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Abstract 

Purpose: Urine volume and urine conductivity monitoring allow better care for urinary tract infection disease. 

Urine volume and conductivity involve electrical bioimpedance change at the lower abdomen. In previous studies, 

bioimpedance has been only used for estimating the volume, and the estimation error significantly increases when 

the conductivity changes.  

Materials and Methods: In this work, the neuron network technique is proposed to determine both the volume 

and the conductivity based on the measured bioimpedance data on a sixteen-electrode configuration. Nine 

architectures of neuron networks were investigated by simulation. Eleven body models were created, consisting 

of muscle, fat, pelvis bone, rectum, and bladder. Seven bladder sizes, eleven conductivities, and eight levels of 

Signal-to-Noise Ratio (SNRs) were simulated. 

Results: The result showed that the neural network method could efficiently estimate with an average of 1.04% 

volume error and 2.85% conductivity error. The performance remained stable with a signal-to-noise ratio higher 

than 60 dB, but it may reduce 2-8 times at lower SNRs. The moderate fat content provided high performance. 

The performance would be worsened if the bladder size was very small and the conductivity was low. The 

performance was increased when the volume was moderate, i.e. 302 ml, and the conductivity was higher than 

1.76 S/m. The 3-layer architecture with 1024, 512, and 2 neurons yielded the highest performance. The 2-layer 

architecture with hidden neurons higher than 512 provided a comparative performance with only 0.9-1.5% lesser 

performance. 

Conclusion: Neural network technique can be used to estimate urine volume and urine conductivity with excellent 

performance. 

Keywords: Urine Volume; Urine Conductivity; Bladder; Fat Content; Neuron Network. 

 

 

 

 

 

 

 

 

 

 

 

 

ORIGINAL ARTICLE 

https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.18502/fbt.v11i3.15885
https://orcid.org/0000-0003-3451-7123


 Estimation of Urine Volume and Urine Conductivity Using Electrical Bioimpedance Based on the Neural Network Method   

FBT, Vol. 11, No. 3 (Summer 2024) 423-432 424 

1. Introduction  

Bladder dysfunction introduces an adverse impact on 

people. Dysfunctions may be caused by various 

pathophysiological conditions such as neurological 

disorders, muscular weakness, spinal cord injury, multiple 

sclerosis, and aging [1]. Losing bladder sensation to store 

or void the bladder severely impacts on an individual’s 

well-being and quality of life. Clean Intermittent 

Catheterization (CIC) is a conventional method to empty 

the bladder by invasively inserting the catheter into the 

urethra. However, it may result in urinary tract infection or 

renal reflux [2]. It potentially leads to dysreflexia, severe 

paroxysmal hypertension, and several other disorders [3]. 

Bladder monitoring for urine volume and conductivity is 

one of the effective ways to help. However, manual 

inspection for the time to empty the bladder based on the 

experience of nurses or physicians for personal nursing 

may be inappropriate in the long term.   

Ultrasound has been widely used in the clinic to 

measure bladder volume at the bedside [4]. However, 

although the accuracy and reliability are high, it requires 

professionals to operate and interpret. Using ultrasound as 

a routine procedure for continuous monitoring is still 

limited. Monitoring by measuring tissue bioimpedance is 

another promising option to determine fluid content [5-7] 

in the bladder, which is related to bladder volume [8-13] 

or pressure [14]. Principally, a small exciting current is 

initially introduced into the skin through a pair of 

electrodes. Bladder or urine volume change as well as the 

urine conductivity change will introduce corresponding 

voltages measurable on the skin which will be measured 

via additional pairs of electrodes. The measurement 

voltage is determined as the region bioimpedance that, 

therefore, can indicate the volume and the conductivity of 

urine in the bladder. [9] reported that every 50 ml of 

increasing bladder volume caused a 10-mV voltage 

increase. Conversely, [15-17] reported a negative 

relationship, and this relationship seems more rational 

since a volume increase indicates a region impedance 

decreases and implicitly a voltage decrease. The 

inconsistency could be due to the different measurement 

procedures or possibly improper control of other organs’ 

activity. When the two-electrode configuration with 60 

kHz 1 mA current was used, a change of the voltage of 

approximately 3% occurred at the 400 ml volume change 

[15]. Whereas, with the four-electrode configuration with 

10 kHz 1 mA current, the maximum voltage changes of 

8.1-21.5% weres found at the 1000 ml volume change 

(this depended on the measuring location) [16]. [18] also 

found based on the simulation that the voltage change was 

4% with the adjacent current pattern (which is one of the 

most widely-used patterns) when the volume was changed 

by 150 ml, but it could be up to 7% when using the 

opposite current pattern. Another traditional way to use the 

voltage data when a measurement is performed at several 

locations of the abdomen is to reconstruct a 2-D 

impedance image of the bladder by Electrical Impedance 

Tomography (EIT) technique [17, 19, 20]. However, 

using the image to estimate the volume is inaccurate due 

to the image's reconstruction artifact [20]. It is also 

sensitive to noise and the urine’s conductivity. Therefore, 

some studies did not directly determine the volume from 

the pixels in the reconstruction EIT image [15, 19]. 

Instead, the image was transformed to the global 

impedance of the lower abdomen. Like the previous way, 

the correlation between the global impedance and the 

volume was studied and it was reported to have a good 

correlation [17, 19]. [17] and [19] used 5 mArms at 50 kHz 

current on a 16-electrode scheme and performed on nine 

and ten volunteers, respectively. However, some 

inconsistent correlations were also found in [17]. This is 

possibly due to the non-linear effect of impedance change 

that needs individual calibration for estimation [21]. [19] 

found that volume estimation using impedance-based 

measurement was consistent with that using ultrasound 

devices. However, the impedance-based method showed 

a significant error when estimating residual urine. 

Furthermore, the measured impedance was also greatly 

interfered with body movement caused by abdominal 

muscle contraction and relaxation. Electrode 

configuration was also investigated in [19]. Using many 

electrode planes results in better bladder volume 

estimation.  

The machine learning method is another way to exploit 

the voltage information to estimate the bladder or urine 

volume [10, 20], which benefits from a smaller 

computation load. Voltage information can be 

transformed to volume directly without the need for 

reconstruction. [20] simulated the volume change based 

on a single-plane electrode scheme and estimated the 

volume by a 3-layer neuron network. However, even 

though the relative estimation error of less than 2% was 

found, this error was still more significant than that 

estimated by using global impedance. The error was even 

more prominent when the noise was higher and when 

urine conductivity was varied. Recently, [10] investigated 
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the use of support vector machines and the k-Nearest-

Neighbours technique to classify the bladder state as full 

and not full. Electrode configuration was a single-plane 

32-electrode scheme with 5 mA at 50 kHz current, and the 

study carried out simulation and phantom tests. For all 

methods, accuracies ranging between 73% and 100% 

were found, and they were all tolerant to noise (even at the 

signal-to-noise ratio of 20 dB). The k-Nearest-Neighbours 

technique showed a larger error at large bladder volumes 

but a smaller error at small volumes. The variance of urine 

conductivity caused an estimation error of the bladder 

volume of up to 200%. It is worth noting that only bladder 

and skin geometry were included in these studies. It could 

be noticeable that, to our knowledge, urine conductivity 

has not been estimated or used by any studies to date. 

Since urine conductivity may affect the performance of 

volume estimation, including urine conductivity in the 

training process may improve estimation performance 

comparatively. Furthermore, a kidney infection is an 

unexpected consequence of Clean Intermittent 

Catheterization (CIC) to empty the bladder. Knowing 

urine conductivity could be a benefit as an indicator for 

determining patient well-being as well. 

In this study, the urine (or bladder) volume and urine 

conductivity were estimated by various configurations of 

neuron networks based on simulation. Urine conductivity 

was here included to improve the performance of the 

estimation used in various circumstances. The simulation 

was carried out in a 2-plane configuration with 16 

electrodes. The body model included bladder, pelvis bone, 

and rectum geometry. Fat was also added with 11 

schemes. Seven bladder sizes were generated, and values 

of urine conductivity were investigated. 

2. Materials and Methods  

2.1. Simulation Model and Electrode 

Configuration    

Voltage information in the simulation was obtained 

from 11 geometries of a lower male body where the 

fat amounts were different. A Finite Element Method 

(FEM) model of each geometry was constructed 

(Figure 1) Each model contained five different tissues: 

muscle, fat, pelvis bone, rectum, and bladder (Figure 

2a and 3) Fat was added around the lower body as 

shown in Figure 3. Since the maximum urine volume 

in an adult is 400 ml and it could be down to 118 ml 

in some cases [22, 23], seven sizes of the bladder were 

simulated with the volume of 153, 220, 264, 302, 341, 

377, and 399 ml (Figure 2b) Therefore, 77 models 

were used where the number of elements was between 

199,043 and 208,902. The conductivity of the muscle, 

fat, bone, and rectum (large intestine contents) was 

based on 10 kHz, i.e., 0.34083 [16], 0.02383 [16], 

0.02043 [16], and 0.35 siemens per meter (S/m) [24], 

respectively. Eleven conductivities of urine (filled in 

the bladder) were simulated i.e., 0.50, 0.71, 0.92, 1.13, 

1.34, 1.55, 1.76, 1.97, 2.18, 2.39, and 2.60 S/m. 

Sixteen electrodes in two planes were used, as 

shown in Figure 4. The number of electrodes is 

sufficient and suitable for skin attachment [18, 25]. 

The first and second planes were at 880 and 800 mm 

from the feet. The circumferences of the body at the 

planes are shown in Table 1. The models were used to 

calculate the boundary voltage information according 

to Equations 1-4 [26] where 𝜎 is the conductivity 

distribution, x is a point in the volume 𝛺, u is the 

potential distribution, n is the normal vector on the 

boundary surface s, 𝐼el is the injection current applied 

at excitation electrodes, Vel is the boundary voltage 

measured at electrodes, zel is the electrode contact 

impedance, and 𝑉𝑒𝑙 is the volume at the electrode 

surface. Principally, a small current is injected into a 

pair of boundary electrodes and the corresponding 

voltage is measured on other electrodes. The current is 

applied on different pairs (i.e. different excitation 

patterns) to observe different responses due to 

different regional conductivity distributions. 

 𝛻 • (𝜎(𝑥)𝛻𝑢(𝑥)) = 0 𝑥 ∈ 𝛺 (1) 

 ∫ 𝜎(𝑥)
𝜕𝑢(𝑥)

𝜕𝑛𝑒𝑙

𝑑𝑠 = 𝐼𝑒𝑙  𝑥 ∈ 𝛺𝑒𝑙 (2) 

 𝜎(𝑥)
𝜕𝑢(𝑥)

𝜕𝑛
= 0 𝑥 ∉ 𝛺𝑒𝑙  (3) 

 𝑢(𝑥) + 𝑧𝑒𝑙𝜎(𝑥)
𝜕𝑢(𝑥)

𝜕𝑛
= 𝑉𝑒𝑙 

𝑥 ∈ 𝛺𝑒𝑙 (4) 

The number of current patterns was 24, all in the 

adjacent pattern. The total number of measurements 

was 456. The current was set to 1 mArms, and the 

contact impedance was set to 1200 . Eight degrees 

of Signal-to-Noise Ratio (SNR) were implemented 

i.e., 110, 100, 90, 80, 70, 60, 50, and 40 dB. Voltages 

were repeatedly generated with different random seeds 

from each SNR. Therefore, there were 135,520 
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datasets of voltage data. EIDORS software 

(https://eidors3d.sourceforge.net/) was used to 

generate the voltage datasets [26]. 

2.2. Dataset Preparation and Neural Network 

Architecture 

Voltage data was associated with both 

circumferences (at the height of the electrode places) 

to use as the input of neural networks. Therefore, the 

number of the input was 458. Two outputs were 

expected, i.e., urine volume and urine conductivity. 

The dataset was divided into three sets, i.e., training, 

validating, and testing datasets with the ratio of 60%, 

20%, and 20%, respectively. Nine neural architectures 

(based on the multilayer perceptron: MLP) with two 

or three layers were investigated in this study, i.e., 

(two-layer architecture) 458-32-2, 458-128-2, 458-

512-2, 458-1024-2, and (three-layer architecture) 458-

512-128-2, 458-512-256-2, 458-1024-128-2, 458-

1024-256-2, and 458-1024-512-2. The first and the 

last numbers are the input and output numbers, 

respectively. The second number is the number of 

neurons in the hidden layer next to the input layer. The 

third number for the three-layer architecture is the 

number of neurons of the next hidden layer. 

Sixty percent (81,312 data) of the dataset was 

prepared for the training dataset. Another 20% and 

20% (27,104 data each) were used for the validating 

and testing dataset. Input and output were normalized 

before training. The activation functions used for all 

hidden layers and the input layer were ReLU 

(Rectified Linear Unit), and those of the output layers 

were Linear. Dropout layers were added and were 

varied with the rates of 0%, 10%, 30%, 50%, and 70% 

to gain the best estimation. The batch size was also 

varied with 32, 64, 128, and 256. Adam optimizer was 

selected with a training parameter of 0.9 and 0.999 of 

Beta1 and Beta2, respectively, and with learning rates 

of 1x10-4, 1x10-5, 1x10-6, and 1x10-7. These 

hyperparameters, i.e., dropout rate, batch size, and 

learning rate were empirically investigated to have the 

minimum training and validating loss. The maximum 

number of epochs for all cases was set at 10000 while 

the early stopping setting was applied, determined 

from the validation loss keeping a minimum of 50 

times. The loss function was MSE (mean squared 

error) function. The training was performed on Keras 

machine learning version 2.2.4 based on the 

Tensorflow platform (https://www.tensorflow.org/) 

version 2.10. The prediction accuracy was determined 

from the Mean Absolute Percentage Error (MAPE) as 

shown in Equation 5, where N is the number of 

estimates, T is the target (exact) value, and E is the 

estimation value. In our case, T is the true simulated 

value of the urine volumes or of the urine 

conductivities; and E is the prediction value of the 

urine volumes or of the urine conductivities. 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑|

𝑇 − 𝐸

𝑇
|

𝑁

1

 (5) 

 

 

 

 

 

 

 

 

 

3. Results  

3.1. Network Architectures   

The estimation results regarding the architectures 

used are shown in Table 2. Overall, the 2-layer 

networks gave the best estimation error of 1.6% for the 

volume estimation and 3.9% for the urine conductivity 

estimation. 

 

Figure 1. Lower body geometries with different fat content 

 

Figure 2. (a) (From the left to the right) Muscle, pelvis bone, 

rectum, and bladder, (b) Various sizes of bladder used in the 

study: 153, 220, 264, 302, 341, 377, and 399 ml 
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The 3-layer networks showed insignificant differences 

of 1.04% and 2.85% for the volume and the conductivity 

estimation error, respectively. The volume estimation was 

more accurate than the conductivity by 2.4 times. In the case 

of the 2-layer architecture, using the number of neurons that 

was less than 512 resulted in a significantly larger error for 

both predicting parameters. In general, the larger number of 

neurons resulted in a smaller error. For all cases, the number 

of neurons of the layer before the output layer had a more 

substantial influence on having a small error. For example, 

in the 3-layer architecture, the double of neurons from 128 

to 256 can reduce the error by 0.48%-0.74% and 0.49%-

0.84% for the volume and the conductivity estimation, 

respectively. It is also noticeable that the number of neurons 

 

Figure 3. Model sections, each consists of muscle (grey) pelvis bone (yellow), rectum (dark red), bladder (blue), and fat (pink)    

 

 

Table 1. Circumferences of different models    

Model 

Circumference 

at the lower 

electrode 

plane (mm) 

Circumference 

at the upper 

electrode 

plane (mm) 

Fat volume 

(ml) 

FAT1 921.0 889.5 0 

FAT2 922.8 901.3 411 

FAT3 938.9 917.1 614 

FAT4 957.3 976.4 2157 

FAT5 993.2 1002.4 3041 

FAT6 1020.5 1032.6 4113 

FAT7 1027.2 1066.7 5084 

FAT8 1124.5 1173.1 9573 

FAT9 1159.2 1204.0 11498 

FAT10 1257.1 1374.5 19069 

FAT11 1296.3 1414.2 21735 

 

 

Figure 4. Position of the electrodes 

Table 2. Estimation Performance    

Architecture 
MAPE of urine 

volume (%) 

MAPE of 

urine 

conductivity 

(%) 

2-layer   

458-32-2 6.0293 12.3632 

458-128-2 3.2455 7.5136 

458-512-2 1.8929 4.3735 

458-1024-2 1.6093 3.9180 

3-layer   

458-512-128-2 2.0062 4.3096 

458-512-256-2 1.5276 3.8174 

458-1024-128-2 2.1243 4.2490 

458-1024-256-2 1.3884 3.4104 

458-1024-512-2 1.0229 2.8500 
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of the hidden layer next to the input layer for the case of 3-

layer architecture had a lesser influence. 

3.2. Training Hyperparameters 

The training hyperparameters were investigated. 

However, due to a large number of results, only the 

investigation on the 458-1024-512-2 network is shown 

here, as in Figure 5. The extensive learning rate resulted in 

an inferior error. The minimum learning rate (1x10-7) 

resulted in enormous computation time, but no significant 

improvement could be observed (Figure 5a) When smaller 

batch sizes were employed, a slight improvement could be 

observed. Still, this improvement was not comparable to 

the substantial increase in the computation time (Figure 

5b) In the case of dropout rate, in general, the increase in 

dropout rate caused an increase in error (Figure 5c) It is 

beneficial to notice that even at zero percent dropout rate, 

the estimation was still able to converge. 

3.3. Estimation Performance 

The result of the noise susceptibility investigation is 

shown in Figure 6. When the SNR was over 60 dB, the 

prediction performance was stable. The performance was 

slightly reduced at 60 dB, 2-3 times at 50 dB, and 6-8 

times at 40 dB for both estimates (however, the 

performance of the urine conductivity estimation was 

worse.) The errors could be up to 3.6% and 10.3% for the 

volume and conductivity estimations, respectively. In the 

case of fat content variance, the error was small at the 

moderate body size (moderate fat amount), i.e., the hip 

circumference between 1002-1066 mm (Figure 7) The 

error varied between 0.6% and 1.6% for the volume 

estimation, significantly larger in the range of 1.7% and 

6.4% for urine conductivity estimation. The sizeable fat 

content tended to have a poorer estimation outcome, 

especially for the urine conductivity estimation. 

The overall estimation performance for the urine 

volume and urine conductivity is shown in Figure 8 and 

Figure 9. The moderate bladder size, i.e., 302 ml, and the 

high conductive urine, i.e., greater than 1.76 S/m resulted 

in a small estimation error (it could be down to 0.77% and 

2.44% for the volume and the conductivity estimation, 

respectively.) The smallest bladder size, i.e., 153 ml, 

caused approximately 70% larger error in the volume 

estimation and a 30% larger error in the conductivity 

estimation. The slightest conductive urine caused the 

increase of both errors by approximately two times. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. (a) Estimation error and computation time of 

different learning rates, (b) Estimation error and 

computation time of different batch sizes, (c) Estimation 

error of different dropout rates  
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Figure 6. Estimation error of different SNRs 
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4. Discussion  

The neural network method has been demonstrated by 

simulation that it can be used to estimate the bladder or 

urine volume and urine conductivity in different 

circumstances. The estimation errors for the volume and 

conductivity in this study were less than 1% and 2.9%, 

respectively. This was consistent with that reported in 

[10], which was simply based on binary classification 

between full and not full bladder state. The error found 

in [10] was approximately between 1% and 3%. [20] also 

used the neuron network method for continuous 

monitoring bladder volume in a body geometry and 

found that the error was between 0.81% and 1.94% (a 

simulation basis). However, [10] and [20] did not include 

fat, bone, and rectum and did not estimate urine 

conductivity. [20] reported that when the conductivity 

was changed, the estimation error of the volume could be 

significantly increased by 200%. Even though the 

simulation situations in this study are more complicated 

and the urine conductivity is varied, with the proposed 

architecture, the estimation errors are approximately the 

same degree of error as reported in the previous studies. 

Furthermore, [10] and [20] used a single-plane electrode 

configuration. The single-plane electrode configuration 

could be too simple in the estimation, as [19] 

recommended using multiplane electrode 

configurations. In this study, a 2-plane scenario was 

applied. Regarding the network architecture, the 

extensive network structure, i.e., 3 layers and lots of 

neurons, outperformed the rest. The estimation error of 

the 458-1024-512-2 network, the most extensive 

architecture, was only 1.02% and 2.85% for the urine 

volume and urine conductivity, respectively. A further 

investigation also found that the coefficient of 

determination of this architecture is 99.53% and 97.92% 

for the urine volume and urine conductivity, 

respectively, which all are high. However, the 2-layer 

architecture with a higher number of neurons is still 

attractive since the performance insignificantly 

decreased, but the training time is considerably reduced. 

The performance depends on the number of layer 

neurons before the output layer rather than the number of 

layers next to the input layer (for the 3-layer structure), 

as expected, since the sensitivity of the layer close to the 

output layer is higher than those are close to the input 

layer. This is regarding the characteristic of the 

backpropagation algorithm. The small learning rate 

surprisingly resulted in a poorer outcome. This was 

because the estimation loss decreased too slowly, and the 

early stopping condition was met before the optimum fit. 

In the case of batch size, the computation time increased 

exponentially with the small batch size while the 

performance was slightly increased. This phenomenon 

would be worse if the number of neurons was increased. 

Therefore, a large batch size is then advised here. In the 

case of dropout rate selection, a higher dropout rate 

caused a larger error, which is rational since the rate of 

forgetting in training weights is higher. The optimal 

dropout rate is 10%. It is interesting that even with a zero 

 

Figure 7. Estimation error of different fat contents 
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Figure 8. Estimation error of different urine volumes 
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Figure 9. Estimation error of different urine conductivities 
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dropout rate, the estimation outcome was slightly 

different from that used in the best dropout rate, i.e., 10%. 

This could indicate a low degree of complexity for this 

estimation problem. And this could reinforce the 

previous opinion that the 2-layer architecture should be 

adequate. 

Noise susceptibility in this study was consistent with 

that reported in [20]. However, this is not comparable 

with that reported in [10], where the noise level could be 

down to 20 dB-SNR. However, the study of [10] was 

performed based on a binary classification of the state of 

“full” and “empty” bladder, which may not be 

comparable. Interestingly, the very small or no fat 

content and the large fat content caused poor estimation 

performance. This is rational since the estimation of the 

small and the large fat content requires extrapolation in 

the estimation. Fitting the neural network outputs at the 

moderate fat content was then easier. This manner seems 

similar to [20], where a poorer estimation outcome was 

noticeable at the two ends of the estimation range of 

bladder volumes. Additionally, this could be explained 

by the massive fat content degrading the sensitivity to the 

conductivity change inside the bladder region. Therefore, 

the large fat content had a larger error than the smaller or 

no fat content. 

The bladder or urine volume estimation was 

significantly more accurate than the urine conductivity 

estimation. Since urine is more conductive than the 

surrounding tissue, the larger volume results in higher 

sensitivity. The estimation error of the volume was 

similar to the fat content, i.e., the smallest and the most 

significant size tended to have a larger error. The large 

size of the bladder is supportive of estimating urine 

conductivity. The larger volume tends to have higher 

accuracy because of the higher sensitivity. This causes a 

larger voltage response on the skin. The small bladder 

size was more complex in all cases to estimate due to the 

low sensitivity. 

Urine conductivity could vary according to salt or 

water intake, which was practically difficult to control. 

The estimation of the volume is then advisable to include 

urine conductivity as a crucial parameter. Urine 

conductivity can result in the increase of the volume 

estimation error to 2 times. Regarding the estimation 

error of the urine conductivity, the error was high at the 

low and high conductivity, similar to the urine volume 

estimation. The very low conductivity had a more 

significant error due to the conductivity being close to the 

surrounding tissues. The low conductivity also caused 

difficulty in estimating the urine volume for the same 

reason. 

Neural network classifier requires a long training time, 

but after finishing training, the trained model could 

predict in hundred milliseconds. The training duration 

depends on the architecture, the training parameters, and 

the number of training data. In this work, with the 458-

1024-512-2 network, the training duration was between 

16 minutes and 2 hours. The prediction time was less 

than 1 second. Compared with the traditional method to 

estimate based on image reconstruction [17, 19, 20], the 

voltage information needs to be reconstructed first. 

Regarding [27, 28] which used approximately the same 

number of measurements and the number of 3D FEM 

model elements, the reconstruction time of each data was 

40 minutes while 900 Mbytes memory was needed. 

Moreover, to estimate the volume or the conductivity, 

further processing time is also required. This indicates 

that estimation based on neural network technique can 

substantially reduce estimation time by at least 2400 

times. Therefore, this is unavoidable for the traditional 

method to reduce the fineness of the FEM model or to 

use a 2D FEM model to reduce the computational time 

and resources, and this will impact the accuracy of the 

estimation. Estimation with a neural network classifier 

then can reduce computation time and resources while 

the estimation accuracy remains high.  

It is worth mentioning that this work is based on 

simulation. Validation of experiment data is necessary. 

According to the result, we highly recommend collecting 

both the volume and urine conductivity during the 

experiment to have better prediction results. 

5. Conclusion 

This study implemented the neuron network method 

to estimate the bladder or urine volume and urine 

conductivity. Simulation results on a complex body 

structure showed that the neuron network method could 

be used with various body sizes, urine volumes, and 

urine conductivities, and it is also noise tolerant. 

Compared with other methods like ultrasound or global 

impedance monitoring, this method is simple and fast, 

and requires less computation. The performance in the 

case of volume estimation is higher than in the case of 

urine conductivity estimation. The estimation 

performance could be reduced when the body size is too 
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slim or too fat, as well as when the bladder size is very 

small, or the urine has very low conductivity. 
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