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Abstract 

Purpose: Medical professionals throughout the world prefer to use conventional stethoscopes to listen to respiratory 

sounds. Listening to respiratory sounds through stethoscopes is a subjective matter, and proper diagnosis of the 

disease depends on the skills and ability of the doctor. Computerized analysis of respiratory sounds can help doctors 

and researchers to characterize different abnormal respiratory patterns and make informed decisions. 

Materials and Methods: This study includes previously reported work in different normal and abnormal respiratory 

sounds. The IEEE, PubMed, Google Scholar and Elsevier databases were searched and studies with the keywords 

of lung sound analysis, respiratory sound analysis, and respiratory sound classification were included. Detailed 

characteristics of normal and abnormal respiratory sounds are mentioned. In addition, Time-amplitude characteristics 

of different respiratory sound plots are obtained using MATLAB and ICBHI database. This study systematically 

discusses different approaches for respiratory sound analysis like visual analysis of the time-amplitude signals, 

frequency analysis, and spectral analysis using fast Fourier transform, statistical analysis, and machine learning 

approach. A list of relevant datasets is mentioned that can help researchers to do further analysis in this domain. 

Results: The careful observations and analysis show the possibility of predicting respiratory diseases by extracting 

suitable parameters such as the frequency response and spectral characteristics of the signal. Power spectral density 

can help us to calculate the maximum, median frequency over an extended period. Using machine learning we can 

estimate the energy, entropy, spectral features, and wavelets of the signals. 

Conclusion: Computer-based respiratory sound analysis can help medical professionals in making informed 

decisions. This will help in early diagnosis and devise effective treatment plans for the patients. 

Keywords: Respiratory Sound Analysis; Respiratory Sound Classification; Adventitious Respiratory Sounds; 

Datasets; Spectral Analysis; Time Frequency Analysis. 
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1. Introduction  

According to World Health Organization (WHO) data 

(2019), the third leading cause of death worldwide 

is due to respiratory diseases. Close to 6% of deaths 

happened globally due to Chronic Obstructive Pulmonary 

Disease (COPD). Lower Respiratory Tract Infection 

(LRTI) happens to be the fourth leading cause of death 

claiming 2.6 million lives globally [1]. Some of the 

factors leading to an increase in respiratory diseases are 

due to the increased consumption of tobacco and cigarette 

smoking, the adoption of the western lifestyle, and an 

increase in urbanization causing a release of toxic fumes 

into the environment [2]. The increase in the prevalence 

of respiratory disease poses a health risk to patients and 

put a lot of social and economic burden on the existing 

healthcare infrastructure for a developing country like 

India [3]. In the last two decades, there have been 

significant efforts in the timely and early diagnosis of 

respiratory diseases, and efforts are in developing systems 

that can help clinicians in providing timely interventions 

[4]. 

Lung auscultation is an important examination and 

helps physicians in diagnosing respiratory disorders. In 

the early 1800, Rene-Theophile-Hyacinthe-Laennec [5] 

invented the stethoscope. Since then, the stethoscope 

has been used by doctors and clinicians throughout the 

world for lung and heart auscultation. In 1817, Laennec 

[5] demonstrated the early prototype of the stethoscope 

consisting of a cone made up of 24 sheets of paper. Since 

then, researchers including Bowles, Sprague, Rapport 

and Groom [5] tried to modify the original design. In 1855 

Dr. George Cammann [5] introduced the first binaural 

stethoscope consisting of two tubes for the earpiece. 

Although stethoscopes have been in mainstream for 

listening to lung and respiratory sounds, it is a subjective 

matter as the clinical diagnosis depends on the doctor’s 

experience, knowledge, and judgment. There is a limited 

application of stethoscope in research due to inherent 

inter-observer variability and differences in the 

interpretation of the respiratory sounds from physician 

to physician [6]. This limitation can be overcome by 

using electronic auscultation and automated classification 

of recorded respiratory sounds. Digital recording of the 

respiratory sounds and its subsequent analysis is not 

only reliable but also helps in the quantitative analysis 

of respiratory disease. 

2. Normal and Abnormal Respiratory 

Sounds 

Normal respiratory sounds are classified based on 

the location of the chest from where they are heard or 

generated. These respiratory sounds may have different 

characteristics like time duration, frequency, and intensity 

or amplitude of signal. The characteristics of normal 

respiratory sounds are described below. 

2.1.  Normal Respiratory Sounds 

2.1.1.  Vesicular Sounds 

Normal vesicular sounds are characterized as being 

soft and non-musical, and are prominently heard during 

the inspiration and early expiration phase. The frequency 

heard is higher in the inspiration as compared to the 

expiration phase. Vesicular sounds have a longer duration 

in the inspiration phase as compared to expiration. These 

sounds have a low frequency with a drop in energy around 

100 Hz-200 Hz [7]. Time-amplitude plot for normal 

respiratory sound is shown in Figure 1. 

2.1.2.  Bronchial Sounds 

Bronchial sounds are high-pitched sounds that are 

usually heard over the large airways on the chest, in 

between the second and third intercostal space. They 

can be heard during both the inspiratory and expiratory 

phases. The intensity and time duration of the sound 

during the expiratory phase is normally longer than the 

inspiratory phase. It is also noticed that there is a short 

pause between consecutive breathing cycles [7]. 

 

Figure 1. Time-amplitude plot for a normal respiratory 

sound 
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2.1.3.  Tracheal Sounds 

Tracheal sounds are heard over the trachea and are 

usually loud and high-pitched. The frequency of tracheal 

sound varies from 100 to 5000 Hz [7]. As compared to 

normal lung sounds, the tracheal sound has a wider 

frequency range with a sharp drop in energy at a 

frequency of 800 Hz [8]. Listening to tracheal sounds 

is not a routine procedure, but it can be beneficial in 

understanding bronchial breath sounds and detecting 

upper airway obstruction. 

2.1.4.  Mouth Sounds  

The central airways, which are influenced by turbulent 

airflow below the glottis, produce breath sounds that are 

audible from the mouth. The frequency range of breath 

sounds ranges from 200 to 2000 Hz [9]. In many cases, 

a normal person should not make any sounds from the 

mouth. 

2.2.  Adventitious Respiratory Sounds 

The term "adventitious respiratory sound" describes 

unnatural sounds that are present in addition to regular 

breathing sounds. Adventitious respiratory sounds can 

be continuous or discontinuous. Continuous Adventitious 

respiratory Sounds (CAS) are abnormal and superimposed 

on normal respiratory sounds for more than 250 msec 

in one respiratory cycle. 

Discontinuous respiratory sounds, on the other hand, 

are superimposed on normal breath sounds for a short 

period of time, typically less than 25 msec in one 

respiratory cycle.  

2.2.1.  Wheeze and Rhonchi 

Both wheeze and rhonchi are CAS. Rhonchi is low-

pitched, whereas wheeze is high-pitched. While the 

thickening of mucus in the bigger airways can induce 

rhonchi, the narrowing of the airways is typically what 

causes wheeze sounds. Wheeze and rhonchi both exhibit 

sinusoidal-like signals with frequencies ranging from 100 

to 1000 Hz. Rhonchi is a low-pitched continuous sound 

with a prominent frequency of no more than 200 Hz, 

whereas wheeze is defined as a high-pitched continuous 

sound with a minimum of 400 Hz. Asthma, COPD, and 

the presence of a tumor can lead to the generation of 

wheeze, whereas bronchitis and COPD can result in the 

generation of rhonchi [9]. Time-amplitude plot for the 

wheeze respiratory sound is shown in Figure 2. 

2.2.2.  Stridor 

The presence of high-pitched CAS with a frequency 

greater than 500 Hz and duration greater than 250 

msec is what defines stridor. The factors that contribute 

to stridor are turbulent airflow in the larynx and bronchial 

tree. Stridor is a sign of conditions such as laryngeal 

oedema, croup, and epiglottitis [9]. 

2.2.3.  Squawk 

During the inspiratory stage of the respiratory cycle, 

squawks can be clearly heard. Squawk is caused by 

oscillations in the peripheral airways. They are also 

known as short wheezes because of their low pitch and 

brief duration. Squawk typically has a frequency of 

200 to 300 Hz. Presence of squawk is an indication of 

pneumonia [9]. 

2.2.4.  Crackle 

Crackle is a Discontinuous Adventitious respiratory 

Sound (DAS). They can also be divided into two 

categories: coarse crackle and fine crackle. Low-pitched 

coarse crackles with a frequency of about 350 Hz and 

duration of about 15 msec are well recognized. High-

pitched fine crackles have a frequency of about 650 Hz 

and short duration of only 5 msec. Crackles may develop 

as a result of chronic bronchitis, bronchiectasis pneumonia, 

congestive heart failure, and lung fibrosis [9]. Time-

amplitude plot for the crackle respiratory sound is shown 

in Figure 3.  

 

Figure 2. Time-amplitude plot for wheeze respiratory 

sound 
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2.2.5.  Pleural Rubs 

A low-pitched DAS with a frequency of about 350 Hz 

and duration of less than 15 msec is called pleural rub. 

Rubs are caused by the pleural membranes rubbing 

against one another when breathing. They are brought 

on by pleural membrane inflammation, while pleural 

tumors may also contribute to their development [9].  

Table 1 highlights the characteristics of normal and 

adventitious respiratory sounds [9, 10]. 

3. Dataset available for Respiratory Sounds 

A central problem in the development of computerized 

respiratory sound analysis is the availability of public 

databases that can help researchers to develop algorithms 

and differentiate results. As shown in Table 2, Pramono 

et al. (2017) highlighted 13 publicly available databases 

used by several researchers. The database, which has 

attracted many researchers, is the R.A.L.E repository 

and audio CD from Understanding Lung Sounds 3rd 

edition [11]. The only constraint with these databases 

is the limited number of samples available for each 

respiratory sound. 

At the 2017 International Conference on Biomedical 

and Health Informatics (ICBHI), two independent 

research teams from Portugal and Greece collected and 

created a database of various respiratory sounds, which 

was an impressive accomplishment. The database is 

made up of 5.5 hours of recordings made from 126 

patients and contains 6898 respiratory cycles, of which 

1864 have wheezes, 886 have crackles, and 506 have 

both. Many researchers in respiratory sound analysis view 

this database as a gold standard [3]. 

Researchers who aim to collect their own recordings 

will have to design an instrumentation system. Here 

the respiratory sounds are recorded either by electret 

microphones or sensitive accelerometers. This will 

be followed by suitable amplifiers and filters in the 

bandwidth of 50–2500 Hz. This data can be digitized at 

a sampling rate greater than 5kHz and acquired using a 

Data Acquisition system (DAQ). The factors that need 

to be considered here are the cut-off frequencies of the 

associated filters, the sensitivity of the sensors selected, 

the effective output voltage of the amplifier to be matched 

with the input range of DAQ, the impedance of the 

amplifier, and the sampling rate of DAQ [12]. 

Table 1. Characteristics of respiratory sounds [9][10] 

Respiratory 

Sound 

Continuous/ 

Discontinuous 

Frequency 

(Hz) 

Duration 

(ms) 
Cause Disease 

Normal Continuous 150-1000 5000 Normal NA 

Wheeze Continuous >400 >250 Airway narrowing Asthma, Pneumonia 

Rhonchi Continuous <200 >250 Bronchial secretions COPD, Bronchitis 

Stridor Continuous >500 >250 Turbulent airflow Epiglottitis, Foreign body 

Squawk Continuous 200-300 ±200 Airway oscillations Pneumonia 

Coarse Crackle Discontinuous 350 <30 Air bubble in large bronchi 
Bronchitis, 

Bronchiectasis, COPD, Pneumonia, 

Fine Crackle Discontinuous 650 <10 
Explosive openings of small 

airways 

Congestive heart failure, Lung 

fibrosis 

Pleural Rubs Discontinuous 350 >15 
Rubbing of pleural 

membranes 
Membrane inflammation, Tumours 

 

 

Figure 3. Time-amplitude plot for crackle respiratory 

sound 
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4. Approaches for Respiratory Sound 

Analysis 

Several approaches have been used for respiratory 

sound analysis. In a visual analysis of the respiratory 

sound signal, the signals are plotted in the form of a 

spectrogram. A spectrogram is a visual representation 

of the spectrum of frequencies of a signal as it varies 

with time. The resultant waveform is analyzed based on 

the frequency intensity of the signals. A well-trained 

physician can diagnose respiratory disorders based on 

the frequency intensity of the plotted signals. Again, 

this is a subjective way of analysis as it depends on the 

expertise of the physician. In Figure 4, the original 

sound signal and its spectrogram is shown [13].  

Chowdhary et al. (1982) developed a simple solution 

for the frequency analysis of adventitious respiratory 

sounds. The system consists of an instrumentation system 

consisting of a contact microphone to pick up respiratory 

sounds, amplified and filtered for the removal of any 

50 Hz noise. Since the frequency of respiratory sounds 

extends up to 2000 Hz, several bandpasses filters were 

designed with different center frequencies (400, 800, 

1200, and 2000 Hz) up to 2000 Hz. Wheeze, rales, and 

pleural friction rub were identified based on frequency-

amplitude characteristics of the respiratory sounds. The 

plot of frequency vs. amplitude is shown in Figure 5 

for the inspiratory and the expiratory phases [14].  

Figure 5 shows that wheeze has higher high-frequency 

components than rales and rubs. The peak-to-peak 

amplitude of the wheeze is constant during the expiration 

phase up to 1200 Hz, after which it uniformly drops. The 

peak-to-peak amplitude of the wheeze drops unevenly 

during the inspiration phase. In the case of rubs during the 

inspiration phase, the peak-to-peak amplitude decreases 

and during expiration, it fluctuates with frequency. This 

work is simple but very objective in nature and may not 

be conclusive in classifying different respiratory sounds. 

Polat et al.(2004) developed a computer-based method 

for collecting and analyzing respiratory sounds. The sole 

components of the system are a portable computer, some 

Table 2. List of available datasets for respiratory sounds [11] 

Sr. No. Database 

1 Auscultation skills: Breath and heart Sounds, 4th edition 

2 East Tennessee State University repository 

3 Fundamentals of lung and heart sounds 

4 Heart and lung sounds reference library 

5 Littmann repository 

6 Lung sounds: An introduction to the interpretation of the auscultatory finding 

7 R.A.L.E. repository 

8 Secrets heart & lung sounds workshops 

9 SoundCloud repository 

10 The chest: Its signs and sounds 

11 Understanding heart sounds and murmurs 

12 Understanding lung sounds, the 2nd edition 

13 Understanding lung sounds, the 3rd edition 

 

 

Figure 4. Visual representation of crackle respiratory 

sound (times vs amplitude) and its spectrogram (time 

vs. frequency) [13] 
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basic electronic components, and the software. Here 

respiratory sounds can be captured, saved, played again, 

and subjected to time- and frequency-domain analysis by 

the system. The device is a straightforward and practical 

instrument for measuring and analyzing respiratory 

sounds. The important feature of this system is that it 

gives provision to display both time-amplitude and 

spectral plot using fast Fourier transform (FFT). Zooming 

in on time series graphs allows for more in-depth views 

of some of the key areas of the plot [15].  

The spectrogram produced in this study presents an 

audible representation of respiratory sounds in visual 

form. The colors of the spectrogram at any moment 

show the relative intensity of the sound at that time and 

frequency. High-intensity respiratory sounds are 

displayed higher on the display, with the horizontal 

dimension representing time and the vertical dimension 

representing frequency. Furthermore, FFT methods are 

used to depict the Power Spectral Density (PSD). The 

respiratory sounds maximum frequency and median 

frequency over extended periods of time can be used 

to describe their frequency patterns [15]. 

S. Lev et al. (2010), I. Sanchez et al. (2003), S. Aydore 

et al. (2009), and I. Sen et al. (2010) have tried to use 

a statistical approach for the analysis of the respiratory 

sounds. In statistical analysis, datasets are processed to 

decide how frequently certain events occur based on their 

historical data. Some of the tests used in this statistical 

analysis include Analysis of Variance (ANOVA).  

ANOVA is a statistical technique that is used to check 

if the means of two or more groups are significantly 

different from each other. Another method used in 

statistical analysis is Linear Discriminant Analysis (LDA). 

LDA is generally used to classify patterns between two 

classes [10]. 

Several researchers have also focused on the use of 

Machine Learning (ML) for automated respiratory sound 

analysis. Machine learning is a type of Artificial 

Intelligence (AI) that uses data and algorithms to imitate 

the way humans learn, ultimately improving the accuracy 

of the system. Researchers have focused on the use of 

machine learning algorithms such as Artificial Neural 

Networks (ANN), the Hidden Markov Model (HMM), 

k-nearest neighbor (k-nn) algorithm, Gaussian Mixture 

Model (GMM), Genetic Algorithms (GAs), and fuzzy 

logic.  

In the classification of respiratory sounds, it is 

important to first extract desired features from the signal. 

R. Palaniappan et al. (2013) have mentioned these features 

can be extracted using time domain, frequency domain, 

and time-frequency domain analysis. The feature 

extraction techniques include the Autoregressive (AR) 

model, the Mel-Frequency Cepstral Coefficient (MFCC), 

energy, entropy, spectral features, and wavelet [16]. 

The numerous machine-learning techniques utilized 

by earlier researchers are mentioned in Table 3. Each 

method's accuracy is specifically mentioned. A variety 

of methods, including ANN, k-nn, HMM, GMM, fuzzy 

logic, and GA are used in automated respiratory sound 

analysis. ANN and k-nn are the techniques that are most 

frequently used. A. Kandaswamy et al. (2003) applied 

ANN to categorize wheeze, crackle, squawk, stridor 

rhonchus, and normal respiratory sounds. He reported 

an overall accuracy of 100% for training and 94.02% 

for testing [17]. 

S. Alsmadia et al. (2007), used k-nn to classify 

respiratory sounds in real time and reported an overall 

accuracy of 96% [18]. It has been observed that ANN 

and k-nn are quite good at classifying respiratory sounds.  

k-nn is fairly simple and reliable in its execution, and ANN 

can adapt to complex non-linear data quite well.  

a 

 

b 

 

Figure 5. Frequency vs Amplitude plot of adventitious 

lung sounds. (a) expiration phase (b) inspiration phase 
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Table 3. Machine learning approach for respiratory sound analysis [16] 

Sr. No. Identified respiratory sounds Method used Classification accuracy 

1 Normal respiratory sounds k-nn and quadratic classifier 93.75% and 87.50% respectively 

2 Wheeze and normal ANN Training set 1-93% and training set 2-96% 

3 Normal and pathological k-nn Overall accuracy-69.59% 

4 Normal, wheeze and crackles ANN Classification accuracy-95% 

5 Airway obstructions k-nn 60% to 90% 

6 Normal and pathological ANN 73% 

7 Normal and pathological k-nn Encouraging results were reported 

8 Wheeze and non-wheeze Vector quantification 75.8% and 77.5% respectively 

9 Normal and pathological Nearest mean classifier Satisfactory results 

10 Normal and wheeze GMM Better accuracy as compared to vector quantification 

11 
Normal, wheeze, crackle, squawk, 

stridor and rhonchus 
ANN Training set A-100% and training set B-94.02% 

12 Normal respiratory sounds ANN 97.8% 

13 Normal respiratory sounds k-nn Satisfactory 

14 Normal, wheeze and crackle ANN 81%-91% 

15 Normal and abnormal ANN 87.68% 

16 Wheeze GMM 90% 

17 Fine and coarse crackles GMM 95.1% 

18 Normal respiratory sounds k-means clustering Precession of 0.9711 

19 Normal and abnormal sounds 
k-nn and minimum distance 

classifier 
96% 

20 Normal and abnormal HMM 19.1% better than previous methods 

21 Normal sounds GMM 
Sensitivity and specificity reported as 94.6% and 91.9% 

respectively. 

22 Adventitious respiratory sounds ANN 
Improved results as compared to conventional neural 

network models. 

23 Wheeze ANN 92.86% 

24 Normal and adventitious ANN 92.36% 

25 Normal, crackles and wheeze GMM 98.75% 

26 Normal, wheeze and crackles ANN 
Confidence levels of 0.90, 0.87 and 0.89 were reported 

respectively. 

27 Asthma Fuzzy logic Satisfactory results 

28 Normal respiratory sounds k-means clustering 
98.2% and 95.5% for tracheal recordings and ambient 

microphone respectively. 

29 
Normal and abnormal respiratory 

sounds 
ANN 75% and 93% for healthy subjects and patients respectively. 

30 Normal and pulmonary emphysema HMM 87.4% to 88.7% 

31 Healthy and pathological k-nn 92.4±2.9% 

32 Crackles SVM 97.20% 

33 
Pneumonia and congestive heart 

failure (CHF) 
SVM 

86% and 82% was reported for pneumonia and CHF 

respectively. 

34 Normal and abnormal Empirical classification 98.34% 
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5. Discussion 

5.1.  Estimating PSD Using the Welch Method 

M. Ariful et al. (2018) demonstrated the use of PSD 

for estimating four statistical features namely Mean of 

the absolute value (MABP), Variance (VAR), Kurtosis 

(KURT), and Skewness (SKEW). Here the PSD is 

estimated from the lung sound using Welch’s method 

with a 1s window for better frequency resolution. Hanning 

window was applied here as it smoothens with an 

acceptable spectral leakage [19]. It is noteworthy to 

mention due to natural variations in the respiratory depth 

and frequency of respiration, the airflow level tends to 

change from subject to subject. Thus, the volume of the 

airflow decides the calculated power of the lung sounds.  

5.2. Analyzing spectral characteristics of respiratory 

sounds using FFT 

G. Furman et al. (2022) developed a system based on 

the analysis of FFT spectra of respiratory sounds. There 

is a specific change observed in the FFT spectra of 

respiratory sounds in the frequency range from 100 Hz 

to 2500 Hz [20]. This change in the spectra signifies the 

presence of lung diseases such as asthma, COPD, and 

pneumonia. For the diagnosis of Coronavirus disease 

2019 (COVID-19), the frequency range from 2000 Hz 

to 6000 Hz is substantial. When the FFT spectra of the 

healthy volunteer and the COVID-19 patients are 

compared, the maxima and minima are located at several 

frequency ranges, as shown in Figure 6. It can be seen 

from the spectrum of the healthy patient that there exists 

a minimum at 2300 Hz and 4100 Hz, a maximum at 

3100 Hz and 4900 Hz, and no extremum above 5300 

Hz. Similarly, for a COVID-19 patient, there exists a 

minimum at 3300 Hz and 500 Hz, a maximum at 3900 

Hz and 5600 Hz, and no extremum in the frequency range 

of 2300 Hz [20].  

A test criterion is applied by calculating the ratios 

of the integrals of the harmonic amplitudes over several 

frequency ranges to classify healthy and ill patients. 

The harmonic amplitude is calculated by Equation 1. 

𝐼(𝑓𝑎) = ∫ 𝐴(𝑓)𝑑𝑓

𝑓𝑎+∆𝑓

𝑓𝑎−∆𝑓

 (1) 

where fa is the frequency of the extremum, A(f) if 

the harmonic amplitude at frequency f, ∆f is half of the 

frequency range [20]. 

5.3.  Clinical Applications of Respiratory Sound 

Analysis 

Respiratory sound analysis is a promising approach 

to diagnose several upper and lower airway diseases. 

For instance, we can use this technique in the diagnosis 

of asthma, bronchiolitis, obstructive sleep apnea, and 

in the evaluation of regional tissue ventilation. The site 

of the upper airway obstruction can be located during 

analysis, and the effectiveness of the therapy given can 

be assessed.  

Spirometry will continue to be the gold standard in 

determining lower airway flow obstruction, but the 

process is slightly difficult to perform in the case of 

younger patients. Here, respiratory sound analysis can 

help us to assess younger patients. In younger children 

characterizing wheezing sounds can help us to learn more 

about both acute and chronic lower airway conditions. 

Monitoring regional ventilation and lung water content 

in patients who are intubated can be done with the use of 

multisite recording and analysis of respiratory sounds 

in critical care.  

Wheeze severity in relation to flow obstruction has 

been expressed through the quantification of wheeze 

 

 

Figure 6. FFT spectra for a healthy volunteer and a 

COVID-19 patient [20] 
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over time. The amount of the breath cycle taken up by 

wheezing (Tw/Ttot) in adult asthmatics with moderate 

to severe flow obstruction was inversely correlated with 

the Forced Expiratory Volume 1 (FEV1). Nocturnal 

asthma refers to asthmatic attacks that occur at night. It 

severely impairs lung function, increases symptoms, and 

requires medication. Noninvasive monitoring of respiratory 

sounds can help us quantify nocturnal asthma. 

In patients with significant airway obstruction, the 

respiratory sound patterns frequently exhibit early 

crackles. Early crackles often are sparse, detectable at 

the mouth, and independent of gravity. The presence of 

late crackles is a sign of bronchiectasis and restrictive 

lung disease. Further analysis of fine and coarse crackles 

reveals their diagnostic significance in the identification 

of several respiratory disorders. Patients with fibrotic 

lung disorders, for instance, display fine crackles that last 

for a short duration, whereas patients with pneumonia 

display coarse crackles. 

Although cough and snoring are not respiratory sounds, 

they have also been studied to identify differences in 

normal cough, the effect of asthma, and the effect of acute 

and chronic bronchitis on cough. Snoring, on the other 

hand, can also help us quantify obstructive sleep apnea 

or simple snoring [21]. 

6. Conclusion 

Lung auscultation has been the mainstream for 

the diagnosis of several respiratory diseases and to 

check the patient's well-being. The early discovery 

of the stethoscope in 1800 changed the way doctors 

listened to heart and lung sounds. Since then, the 

stethoscope has been the gold standard. But because 

of the subjective nature of the stethoscope, several 

researchers are now focusing on the use of a digital or 

electronic stethoscope that also gives them the possibility 

to analyze and characterize features of respiratory 

sounds. It is easy to classify normal and adventitious 

respiratory sounds using computerized respiratory sound 

analysis. Further, using spectral analysis tools like FFT 

can help us to identify the type of respiratory sound, and 

by extracting features, it can easily help us to correlate 

the sounds with specific respiratory disorders. Today, it 

is possible to develop machine learning models that can 

aid in the automated and early detection of a number of 

respiratory disorders; the only concern is the availability 

of large datasets of respiratory sounds. For computer-

based respiratory sound analysis to become a routine 

practice, there are certain technological challenges 

to be met. The development of low-cost sensors for 

recording respiratory sounds and developing 

techniques and algorithms to reject ambient and biological 

noise need to be addressed. Not only for the diagnosis 

of disease, but computer-based respiratory sound analysis 

can also help medical doctors and technicians for 

teaching and training purposes. A further computer-

based approach will never replace a doctor, but it will 

help as a support mechanism in making proper decisions 

for disease diagnosis and planning the treatment plan. 
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