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Abstract 

Purpose: Artificial Intelligence (AI), which mimics the human brain structure and operation, simulates 

intelligence. The aim of Machine Learning (ML), which is a branch of artificial intelligence, is to create models 

by analyzing data. Another type of artificial intelligence, Deep Learning (DL), depicts geometric changes using 

several layers of model representations. Since DL broke the computational analysis record, AI has advanced in 

many areas.  

Materials and Methods: Contrary to the widespread use of conventional ML methodologies, there is still a need 

to promote the use and popularity of DL for pharmaceutical research and development. Drug discovery and design 

have been enhanced by ML and DL in major research projects. To fully realize its potential, drug design must 

overcome many challenges and issues. Various aspects of medication design must be considered to successfully 

address these concerns and challenges. This review article explains DL's significance both in technological 

breakthroughs and in effective medications. 

Results: There are numerous barriers and substantial challenges associated with drug design associated with DL 

architectures and key application domains. The article discusses several elements of medication development that 

have been influenced by existing research. Two widely used and efficient Neural Network (NN) designs are 

discussed in this article: Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). 

Conclusion: It is described how these tools can be utilized to design and discover small molecules for drug 

discovery. They are also given an overview of the history of DL approaches, as well as a discussion of some of 

their drawbacks. 
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1. Introduction  

On average, it takes 15 years to research and develop a 

drug therapy, and the pharmaceutical industry loses 

enormous amounts of money for each failed attempt. Over 

the past two decades, the number of prescription drugs 

approved has steadily declined despite rising R&D costs. 

Blockbuster medicines are hampered by regulatory 

roadblocks [1]. As a result of automation and the growth 

of information technology, enormous amounts of 

biological data have been collected and analyzed in the last 

decade [2, 3]. A classic Machine Learning (ML) 

technique, Artificial Neural Networks (ANNs) are 

architectures of artificial neurons designed to function 

analogously to the central nervous system of humans [4]. 

In their infancy, ANNs had just one input layer, one 

hidden layer, and one output layer. Each node's attributes 

are directly related to its input layer. In the hidden layer, 

each node receives a weighted linear combination of the 

outputs from the layer above. A nonlinear activation 

function modifies the outputs of the units. The hidden 

layer's efforts were repeated in the visible layer's output. 

To produce the outcome, the activation function inputs 

were fed signals from the buried layer. The Feedforward 

Neural Network (FNN) [5] uses this type of input. Avoid 

overfitting shallow networks, especially when 

regularization is used [6]. To uncover more esoteric 

patterns, more hidden layers must be built from the 

incoming data. Lower layers learn the basics of these 

patterns, while upper layers learn the more complex ones 

[7]. If more nodes and hidden layers are added, the 

computing cost may increase significantly. Optimization 

of multilayer NNs with several hidden layers might be 

challenging if gradient vanishing is an issue [8]. In DL 

model development, GPU acceleration is commonly used 

to overcome this limitation. Additionally, regularization 

and transfer function methods, as well as adjustments to 

network designs for weight updates and initialization 

maximization, were used to prevent overfitting [9]. 

Networks in this category include CNN, RNN [10], Deep 

Belief Networks (DBN), and Auto-Encoder [11]. The 

following shallow ML techniques are compared to DL in 

the age of big data: logistic regression [12], linear 

regression [13], simple Bayesian models [14], Support 

Vector Machines (SVM) [15], and decision trees [16]. 

There is a significant advantage to the random forest 

algorithm [15]. Due to their superior learnability, these 

algorithms are preferred over DL [16]. DL requires more 

human involvement than traditional ML. Although DL 

may be more difficult to implement, once it's up and 

running it needs little maintenance. ML systems require 

less hardware and resources than DL models. Moreover, 

the ML algorithms are often simple and run on modest 

hardware. Processing speed has led to GPU popularity. 

GPUs have high bandwidth memory and can hide latency 

in memory transfers due to thread parallelism (the ability 

to perform multiple processes simultaneously). 

Consequently, although ML systems are easy to set up, 

they may not produce the desired results. Even though DL 

systems take longer to set up, they produce near-instant 

results (although quality is likely to improve over time). In 

addition, ML relies on structured data and conventional 

techniques like linear regression. Researchers use neural 

networks for DL to process massive amounts of 

unstructured data. DL benefits include best-in-class 

performance, scalability, and flexibility. With less data, 

classical ML performs better than DL in several aspects. 

Hence, computation complexity has been reduced, costs 

have been reduced, and interpretation has become easier. 

DL requires a high number of nonlinear transformation 

layers to effectively extract and integrate information from 

data and discern more general patterns. In addition, it 

allows us to learn abilities that break through barriers we 

currently face and teach us things that scientists haven't 

discovered yet [17-19]. It is possible to speed up 

developments in areas such as voice recognition, image 

classification [20], drug discovery, natural language 

processing, and medical simulation with deep learning 

approaches because they can automatically recover CA-

relevant information across numerous processing layers 

[21-25]. Deep learning methods are particularly useful for 

creating cutting-edge drugs and pharmaceuticals [26]. 

This study's objective is to educate academics in the fields 

of computational chemistry and cheminformatics about 

the wide range of applications of DL. In short, this paper 

aims to review different DL architectures and their 

applications in drug design and development. 

1.1. Deep Learning Advantages  

Without further human input, DL algorithms may 

generate unique traits from a subset of those already 

present in the pharmaceutical training dataset [27]. 

Accordingly, DL can perform tasks that would 

otherwise require extensive feature engineering [28]. 

The ability of DL to process semi-structured and 

unstructured data is one of its many strengths. Because 

Deep Neural Networks (DNNs) are capable of 
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acquiring complex properties and performing 

intensive computations, such as simultaneously 

executing several complex processes, they are 

beneficial to drug design models. Because of the large 

input data and the sufficient learning required for 

CNN-based structures, DL models may take longer to 

learn the parameters of a drug design model. To solve 

this problem, DL models should be trained much 

faster using parallel and distributed approaches [29].  

In the development of medications, models can be 

trained either locally (on a single machine) or using 

Graphics Processing Units (GPUs) [30]. The medical 

industry might eventually save costs by training DL 

models for drug discovery and design [31]. 

The cost of inaccurate drug forecasts or defective 

drugs is relatively high in industries such as 

medication production [32]. The time and effort 

invested in developing DL models is often well worth 

it. When applied to data science, deep learning may 

produce more accurate and efficient processing 

models. As a result of its potential for unsupervised 

learning, precision and efficacy are continuously 

improved. The results are more actionable and clearer 

for data scientists as a result [33]. As illustrated in 

Figure 1, the most famous DL networks are 

introduced. 

As DL can process massive volumes of drug data 

and perform numerous computations within a short 

amount of time, it can be used on a large scale. 

Consequently, productivity (faster rollouts) and 

modularity and portability (trained models can be 

applied to a wide range of challenges) are evident. 

1.2. Study Motivation 

In contrast to classical ML approaches, DL needs to 

be promoted and supported in the pharmaceutical 

industry. There is a fundamental difference between 

machine learning and human-assisted learning: AI 

needs significant human intervention from the 

beginning to the end before it can make any 

meaningful predictions. As deep learning becomes 

more advanced, it may be able to recognize intricate 

patterns less supervised once it gets rolling. Learned 

from raw data even with high dimensions with little 

guidance [34]. The usage of DL and ML has improved 

medication discovery and design in extensive 

investigations [35]. The drug development process 

must overcome a number of challenges before it can 

reach its full potential [36]. Predicting drug-target 

interactions is an important task in drug discovery. In 

many cases, targets (proteins) have one or more 

binding sites with substrates or regulatory molecules. 

It is possible to build predictive models using these 

data [37]. The inclusion of other protein sites can, 

however, introduce bias into the analysis [38]. Wang 

et al. [39] used Pair-Input Neural Networks (PINN) to 

calculate target-ligand interactions based on protein 

sequences and target profiles. As a result, NNs are 

better at predicting target-ligand interactions than 

other methods. There are several prediction algorithms 

available that can mitigate these issues and save 

valuable resources when it comes to drug development 

and assessment. Most often, drugs are discontinued 

due to toxicities, such as hepatotoxicity. Using 

computational methods for predicting hepatotoxicity, 

potentially harmful medications can be avoided. A raw 

chemical structure can be used to determine 

compound toxicity using deep learning [40]. In 

addition to predicting epoxidation, CNN can also 

predict other properties. Hughes et al. used Simple 

Molecular Input Line Profile Format (SMILES) data 

to indicate a high degree of reactivity and possible 

toxicity by using epoxidized molecules and hydroxide 

molecules as negative controls [41]. To address these 

concerns and challenges successfully, several aspects 

of pharmaceutical design must be considered:  

• Pharmaceutical designs are generally built in 

conjunction with automated technologies in industrial 

 

Figure 1. In this figure, a division of the most famous DL 

structures used in drug design is shown 
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drug trials to facilitate efficient management of 

screening sets numbering hundreds or even millions of 

chemicals. Such methods produce enormous amounts 

of information, which are constantly being used to 

develop new methods [42]. 

• Handcrafted features, such as molecular 

descriptors and fingerprints, were widely used in 

previous DL drug discovery efforts. These conditions 

affect DL's capacity to construct molecular properties 

directly from data. However, this is perhaps one of the 

most important differences between DNNs and 

standard ML methods [43]. 

• The assay procedure is a crucial part of the 

testing process for compounds. In assessing 

corresponding data sets, it is important to keep in mind 

that direct interaction between substances and assay 

methods can lead to systematic errors [44]. 

• A given patient population's demographics are 

influenced by tumor type, illness progression, and co-

morbidities. Understanding how various factors affect 

the drug's efficacy may allow dosing adjustments in 

larger clinical trials [45]. 

To achieve optimal results in DL simulation, 

selecting the proper DL structure and tuning its hyper-

parameters are crucial. Hence, the purpose of this 

study is to shed light on the role that DL has played in 

both the creation of cutting-edge technology and 

extremely effective medications [46]. DL structures 

and significant application domains present a number 

of limitations and hurdles in the field of drug design 

[47]. Early research has influenced several aspects of 

drug development discussed in the article. In drug 

design and drug discovery, CNNs and RNNS are two 

common and successful types of NNs based on ML 

and DL. 

2. Principle of DL 

DL is a group of approaches under ML that employ 

ANNs to imitate the higher-level abstractions present 

in data from several layers of nonlinear processing 

units. Similar to the architecture of the human brain, 

ANNs are composed of linked nodes. The 

interconnectedness of several neurons, each of which 

may be seen as a processing unit, generates an 

enormous amount of computing power capable of 

completing complex computations. In 1943, 

McCulloch and Pitts presented the first artificial 

neuron model using a computer model of brain activity 

[48, 49].  

Since 2006, when Geoffrey Hinton, Ian Likan, and 

others proposed a realistic DL framework, businesses 

and universities have been swept by an inventive wave 

of DL and new AI [50]. To solve the problem of DL's 

abstract data requirements, a unique structure for 

multilayer NNs used in feature learning was 

developed. By use of feature learning, DL approaches 

may automatically extract features from raw format 

input data, modify those features, and transfer them to 

higher levels of abstraction [51]. Due to the significant 

advancements in computer technology and parallel 

computing strategies, such as the Tensor Processing 

Unit (TPU) approach, the computationally intensive 

nature of DNNs may no longer be prohibitively 

expensive [52, 53]. To distinguish patterns and extract 

high-level features, DL architectures vary in kind and 

function according to the training data's structure. 

Here, we concentrated on the most prevalent 

architectures, including CNNs, RNNs, DNN, and 

GAN [54]. 

2.1. Convolutional Neural Networks 

CNNs are commonly utilized in machine learning 

for image processing in deep learning. CNNs are often 

called Shift Invariant or Space Invariant ANNs 

(SIANN) due to their shared-weight structure that 

slides along input features to generate translation-

equivariant outputs. The input-down sampling process 

of convolutional neural networks does not make them 

translation-in variants, contrary to popular belief. 

They can be used for video and image classification, 

decision-making systems, image understanding and 

segmentation, time series prediction, Brain-Computer 

Interfaces (BCI), Natural Language Processing (NLP), 

and medical image analysis. CNNs are inspired by the 

human visual cortex [55] since it, too, has neurons that 

are selectively tuned to distinct areas of the visual 

field. This notion was examined by Hubel and Wiesel 

[56]. Fukushima detection in the 1980s led to CNN, 

which was inspired by Hubel and Wiesel's studies of 

the cat's visual cortex receptive field [57, 58]. 

Figure 2 shows the three most common types of 

CNN layers: convolution, pooling, and full 

connection. Based on these [59, 60], a multilayer 
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network was constructed. It is possible to study a 

variety of layers depending on the data intake strategy. 

It is possible to form layers for sequential signals, such 

as language, using one-dimensional arrays. The use of 

3D arrays for creating movie layers is possible [61]. 

2.2. Recurrent Neural Networks 

DL can be implemented using RNNs as an 

alternative architecture. As such, RNNs [62] are a 

specific type of ANN in which the linkages between 

nodes always point in the same direction. Therefore, 

the internal state of the network may be altered, 

potentially leading to dynamic temporal behavior. 

Instead of passing signals from one layer to the next, 

as in feedforward networks, RNNs feature feedback 

components that suppress them. Furthermore, due to 

their internal memory, they are the only form of a 

neural network capable of storing long-term learning 

data [63]. 

 

 

 

 

 

 

 

 

 

 

 

 

A variety of RNNs are available. A gated recurrent 

unit RNN (GRURNN) is a network that utilizes 

recurrent units of time (RLSTMs or short-term 

memories), and a clock-RNN is a network that uses a 

recurrent unit of time (CW-RNN) [64-66]. The most 

widely accepted and used architectures for natural 

language processing in recent years have been RNNs 

and LSTMs. Natural Language Processing (NLP) 

usually combines LSTM with scattered embedding 

derived from part-of-speech tagging [67, 68]. Since 

they employ a custom function to create the transition 

state in the hidden layer, Long Short-Term Memory 

(LSTM) architectures outperform conventional RNNs 

at identifying long-term dependencies. In artificial 

intelligence, LSTMs are often used alongside CNNs 

to automatically generate image descriptions, and they 

have shown to be equally successful and popular as 

CNNs at retrieving images [69]. Three commonly 

used RNN architectures are shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. A general convolutional structure for classification that can be used in a variety of applications can be seen in 

this figure 

 

Figure 3. These are the inner architecture of three types of RNNs: (a) RNN model; (b) LSTM architecture; and (c) gated 

recurrent units (GRU) structure 
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2.3. Deep Neural Networks 

Unsupervised learning uses DNNs for analyzing 

unlabeled data, in addition to their use in supervised 

learning. A popular generative network architecture 

for unsupervised learning is the Deep Autoencoder 

Network (DEAN) [70, 71]. Hilton et al.'s proposed 

DNN has a mirror image encoder and decoder [72]. 

DBNs are constructed using Restricted Boltzmann 

Machines (RBMs) [73], a bipartite network with an 

undetectable layer and a detectable layer. Symmetric 

links can only be established between nodes on 

different levels; links between nodes on the same level 

are not possible. The BP technique compresses data 

with the efficiency of an autoencoder, with minimal 

information loss and full recovery [74]. The ability of 

DAEN to reduce superfluous information qualifies it 

as a dimensionality reduction method. By reducing the 

recovered features, DAEN [74] can be employed to 

develop a classification structure utilizing supervised 

learning. The development of DL software can be 

advanced through this strategy. 

2.4. GAN Architecture 

Video processing, audio processing, music 

analysis, image processing, computer vision, and 

medical imaging are among the numerous applications 

of Generative Adversarial Networks (GANs) [75, 76]. 

GAN architectures have also been applied to multi-

omics, medical informatics, bioinformatics, 

medication delivery, and drug discovery in biology 

[77, 78]. The discriminative network module and the 

generating network module support a GAN 

architecture [79]. Both discriminative and generative 

networks are simultaneously taught as multi-layered 

ANNs. Unlike the generative network module, which 

generates fake samples based on the hidden variable, 

the discriminant network module receives both fake 

and real samples. The precision of an input is 

established by verifying that it is verifiable. Whenever 

a discriminant network module concludes that a 

sample is more likely to be accurate, it generates more 

accurate forecasts [80]. The generative network 

module increases the error probability of the 

discriminant network module with the assistance of 

the generative network module. As a result, both 

positive and destructive networks work together to 

achieve their goals. In GANs, generating and 

discriminant structural modules compete for resources 

[81]. 

The GAN's generative network module will only 

outperform other systems if it generates consistent 

output values (e.g., a vector of numbers creating an 

image). By using the discriminant network module's 

loss function gradient, we can train the generative 

network module and fine-tune its weight. Chemical 

structures (e.g., molecular compounds) are 

represented by text strings (e.g., SMILES) or graphical 

representations (e.g., molecular diagrams). Using 

GANs for chemistry (or informatics chemistry) poses 

a significant challenge [29]. 

There are several types of GAN architectures (e.g., 

GAN frameworks). Research has examined the 

Wasserstein GAN, the conditioned GAN, and the deep 

adversarial autoencoder. Arjovsky et al. [81] 

introduced a Wasserstein GAN structure leveraging 

Earth-Mover distance (also known as Wasserstein 

distance) to overcome the previously noted GAN 

training instability. Originally, GAN relied on Jensen-

Shannon divergence, which cannot be used to estimate 

the distance between distributions that do not overlap 

[82]. Conditional GANs based on extra input, such as 

class labels, were proposed by Mirza et al. [83]. The 

conditional GAN architecture (like class labels) uses a 

conditional variable instead of a conventional GAN 

design. Generated and discriminative networks both 

use conditional variables as inputs. A discriminative 

network module assigns classes to data, while a 

generative network module generates fake samples 

using hidden variables. Deep adversarial autoencoders 

[84] are subsets of GAN-based frameworks [85] that 

use GAN architecture to transform an autoencoder 

structure into a generative model. Autoencoders and 

adversarial networks make up deep adversarial 

autoencoders [86]. An auto-encoder module consists 

of both an encoder and a decoder. An encoder and a 

generative network module make up a deep 

adversarial encoding structure [87]. In addition, the 

adversarial network and autoencoder modules can run 

simultaneously under the deep adversarial 

autoencoder design. An adversarial autoencoder 

architecture [88] aims to ensure compatibility between 

the hidden prior distribution and the hidden data 

generated by a generative network module. 
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3. Molecular Properties Prediction 

The DL method has been used to predict the 

efficacy of drugs on several occasions. A number of 

studies have shown that DL can predict 

physicochemical characteristics, ADMET properties, 

and biological activity as well as other ML 

approaches. The first time DL was used in the drug 

discovery process was in 2012.   

A multitask deep feedback system outperformed 

Merck's own algorithms by a large margin (15%) in a 

competition to estimate the properties and activities of 

many medications. A data fusion network's 

effectiveness depends on the design of its architecture 

and the activation function, i.e., the number of hidden 

layers and the number of neurons in each layer [89, 

90]. 

To classify the toxicity of substances, Mayer et al. 

proposed an ensemble-based DeepTox pipeline 

model. A dataset of 12,000 environmental chemicals 

and medicines with up to 12 unique toxicology 

endpoints was used for 2014 Tox21 toxicology 

prediction challenge [91]. Our model outperforms 

previous ML techniques in nine of twelve hazardous 

outcomes. In several subsequent studies [92-94], 

ensemble multitask DL architectures were found to be 

superior to the Random Forest (RF) and single-task 

models for feature prediction. Furthermore, 

ChEMBL's temporal cross-validation and random 

split were used to prove the superiority of DL [95]. To 

classify drugs into therapeutic categories, Alper et al. 

employed DL methods trained on transcriptional 

response datasets to examine transcriptional patterns 

in a range of cell lines [96]. Some ML and 

chemoinformatics algorithms use graphs (such as 

molecular structure) instead of predefined chemical 

descriptors. To precisely classify the solubility of 

compounds in water, Lusci and collaborators 

developed UG-RNN (Undirected Recurrent Graph 

Neural Networks) [97]. As a result of this strategy, the 

correct chemical descriptors can be automatically 

learned from the data without requiring extensive 

selection. The same method was used by Xu et al. [98] 

to model Drug-Induced Liver Injury (DILI). In 

addition to 475 drugs used to train the model, 198 

pharmaceuticals were tested. In recent years, CNN has 

also been used to replicate chemical data. 

A continuous molecular fingerprint was generated 

from molecular graphs using CNN structure by 

Duvenaud et al. [99]. Using a CNN embedding of 

attributed molecular graphs (biological toxicity, 

melting point, and octanol and aqueous solubility), 

Coley and colleagues improved the predictive power 

of Duvenaud's structure. For generating the attributed 

graph representation of molecules, the architecture 

utilized a molecular tensor composed of bond-level 

and atom-level features [100]. 

In the training of RNN models, SMILES strings are 

used by a variety of methods. To generate predictive 

models without generating chemical descriptions, 

Bjerrum proposed using SMILES enumeration, a one-

line string identifying a molecule, as the unprocessed 

input to an LSTM cell-based NN [101]. Quantitative 

Structure–Activity Relationship (QSAR) models 

constructed using enumerated SMILES are 

statistically more reliable, both for predicting 

individual SMILES and for averaging predictions 

made using enumerated SMILES. Researchers have 

used two-dimensional molecule photographs with 

minimal chemical data to build structures that are, on 

average, comparable to DNN architecture trained on 

molecular fingerprints [102, 103]. 

4. DL in De Novo Design 

Based on practical tests, Figure 4 illustrates the 

stages of drug design using ML models. 

The principles of deep learning for the design of de 

novo drugs are similar to those of conventional de 

novo drug discovery [104, 105]. DL has been used to 

build molecules from scratch and retrieve their 

characteristics. A combination of Variational AE 

(VAE) and Molecular Logistic Programming (MLP) 

demonstrated the autonomous production of 

molecules with the desired attributes by Gomez-

Bombarelli et al. [106]. Using a collection of anti-

tumor drugs with varying potencies, Kadurin et al. 

[107] trained a dual-purpose adversarial AE. Using the 

developed model, molecular fingerprints with the 

necessary characteristics were produced. The 

chemical fingerprints of the generated compounds 

were startlingly similar to those of well-established, 

very effective anticancer drugs, such as 

anthracyclines. By considering other molecular 

qualities, such as solubility, authors introduced a 



 S S. Masoomkhah, et al.  

499    FBT, Vol. 11, No. 3 (Summer 2024) 492-508 

superior design called druGAN, which could produce 

more chemically different molecules [108]. This 

unique approach may benefit the pharmaceutical 

industry due to the improvements in feature extraction, 

generating capacity, and reconstruction error. By 

using antagonistic AE, Blaschke et al. [109] created 

drugs that target dopamine type 2 receptors. 

Remember that mode collapse [110, 111] can have 

negative consequences, resulting in a limited variety 

of molecules being synthesized. Some models avoid 

mode collapse [112, 113], but a reliable method still 

needs to be developed to assess the internal diversity 

of the molecules generated. RNNs are increasingly 

used for de novo chemical design. Using SMILES, a 

string-based representation of chemical graphs, Segler 

et al. [99] developed unique molecule libraries by 

combining transfer and reinforcement learning. LSTM 

models were either fine-tuned on a small number of 

known actives or coupled with external scoring 

mechanisms to generate new compounds with 

favorable activity against a particular biological target. 

An LSTM-based RNN strategy was extended by 

Gupta et al. [114] for both de novo and fragment-

based drug discovery. Reinforcement learning has 

been used by Guimaraes et al., Olivecrona et al., and 

Jaques et al. to impose desirable properties on 

molecular generative models [115-117]. 

Drug designs in this section have been developed in 

conjunction with automated technologies in industrial 

drug testing [42]. This is to facilitate the efficient 

management of screening sets containing hundreds or 

even millions of chemicals. This limitation, which 

involves a huge amount of drugs and chemical 

compounds, demonstrates that DL is a method that 

produces a huge amount of information [118]. By 

deepening their structures, adjusting different 

parameters, the option of entering more data, and the 

use of more powerful hardware, it makes it easier to 

design drugs. Additionally, according to the results of 

different approaches in this sector, DL models have 

been able to produce reliable results with less time and 

cost [119]. 

5. CNN Applications in Drug Discovery 

Deep CNNs are often used to learn the 3D 

structures of proteins and other small molecules [120, 

121]. Structure-based drug design relies heavily on 

therapeutic target scoring. A drug-target complex's 

binding posture and affinity can extend the success 

rate of virtual screening procedures [122, 123]. In 

comparison to other well-performing scoring 

functions built using linear and nonlinear techniques, 

CNN scoring functions demonstrate higher 

performance in predicting drug-target complex 

pose/affinity and detecting active/inactive molecules. 

A CNN that learns from protein structure data and 

can understand proteins as 2D and 3D images was 

developed by Jimenez et al. [124]. It performed better 

than other approaches when used to find ligand-

binding sites. KDEEP-based 3D graph CNN models 

were used by the same authors to forecast ligand-

protein binding affinities in 2018 [125]. A Pearson 

correlation of 0.82 and an RMS error of 1.27 were 

obtained for the model. Using CNN-based end-to-end 

(e2e) models, Zhao et al. [126] developed a drug-

target affinity prediction model. A model is trained 

 

Figure 4. This Figure illustrates how ML models can be used to design drugs based on practical tests 
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using medical drug SMILES sequences and protein 

amino acid sequences. A fully connected NN is 

employed to assess binding affinities, while a one-

dimensional Convolutional Neural Network (CNN) 

and attention processes are utilized to reconstruct 

representations between proteins and drugs. It 

improves drug-target affinity prediction by training 

the attention processes to focus on the most important 

parts of drug and protein sequences. 

By using CNNs with more appropriate architectures 

and enriched with convolutional learning models, the 

limitations in the models proposed by the researchers 

in this field have been overcome. Furthermore, 

researchers have developed e2e decision-making 

structures and optimized configurations through 

classical algorithms, fine-tuned the architectures, 

applied fusion techniques, and expanded the layers 

and depth of the models [127]. 

6. Applications of DL in Drug Chemical 

Synthesis 

Using ML and DL algorithms to predict chemical 

process outcomes [128-131]. Classification of 

response types [132, 133] and automated 

identification of the reaction center are typical 

statistical learning methods used by these instruments 

[134]. In retrosynthesis analysis, most DL approaches 

adopt similar principles; the primary difference lies in 

the molecular representations used. A sequence-to-

sequence (seq2seq) structure developed by Liu et al. 

[135] transforms a SMILES string representing a 

product into a SMILES string indicating a reactant. An 

LSTM network was trained on 50,000 responses from 

US patents, achieving parity with rule-based 

techniques. The authors of 2018 [136] proposed 

combining three DNNs with a Monte Carlo Tree 

Search (MCTS) architecture to predict chemical 

reactions. Reaxys database was used to train this 

algorithm, which now generates ideas at a rate and 

quality comparable to human-driven synthesis. We 

compared the different deep learning architectures and 

their uses in drug discovery and design in Table 1. 

To evaluate the result of a reaction, Coley et al. 

[137] used a NN to rank the candidates created by their 

use of reaction templates derived from US patents. 

Weisfeller-Lehman Network (WLN), a graph CNN 

(GCNN) that analyzes data about the neighbors of 

each atom, was used to grade applicants' responses. 

Due to the model's superior performance over 

template-based techniques and its greatly increased 

speed, it was able to apply it to a dataset containing 

close to 400,000 answers. In the same way, artificial 

intelligence systems perform admirably when applied 

to existing chemical processes. As part of an 

autonomous framework for optimizing chemical 

reaction conditions, Zhou et al. [138] proposed the 

Deep Reaction Optimizer (DRO), a model based on 

deep reinforcement learning. After being subjected to 

real-world reactions, the algorithm performed better. 

7. Limitation of DL in Drug Design 

DL can achieve high identification accuracy thanks 

to advances in feature learning, although a large 

training set is still needed for maximum performance. 

DL methods may not be as useful as conventional 

shallow ML techniques on sparse data due to their 

inability to produce meaningful estimates of 

generalization [139, 140]. DL techniques require 

improved hardware capabilities and programming 

skills, as the complexity of network methods increases 

the temporal complexity of DL techniques. The 

majority of data in real-world uses, such as medication 

research, are unlabeled despite their tremendous 

informational richness. It remains challenging to adapt 

algorithms for chemistry-centric modelling in small 

molecule drug development, especially for CNNs and 

RNNs, both of which are powerful but have 

substantial restrictions on input information formats. 

In contemporary cheminformatics research, molecular 

fingerprints [141-144], physicochemical properties, 

topological features, and thermodynamic properties 

[145, 146] are all considered in traditional ML models. 

In particular, DL modelling presents two crucial 

challenges: (1) how to design DL structures that 

abstract relevant features, and (2) how to interpret 

those features, given that DL approaches are a sort of 

representation learning that might automatically 

abstract features from raw data. The number of 

chemoinformatics data for DL modelling is much 

smaller than the amount of massive data employed to 

train DL architectures such as AlphaGo. It is difficult 

to develop individual models from big databases such 

as ChEMBL because there is a paucity of relevant data 

[147]. 
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Table 1. This table compares the different DL models and their uses in drug discovery and delivery or design 

Ref. DL model Target The reason 

[89] DNN 
Prediction of drug activities and 

properties 

In this study, it was demonstrated that DNN performance 

depends on both the network architecture and the 

activation function. 

[90] DeepTox toxicity prediction 

In DeepTox, models are generated, evaluated, and 

ensembles of promising results are gathered. A new 

chemical's toxicity can now be predicted using DeepTox. 

[96] DNN Classification of different drugs 

Training deep learning algorithms on huge transcriptional 

response datasets using transcriptional patterns in different 

cell lines. 

[97] UG-RNN 
Effective prediction of solubility of 

medicinal compounds in water 

The advantage of this approach is that it can be used to 

identify suitable molecular descriptors 

[98] CNN Chemical data modeling of drugs 
Using CNN to create continuous molecular fingerprints 

directly from molecular graphs 

[99] CNN Prediction of molecular properties 

This algorithm employed a molecular tensor that combined 

bond-level and atomic-level properties to depict the 

ascribed graph representation of molecules. 

[100] RNN 
Prediction without the need to 

create molecular descriptors 

Using SMILES counts as raw input to a cell-based LSTM 

NN to create predictive architectures 

[101] DNN Molecular fingerprint 

Using two-dimensional molecular images with minimal 

chemical information to improve algorithms for molecular 

fingerprint identification 

[124] CNN Detection of ligand-binding sites Protein structural identification as 3D images 

[126] CNN Predicting drug-target preference 
A CNN-based algorithm called Attention DTA added a 

mechanism to the process of predicting drug target liking. 

[136] DNN Prediction of chemical synthesis 

The model was trained on 12 million reactions from the 

Reaxys dataset and made super-fast recommendations for 

chemical synthesis predictions. 

 

Table 2. In this table, we compare various widely used deep learning frameworks used in the field of drug design based on 

their advantages and disadvantages 

DL methods Advantages Disadvantages 

AlexNet 

-Having more network depth by adding convolution layers 

-Faster training of models 

-Able to extract features 

AlexNet is not deep enough compared 

to later models such as VGGNet, 

GoogLENet and ResNet. 

GoogleNet 

-GoogleNet is faster compared to other image 

classification models such as VGG. 

-GoogleNet is much more compact compared to other 

architectures 

A drastic change from sequential 

architectures 

Spatial 

Pyramid 

Pooling (SPP) 

-They remove the limitation of the fixed size of the 

network, i.e., CNN does not need a fixed size input image. 
-It is very heavy in terms of processing 

Deep Belief 

Network 

(DBN) 

- Efficient in using hidden layers 

- It has a special strength in classification 

- It can be used on different programs and data types 

- Hardware requirements 

- The need for massive data to perform 

better techniques 

- The expensiveness of DBN training 

- The complexity of the model 

Difficulty using DBN 

Deep Boltzman 

-All variables of a layer can be updated in parallel 

-It is faster than standard Gibbs sampling 

-Provides examples of sufficient quality for quick learning. 

The most important disadvantage of 

Deep Boltzmann machines is that it has 

approximate inference. 

Sprase Auto 

- It can effectively extract data features, easily classify and 

extract stronger data features. 

-Compared with traditional BP neural network, sparse 

autoencoders can be used for effective error detection 

It relies heavily on engineering 

experiments and signal analysis 

experience. 

Sparse coding 

-Excellent at classifying images 

-Total energy consumption decreases with increasing 

dispersion. 

Need a large number of pattern images 

to recognize the target 
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There will be an increase in complexity in the 

creation of small-molecule drugs. A DL system must 

be capable of handling complex simulations, given its 

intended application. With DL techniques, it may be 

possible to integrate all information systems and reach 

a new level of AI in drug development. We should not 

limit ourselves to conventional predictions on 

biological activities, ADMET features, and 

pharmacokinetic simulations [148-150]. We have 

compared various widely used deep learning 

frameworks used in the field of drug design in 

previous works in Table 2. 

8. Conclusion 

The pharmaceutical industry has been profoundly 

impacted by recent advancements in AI, such as the 

expansion and growth of more complex ML 

approaches. In the development of drugs, artificial 

intelligence can alleviate some of the most significant 

challenges through in silico strategies for de novo drug 

synthesis, design, classification, and bioactivity 

categorization. In addition to training models on a 

single machine, GPUs can also be used to train 

models. In the future, the medical industry may save 

costs by training DL models for drug discovery and 

design. Accurate drug forecasts and defective drugs 

can be costly in industries such as medication 

production. Because of their unsupervised learning 

capability, DL models are often well worth the time 

and effort they require. In this way, data scientists can 

make more informed decisions based on the results. 

The article examines the theoretical underpinnings 

and recent, practical uses of DL in drug development 

and chemoinformatics. The success of conventional 

ML techniques, which rely on feature extraction and 

engineering, depends on human interaction. It is 

possible for deep learning to learn most or all of the 

features automatically if there are enough instances in 

the training data (many millions). To find more 

nuanced and consistent characteristics in input signals, 

DL models employ feature detector units’ layer by 

layer. At lower levels, information is gathered to train 

the higher levels to recognize increasingly complex 

characteristics. As opposed to this, traditional ML 

models often only display a few mapping layers from 

input characteristics to a problem-specific feature 

space. As opposed to traditional ML methods, DL 

methods can be employed across a broad scope of 

settings. TL can repurpose DL networks that have 

been trained for multiple tasks in the same domain. We 

wouldn't be able to say that DL is better than 

traditional ML even if we enumerated all its benefits. 

As of right now, there isn't a preferred method for 

fixing ML problems. If the issue contains mixed sets 

of chemical or target protein input descriptors, DL 

performs as well as traditional ML models. DL has 

been demonstrated to be much more effective at tasks 

such as classifying and analyzing biomedical images, 

predicting biological activity, and creating new 

molecules. This suggests that DL and ML can work 

together to extend the reach of drug discovery. 
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