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Abstract 

Purpose: Independent Component Analysis (ICA) decomposition is a commonly used technique for eye blink 

artifact detection from Electroencephalogram (EEG) signals. Feature extraction from the decomposed ICs is a 

prime step for blink detection. This paper presents a new model of eye blink detection for ICA based approach, 

where the decomposed ICs are projected to their corresponding EEG segments (ReEEG), and feature extraction 

is performed on the ReEEG instead of the IC. ReEEG represents the eye blink activity more distinctly. Hence, 

ReEEG-based feature extraction is more potential in detecting eye blink artifacts than the traditional IC-based 

feature extraction. 

Materials and Methods: This paper employs twelve EEG features to substantiate the superiority of ReEEG over 

IC. Support Vector Machine (SVM) is used as a classifier. A dataset, having 2638 clinical EEG epochs, is 

employed. All the considered twelve features are extracted from ReEEG and fed to SVM one at a time for blink 

detection. Then the obtained results are compared with an IC-based model with the same features. 

Results: The comparison reveals the success of the proposed ReEEG-based blink detection approach over the 

traditional IC-based approach. Accuracy, precision, recall, and f1 scores are calculated as performance measuring 

metrics. For almost all features, ReEEG-based approach achieved up to 12.25% higher accuracy, 24.95% higher 

precision, 13.49% higher recall, and 12.89% higher f1 score than the IC-based traditional method. 

Conclusion: The proposed model will be useful for researchers in dealing with the eye blink artifacts of EEG 

signals with more efficacy. 

Keywords: Electroencephalogram; Eye Blink Artifact; Independent Component Analysis; Support Vector Machine; 

Feature Extraction. 
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1. Introduction  

Electroencephalogram (EEG) is a popular technique 

in the field of medical diagnostics, as well as in research 

like neuroscience, cognitive science, etc. [1–3]. EEG-

based Brain Computer Interface (BCI) is growing 

rapidly in recent years [4]. Controlling a wheelchair [5], 

controlling a robotic arm [6], neurorehabilitation [7], etc. 

are some examples of EEG-based BCI applications.  

EEG signal is highly sensitive to artifacts that destroy 

the signal quality such that no meaningful information 

can be extracted from that artifact-contaminated EEG 

portion. These artifacts can be physiological (internal) 

or non-physiological (external). Physiological artifacts 

are the ones that are generated due to - eye movement, 

eye-blink, head movement, muscle movement, ECG 

pulse, etc. Non-physiological artifacts are created from 

line noise, electrode pop-ups, etc. [8]. Proper shielding 

and grounding of cables can prevent non-physiological 

artifacts. Physiological ones are the main challenge to 

handle. Among other physiological artifacts, the eye 

blink artifact is the most concerning, as it is unavoidable 

and occurs very frequently. Eye blink is a natural, 

biological phenomenon with an occurrence of 15 times 

per minute on average [9]. The frequency band of the eye 

blink signal overlaps with that of the EEG signal that 

makes the detection approach of blink artifacts more 

challenging than any other artifacts [10, 11]. Extensive 

research works aiming to recover the artifact-free EEG 

signal have been held for many years. Several methods 

and algorithms, such as regression, filtering, independent 

component analysis, wavelet transform, empirical mode 

decomposition, etc. are used widely for this purpose. 

More details of the methods are available in [12]. 

Independent Component Analysis (ICA), compared to 

the others, is the most popular and powerful technique in 

handling eye blink artifacts [12–14]. After decomposing 

the contaminated signal into its source components (ICs), 

the ICs responsible for blink artifact are identified and 

removed either manually or automatically.  

Earlier, the automatic identification approach 

was performed based on a cross-correlation with 

Electrooculogram (EOG) reference channel. However, 

to avoid the EOG dependency for making the models 

feasible in a broader scope, feature-based detection 

approaches have become favorable. It reduces the 

dimensionality of input data as well. Kurtosis, skewness, 

entropy, scalp topography, Power Spectral Density (PSD), 

etc. are some of the widely used features to decide about 

blink contamination [15, 16]. In ICA-based approaches, 

the considered EEG feature is extracted from the 

decomposed ICs [17–24]. An IC represents a single 

EEG activity, and the feature values extracted from the 

decomposed IC characterize that activity.  

Traditionally, a predefined threshold is set to separate 

the contaminated IC using the feature values. Nowadays, 

Machine Learning (ML) algorithms are incorporated 

instead of thresholding, and enhanced performance is 

achieved [14, 20, 25, 26]. Support Vector Machine (SVM) 

[10, 18, 26–28], Decision Tree (DT) [26], K-Nearest 

Neighbors (KNN) [26], Regression [20], K-Means 

Clustering [22, 29], etc. are commonly used in existing 

works. Although both supervised and unsupervised ML 

algorithms are applied, supervised is found to use more 

extensively.  

A decomposed IC can be projected to its corresponding 

multichannel EEG signal. That is, a raw multichannel 

EEG can be decomposed into a set of ICs, and afterward, 

each IC can be converted to a new multichannel EEG. 

This later EEG is termed as ReEEG (regenerated EEG) 

in this study. Since a ReEEG comes from a single IC, it 

represents a single neural activity. This paper presents 

a model based on the concept that if feature extraction is 

performed on ReEEG instead of IC, it could characterize 

the neural activity more prominently. And, hence, the eye 

blink detection performance will improve significantly. 

Accordingly, the proposed model is prepared to take 

SVM as a classifier. Twelve EEG features are considered 

to test the model’s performance. Each feature is extracted 

from the ReEEG and fed to the classifier one at a time. 

The detection performance of the proposed model is 

significantly higher for almost all features than that of 

an IC-based model.  

The rest of this paper includes the materials and 

method in chapter 2, results and discussion in chapter 

3, and finally chapter 4 concludes the paper. 

2. Materials and Methods  

2.1.  Dataset 

The dataset for the proposed work has been taken 

from an open-source repository namely Voluntary-

Involuntary Eye-Blinks repository [30]. Twenty subjects 

participated in an experiment where both voluntary and 

involuntary (natural) eye blinks were recorded on 14 
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electrodes. The considered 14 electrodes are graphically 

shown in Figure 1. However, the involuntary portion 

alone is used for the proposed work. In the involuntary 

eye-blink experimental protocol, the subjects were seated 

in front of a laptop pc and were instructed to fix their 

eyes at a black cross-fixation point. Then 03 sounds 

(“A”, “S”, and “D”) were presented in a randomized order 

with a 10-14 second gap. The task of the subjects was 

to press the keys (“A”, “S”, and “D”) of the keyboard 

corresponding to the associated sound. Maintaining this 

protocol, three sessions, each including twenty trials, were 

held to record the EEG signals of an involuntary eye-

blink event. Each EEG recording is around 04 minutes 

long with a sampling rate of 256 Hz. 

2.2.  Proposed Methodology 

Figure 2 illustrates the graphical overview of the 

proposed model. Each block of the model is discussed 

sequentially in the next parts.  

2.2.1.  Epoching and Labeling 

The raw EEG recordings with 14 channels and a 

256 Hz sampling rate is taken as input to the model. 

Epoching is performed on the long EEG recordings 

maintaining 4-second duration. An equal number of 

blink and non-blink (clean) epochs has been extracted 

by the authors by visually inspected the associated EOG 

channel. The epochs are verified further by plotting the 

topographic map and then labeled as blink or non-blink 

epochs. Finally, a total of 2638 EEG epochs of 4-second 

duration is obtained containing an equal number (1319) 

from blink and non-blink categories. 

2.2.2.  ICA Decomposition and Generation of ReEEG 

Each EEG epoch is decomposed into 14 independent 

components (ICs). Decomposition is performed by 

InfoMax ICA algorithm [31]. In a blink epoch, there 

must be one blink IC in its decomposed set of ICs. Such 

blink ICs were collected by visual inspection from all 

the generated ICs from 1319 blink epochs. Similarly, 

1319 clean ICs were collected from the IC sets of 1319 

clean EEG epochs. Thus, a total number (2638) of ICs 

was collected for further processing. 

Later, each of the collected IC is gone through the 

Inverse ICA algorithm to be back-projected into its 

corresponding 14-channel EEG segment (ReEEG). The 

Inverse ICA is applied using runica function of EEGLAB 

toolbox [32]. The generated ReEEGs are used for feature 

extraction in the next step. It is noted that a normal EEG 

epoch (Figure 3a) represents all the brain activities that 

occurred within that time duration. On the contrary, a 

ReEEG is the outcome of a single IC (Figure 3b). As, 

one IC represents one brain activity, its corresponding 

ReEEG also represents only that single brain activity, 

which makes a ReEEG different from a normal EEG 

signal. 

 

 

Figure 1. Considered electrodes of the dataset 

 

Figure 2. Graphical view of the proposed model 
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2.2.3.  Feature Extraction 

Twelve EEG features are considered to evaluate 

the effectiveness of ReEEG-based feature extraction. 

These are the frequently used features found in relevant 

literature. The considered features are - kurtosis, 

skewness, entropy, scalp topography, standard deviation, 

variance, peak-to-peak amplitude, mean, power spectral 

density, max, min, Hjorth mobility. All these twelve 

features are extracted from the ReEEGs sequentially. 

More detail of the features can be found in Table 1. 

2.2.4.  Detection of Eye Blink Event 

Support Vector Machine (SVM) is chosen as a 

classifier for this work because of its robustness and 

extensive use in the existing literature [10, 18, 26–28]. 

The extracted features from ReEEGs are fed to the SVM 

classifier, maintaining a stratified 5-fold cross-validation 

approach. Features are applied to the classifier one at 

a time and the individual detection outcomes for all the 

features are obtained and stored.  

2.2.5.  System Evaluation Metrics 

For evaluating the artifact detection performance of 

the model, accuracy, precision, recall, and f1 score are 

measured. The calculation of these four metrics is stated 

below. 

Accuracy is the ratio of correctly classified 

observations to the total observations (Equation 1): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
 (1) 

Precision is the ratio of correctly predicted positive 

observations to the total predicted positive observations 

(Equation 2): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (2) 

Recall is the ratio of correctly predicted positive 

observations to all observations in the actual positive 

class (Equation 3). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (3) 

The F1 score is the weighted average of precision 

and recall (Equation 4). 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 

a 

 

b 

Figure 3. a): EEG epoch, b): Decomposed ICs and 

regenerated EEG (ReEEG) from each IC 

Table 1. Considered feature-details 

Feature Domain Used in 

Kurtosis Time 10, 21, 23, 31–33 

Skewness Time 9, 25, 26, 32 

Entropy Entropy 25–27, 33 

Scalp topography 

 (S. topograph) 
Spatial 17, 20, 34, 35 

Standard deviation 

 (Std dev) 
Time 25, 27, 36 

Variance Time 10, 26 

Peak-to -peak amplitude 

(P2P amplitude) 
Time 10, 26 

Mean Time 25, 27 

Power spectral  

density (PSD) 
Frequency 20, 37 

Max Time 36 

Min Time 36 

Hjorth mobility  

(H. mobility) 
Time 23 
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In this study, eye blink-contaminated IC is considered 

a true positive class, and clean IC is considered a true 

negative class. 

3. Results and Discussion 

Figure 3 shows an EEG epoch and the decomposition 

of the epoch into Independent Components (ICs). For 

better visualization, a smaller portion of a 4-second IC 

is shown here. The right portion of Figure 3b shows how 

an IC is back-projected to the corresponding Regenerated 

EEG (ReEEG).  

The SVM classifier takes the features, extracted from 

ReEEG, and decides whether the respective ReEEG is 

blink-contaminated or clean. If a ReEEG is detected as  

blink-contaminated, that means the corresponding IC 

of that ReEEG is also contaminated. 

The detection outcomes for individual features are 

measured in terms of accuracy, precision, recall, and f1 

score. Table 2 summarizes the blink detection performance 

of the proposed model for individual features.  

To better realize the success of ReEEG-based proposed 

model over the traditional IC-based model, another model 

is prepared maintaining the same setup and dataset. The 

only difference is - feature values are extracted from the 

Independent Components (ICs) instead of ReEEGs in 

this model. Table 3 summarizes the detection performance 

of this IC-based model. The outcomes of both models 

are compared and graphically illustrated in Figure 4a-4d.  

In Figure 4, for almost all the features, the SVM 

classifier showed enhanced performance while the feature 

extraction was held on ReEEG. Figure 5 shows the 

percentage of maximum improved performance for 

ReEEG over IC on the four-measuring metrics. In 

accuracy, the maximum value of improvement for 

ReEEG is 12.25% that is achieved by peak-to-peak 

amplitude. This same feature (peak-to-peak amplitude) 

obtained the maximum recall and f1 scores that are 

13.49% and 12.89%, respectively. For precision, the 

maximum improvement is scored by mean that is 24.95%.  

However, from Figure 4, it is found that mean, 

skewness, and PSD showed a little decrease in particular 

metrics; specifically mean decreased in recall and f1 

score, skewness decreased in accuracy and precision, 

and PSD decreased in precision. One drawback of the 

mean is- it is outlier sensitive. This study used a clinical 

EEG dataset that may contain noises other than eye-

blink. This could be the possible reason for the fall in 

performance for the mean.  

Skewness tells about the asymmetry of signal 

distribution. The position of the outlier is exposed by 

skewness. For a particular blink contamination, the 

position of blink is the same in IC and in ReEEG. Thus, 

ReEEG has not much elaborated information here to 

provide the classifier. Hence, for skewness, no improved 

performance is achieved by ReEEG-based detection.  

Table 2. Detection outcomes of individual features for 

ReEEG-based model 

Feature Accuracy Precision Recall F1 score 

Entropy 0.93 0.95 0.91 0.93 

Hjorth 

mobility 
0.85 0.88 0.80 0.84 

Kurtosis 0.85 0.91 0.77 0.84 

Max 0.94 0.96 0.92 0.94 

Mean 0.56 0.75 0.19 0.30 

Min 0.93 0.94 0.93 0.93 

Peak2peak 0.90 0.92 0.87 0.89 

PSD 0.93 0.96 0.90 0.93 

Skewness 0.71 0.91 0.47 0.62 

Standard 

deviation 
0.94 0.94 0.93 0.94 

Variance 0.93 0.95 0.91 0.93 

Topography 0.94 0.96 0.92 0.94 

 

Table 3. Detection outcomes of individual features for 

IC-based model 

Feature Accuracy Precision Recall F1 score 

Entropy 0.89 0.93 0.84 0.88 

Hjorth  

mobility 
0.84 0.87 0.80 0.84 

Kurtosis 0.85 0.91 0.77 0.84 

Max 0.92 0.94 0.90 0.92 

Mean 0.50 0.50 0.48 0.49 

Min 0.87 0.88 0.86 0.87 

Peak2peak 0.77 0.80 0.73 0.76 

PSD 0.92 0.96 0.88 0.92 

Skewness 0.71 0.92 0.46 0.62 

Standard  

deviation 
0.90 0.91 0.88 0.90 

Variance 0.88 0.92 0.84 0.88 

Topography 0.92 0.93 0.90 0.92 
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PSD distributes the power content of EEG as a function 

of frequency. Both IC and its corresponding ReEEG 

represent the same brain activity that lies in the same 

frequency band. Like skewness, ReEEG here has no 

extra information to provide the classifier. Therefore, 

ReEEG-based detection could not gain significant 

improvement in this case.  

Among the twelve considered features, three showed 

slightly degraded or unimproved performance as 

discussed above. All the other features provided remarkably 

increased performance with ReEEG-based detection.  

It is obvious that a multichannel ReEEG can 

characterize the eye blink event more prominently than 

a single IC. This study reveals the same by showing that 

the ReEEG-based blink detection approach outperformed 

the IC-based approach for most of the cases. 

4. Conclusion 

This paper presents a model with an innovative concept 

of feature extraction for ICA-based eye blink artifact 

detection approach. In ICA-based models, feature 

extraction is performed on the decomposed ICs of the 

  

a b 

  

c d 

Figure 4. Comparative results of regenerated EEG-based, and IC-based model in terms of (a): accuracy, (b): precision, 

(c): recall, and (d): f1 score 
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Figure 5. Maximum of performance improvement for ReEEG over IC 
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EEG signal. The proposed model shows that feature 

extraction, performed on regenerated EEG (ReEEG) 

instead of IC, will generate significantly increased 

performance in most cases. The proposed work employed 

twelve EEG features to evaluate the model and compared 

the performance with a traditional IC-based model. The 

comparative results reveal the success of the proposed 

model. It is expected that the proposed model will be 

helpful for the researchers in dealing with eye blink 

artifacts of EEG signals with more efficacy. 
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