variable New Antigen Receptor 

(VNAR) [111, 112]. The Very-small-H chain (VHH), 

sometimes called a Nanobody or a single-domain 

Antibody (sdAb), is physically and functionally 

comparable to the Fab segment in conventional antibodies 

despite its much smaller size (15 kDa). Because of their 

diminutive size, nanobodies undergo rapid renal 

clearance, resulting in a short biological half-life [113]. 

Because of its short half-life, fluor-18 is frequently used 

in PET imaging (110 min). Many different nanobodies 

with 18F tags have been developed and evaluated for 

use as PET tracers. Xavier et al. 18F-tagged the HER-2 

nanobody and showed that it effectively targeted tumors 

in vitro. It was found that HER-2+ xenografts had high 

tumor-to-tissue ratios with selective uptake. The kidneys 

quickly excreted the 18F-anti-HER2-nanobody. The probe 

was also effective at scanning HER-2+ tumors when co-

administered with trastuzumab, suggesting that the tracer 
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may be useful for patient selection and therapy monitoring 

[114]. 

Keyaerts et al. conducted clinical trials of a 68Ga-HER-

2 nanobody to assess its safety, biodistribution, and 

dosimetry. 68Ga- HER-2 nanobody was injected into 20 

women with primary or metastatic BC, and dosimetry 

measurements were derived from images taken at 10-

, 60-, and 90-minute post-injection. In order to evaluate 

the tumor-targeting capacity, the study included both 

primary and metastatic BC. Even an hour after injection, 

only 10% of the dosage was found in the blood, and there 

were no Significant Adverse Effects (SAEs) related to the 

tracer. Intestinal, liver, and renal background uptake was 

constant. Whereas initial tumors tended to have diffuse 

tracer accumulation, metastatic lesions tended to have 

more distinct, well-differentiated tracer accumulation 

[115]. To better understand how well nanobody tracers 

work in identifying brain metastases in BC patients, a 

phase II open-label, non-randomized, and single-center 

study (EudraCT 2015-002328-24, NCT03331601) [116] 

is now recruiting participants. Currently, there is a phase 

I clinical trial (NCT04040686) investigating the safety, 

dosimetry, and efficacy of 99mTc labeled anti-HER-2 

nanobodies in BC diagnostic imaging and a phase II 

clinical trial (NCT03924466) investigating the correlation 

between image-based HER-2 quantification following 

uptake of 68Ga- NOTA-2Rs15d in local or metastatic 

BC patients [117-119]. 

4. Conclusion 

In conclusion, radiolabeled antibody fragments have 

the potential to revolutionize the diagnosis and treatment 

of breast cancer through their use as tracers in imaging. 

This molecular imaging technique allows for the specific 

targeting of cancer cells, monitoring of treatment 

response, and delivery of targeted therapy, making it a 

valuable tool in the fight against breast cancer. Further 

research and development in this field will undoubtedly 

lead to improved patient outcomes and a deeper 

understanding of breast cancer biology. Compared to 

Y-shaped antibodies, the radiolabeled antibody fragments 

used in molecular imaging of breast cancer, such as Fab, 

F(ab')2, scFV, affibodies, and nanobodies, demonstrate 

superior biodistributions and clearance. This results in 

improved image quality, a shorter circulation half-life, 

and reduced immunogenicity. However, concerns remain 

regarding off-target interactions and background 

radioactivity associated with these compounds. Therefore, 

more clinical trials are necessary to enhance their 

therapeutic use and optimize factors such as dosage, 

duration, sensitivity, and specificity. 
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