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Abstract 

Purpose: Magnetic Resonance Imaging (MRI) applications offer superior soft tissue contrast compared with 

Computed Tomography (CT) for accurate radiotherapy planning although MRI images suffer from poor image 

quality and lack electron density for radiation dose calculation. The present study aims to use the Deep Learning 

(DL) approach to 1) enhance the quality of MRI images and 2) generate synthetic CT images using MRI images 

for more accurate radiotherapy planning.  

Materials and Methods: In this paper, the pix2pix Generative Adversarial Network was utilized to synthesize 

CT images from noisy MRI images of 20 arbitrarily patients with brain disease. The standard statistical 

measurements investigated the accuracy comparison of the modeled Hounsfield Unit (HU) value from MRI 

images and referenced CT of each patient. The famous quality metrics that were used to compare synthetic CTs 

and referenced CTs were the Mean Absolute eError (MAE), the structural similarity index (SSIM), and the Peak 

Signal-to-Noise Ratio (PSNR). 

Results: The higher quality measurements between the synthetic pseudo-CT and the referenced CT images as 

PSNR and SSIM should correlate with the lower MAE value. For the overall brain among blind test data, the 

measured peak signal-to-noise ratio, mean absolute error, and structural similarity index values were about 16.5, 

28.13, and 93.46, respectively. 

Conclusion: The proposed method provides an acceptable level of statistical measurements computed on the 

Pseudo-CT and referenced CT, and it could be concluded that the p-CT can be implemented in radiotherapy 

treatment planning with acceptable accuracy. 
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1. Introduction  

Using Magnetic Resonance Imaging (MRI) is of 

growing interest in clinical oncology treatment planning 

routines. Despite the different advantages of the MRI 

modality in the MR-only radiotherapy approach, we face 

other challenges compared to traditional Computer 

Tomography (CT)-based radiotherapy approaches. In 

conventional radiotherapy workflow, anatomy 

acquisition, patient positioning, tumor and Organ At Risk 

(OAR) delineation, and dose calculation rely on CT 

images. But, the pixel value in MRI has no direct 

correlation with electron density, while the CT number 

can convert to electron density directly for the absorbed 

dose calculation procedure. However, before being used, 

medical images often need vital processes in pre-

processing procedures, such as noise removal. As a result, 

noises and artifacts in MRI images can affect the whole 

process of MR-based treatment planning. Nowadays, a 

significant problem in image de-noising is distinguishing 

noise, edge, and texture since they all have high-frequency 

components. Recently, the improved hybrid approach [1-

3] and deep neural networks have been used for the 

medical image de-noising methods [4, 5]. These networks 

do not need manually set parameters for removing the 

noise [6-16]. In recent years, various categories have been 

presented for MRI to CT conversions based on the 

sequences of MRI, region of imaging, and applications. In 

atlas-based ways, single [17] and multiple (containing 

several patients) [18-22] atlases are applied to estimate a 

Pseudo-CT) P-CT(without the requirement of a specific 

sequence of MRI. One of the main strengths of the atlas-

based approach is that the patient's movement decreases 

due to the shorter scan time in a clinical setting. This 

approach focuses on aligning the MRI voxels and the 

value of the CT number or organ label. Next, there are 

model-based methods that include the use of standard or 

specific sequences such as ultra-short echo time imaging 

[23, 24] to investigate unusual anatomy, separation of 

bone from the air [25], and finding any relationship 

between the brightness intensity values of the MR and CT 

images [26, 27], or mapping from a given image to a 

specific target image with fuzzy logic approach [28, 29]. 

More recently, Deep Learning (DL) techniques have been 

developed for P-CT generation from MR images with 

high generalization ability and extrapolate results using 

standard MRI sequences.  

Some researchers have trained image-to-image 

translation Convolutional Neural Networks (CNNs) [30-

35], Generative Adversarial Networks (GAN) [36-41], 

Conditional GAN [42], and Cycle GAN [43-48], that try 

to learn the mapping from a given image to a specific 

target image for P-CT synthesis.   

Accordingly, this study intends to generate P-CT 

images from noisy MRI images with deep learning 

algorithms. The MRI images contain random noises such 

as speckle noise and we are looking to better use MRI 

images for physicians and generate an appropriate P-CT 

image. Because an uncorrected MRI also creates 

uncorrected CT, and the error is transmitted throughout 

the process. The main goal of this study was to design a 

system that performs well when testing new data that may 

be contaminated with noise and obtains suitable P-CT data 

for MR-based radiotherapy. 

2. Materials and Methods  

We selected 20 brain tumor patients with routine T1W 

images from different centers without any effect on the 

treatment planning procedure. The MR images were 

prepared by a 1.5-Tesla scanner, with a range of 3.3-18 ms 

echo time, 280-550 ms repetition time, and slice thickness 

of 1.5-3 mm. On the other hand, the CT images of each 

person were prepared by a Siemens CT scanner using 120 

kVp and a slice thickness of 1.5-3 mm with image matrix 

sizes of 512×512 for CT images. We tried to employ 

patients of different ages and genders with the age range 

of 29 years to 67 so that the trained model is not specific 

to a special group of people and we can have appropriate 

generalization ability during the test procedure. The 

number of female and male patients was the same in this 

study.  

In the routine procedure, CT images of the patients are 

used as primary images in the treatment planning system, 

and MR images are used as auxiliary images for better 

delineation of tumors and organs at risk. In the 

radiotherapy treatment planning of brain tumors that 

almost tissues are soft and the differentiation between 

tumor and normal tissues is difficult, MRI is increasingly 

used owing to its superior soft-tissue contrast compared 

with CT. So it seems the use of MR-based treatment 

planning in brain tumors is more applicable and therefore 

in this study, P-CTs that contain CT information for 

treatment planning were generated from MRI images of 

the brain regions for each patient. 
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A pre-processing step plays an essential role in this type 

of study. The first stage of data preprocessing is MRI/CT 

data preparation. Furthermore, in the preprocessing 

section, the histogram-matched procedure and intensities 

normalization was used among all patients to standardize 

image intensities from different centers.  

Also, a binary head mask was achieved from each 

MRI/CT image to mask a stereotactic head frame from CT 

images and the background region separation from MR 

images to have more accurate P-CT images. This would 

help us to decrease the overestimation error from predicted 

CT images. At last, all patient’s images were registered to 

have peer-to-peer images. Training the deep learning 

model on aligned data is essential, as every MRI voxel 

should correlate with the same voxel in CT.  

Before using MR to generate synthetic CT images, MR 

data must be corrected (de-noised) to find a suitable model 

for making updated P-CT images. We developed about 

2500 2D slices of MRI images among 20 with 

synthetically added noise at 10-20% to generate “noisy” 

images. We randomly selected 2000 pairs of MRI images 

for the training/validation process and 500 images as 

synthetically unseen tests to evaluate the algorithm to find 

the best network. We proposed two series of DL 

algorithms to enhance MRI quality and generate P-CT 

images. This study presents the pix2pix-GAN (image-to-

image translation GAN). It is an approach for training a 

deep convolutional neural network for image-to-image 

translation tasks that generally includes two subnetworks, 

a generator, and a discriminator field [49]. The Pix2Pix 

model is a conditional GAN type, where the output 

image's generation depends on the input. Our proposed 

structure consists of multiple convolution layers with 

batch normalization and activation functions to extract 

features of input images. The generator network learns a 

mapping to generate fake images, and the discriminator 

tries to discriminate whether the images are real or fake. 

We will use the best model saved at the end of the run, 

e.g., after ten epochs of training iterations. In Figure 1, we 

demonstrate our data flowchart process. The first network 

uses noisy MR images as input and references MRI 

images as output. The first DL network is trained to 

remove noise from MR images. On the other hand, the 

second DL network is trained based on the MR images as 

input and reference-CT scan images as output to create P-

CT images. 

 

Our proposed networks, trained with 2500 T1w images 

corrupted with noise, significantly improved the image 

quality based on different statistical analyses such as Peak 

Signal-to-Noise Ratio (PSNR), Structural Similarity Index 

Measure (SSIM), and Mean Absolute Error (MAE). The 

following statistical analysis is applied to the "Corrected 

MR" and "P-CT" images regarding mean and standard 

deviations of the MAE, SSIM, and PSNR computed on 

the entire head resulting from the pix2pixGAN methods.  

The accuracy of the HU value of P-CT and true CT of 

each subject is evaluated by calculating the MAE of 

voxels in the brain region (Equation 1): 

𝑀𝐴𝐸(𝐶𝑇true. 𝑃_𝐶𝑇) =
1

𝑁
∑|𝐶𝑇true(𝑖) −  𝑝_𝐶𝑇(𝑖)|

𝑁

𝑖=1

 (1) 

Where N is the total number of voxels in the CT region, 

P_CT is the synthetic CT obtained by the deep learning 

method, and 𝐶𝑇true is a referenced image scanned by a 

CT scanner.     

PSNR is most easily defined via the Mean Squared 

Error (MSE). For an actual CT image (𝐼 (𝑚 × 𝑛)), its 

synthetic approximation (N), and the maximum possible 

pixel grayscale value of the CT  images (𝑀𝐴𝑋𝐼) the PSNR 

can be mathematically defined as (Equation 2): 

 

Figure 1. The flowchart of the proposed algorithm 
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𝑃𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔10(
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
) 

𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑[𝐼(𝑖. 𝑗) − 𝑁(𝑖. 𝑗)

𝑛−1

𝑗=0

𝑚−1

𝑖=0

]2 

(2) 

In this paper, we have used SSIM to show the similarity 

of reference CT and P-CT  with standard size K×K 

(Equation 3): 

𝑆𝑆𝐼𝑀(𝐶𝑇. 𝑃𝐶𝑇)

=
(2𝜇𝐶𝑇𝜇𝑃𝐶𝑇 + 𝑐1)(2𝜎𝐶𝑇𝑃𝐶𝑇 + 𝑐2)

(𝜇𝐶𝑇
2 + 𝜇𝑃𝐶𝑇

2 + 𝑐1)(𝜎𝐶𝑇
2 + 𝜎𝑃𝐶𝑇

2 + 𝑐2)
 

𝑐1 = (𝑘1𝐿)2 , 𝑐2 = (𝑘2𝐿)2   , 𝑘1 = 0.01, 𝑘2 = 0.03 

(3) 

Where c1 and c2 are the constants to maintain stability, L 

is the dynamic range of the CT image grayscale, 𝜇𝑥 and 𝜇𝑦  

are the mean of x, y, and 𝜎𝑥
2, 𝜎𝑦

2, and 𝜎𝑥𝑦  are the variance 

and co-variance of x and y, respectively. 

 

3. Results  

The proposed framework has been tested on noisy MR 

images, and the performances were carried out using a 

five-fold cross-validation scheme and three major 

statistical measurements. Table 1 shows the statistics of 

quantitative comparison between noisy MR, corrected 

MR, true CT, and pseudo-CT images using five-fold 

cross-validation. The PSNR was compared between noisy 

MRI, modified MR, and P-CT images over the entire 

blind test data. Figures 2 and 3 show our DL algorithm 

results for T1w MR images with 10% to 20% noise 

artifacts. They offer the axial views of the generated 

enhanced MR images and the corresponding ideal and 

artifact-ridden MR images. The visual investigation 

revealed that the improved MR images generated by the 

model are less noisy and that P-CT has a higher similarity 

to the corresponding true CT images. While removing the 

artifact, our approach should preserve important 

microstructure details. 

Pseudo CT generation from T1W images with synthetic added noise 
Artifact ridden 

MRI 

Modified 

MRI 
Reference CT Pseudo CT 

 
Figure 2. Qualitative comparison of enhanced and artifact-ridden images  across different brain slices, 

for T1W MR images in axial view by proposed DL model: The figure indicates the full-frame images 

and the selected Region Of Interest (ROI) as shown on the bottom right in the yellow box of the 

corresponding images with the dimension of 512 ×512. Images in different columns show (a) artifact-

ridden MR images, (b) enhanced MR, (c) true CT, and (d) P-CT 
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In Figures 4 and 5, we plot the line intensity profile 

and calibration curve over the same position for 

comparing experimental and simulated images as 

“true”, and “P-CT” images. The curve shows the 

relationship between the measured and Pseudo  

 

Hounsfield unit. The best model for P-CT generation 

achieved better quantitative results of 16.5± 15.1, 

28.17± 2.1, and 93.46± 2.1 for MAE, PSNR, and 

SSIM, respectively. 

Visual comparison between CT and related P-CT 

Difference (CT vs P-CT) SSIM(CT vs P-CT) 

 
Figure 3. The difference and the SSIM map between P-CT and true CT image 

Table 1. Statistics of quantitative comparison between ideal, modified, and artifact-ridden MRI images using five-fold 

cross-validation 

Statistical Measurements (Average ± Std) on Synthetic test data 

 MAE (±SD) PSNR (Noisy MR) 

(±SD) 

PSNR (Corrected MR) 

(±SD) 

PSNR (P-CT) 

(±SD) 

SSIM (P-CT) 

(±SD) 

Fold 1 16.5± 15.1 14.9±1.8 24.5±2.24 28.17± 2.1 93.46± 2.1 

Fold 2 20.11± 16.5 14.9±1.8 25.2±2.5 27.83± 2.07 92.9 ± 2.2 

Fold 3 16.17± 14.4 14.9±1.8 23.9±1.82 27.97± 2.09 93.73± 2.17 

Fold 4 16.77 ± 16.3 14.9±1.8 27.02±2.5 27.49± 2.04 92.76± 2.31 

Fold 5 22.00± 17.05 14.9±1.8 25.5±2.3 26.9 ± 1.8 92.7± 2.4 
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4. Discussion  

The performance of proposed de-noising and 

simultaneous creation of P-CT algorithms are measured 

using quantitative or statistical measures as well as the 

visual quality of the images. There have been several 

published methods, each of which has its assumptions, 

advantages, and limitations. An appropriate and ideal de-

noising procedure requires a priori knowledge of the 

noise. In contrast, a practical system may not have 

sufficient information about the noise model or variance. 

This paper presents a noise level of 10%-20%. So better 

results for the MR image de-noising procedure are 

achievable by the proposed algorithm. The given hybrid 

deep learning model can generate a rapid synthesis of CT 

from a standard MRI sequence and high accuracy of 

Hounsfield unit value. The training and test data were 

randomly changed during the network training procedure 

to choose the best model. Still, all models were applied 

to the final blind test data to compare each model's 

performance better. According to the results, the amount 

of PSNR in noisy MR images is about 14; after applying 

each of the five implemented models, we reached 23-27. 

Also, on average, the PSNR value of P-CT images 

generated from noise-removed MR images is 28.17. The 

SSIM value of P-CT images compared to CT images is 

93.46%, which indicates the proper performance of the 

algorithm. 

Since MR images are obtained in different centers and 

may contain noise due to the scanning time or different 

slice thicknesses, this study aims to design an algorithm 

that simultaneously removes the noise from the test data 

and obtains P-CT images from MR images with 

reasonable accuracy. The results of the present study, 

 

Figure 4. P-CT/ CT line profile on zoom region of the total selected profile 

 

 

Figure 5. Calibration curve on the selected zoom area for 

P-CT/ CT 
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especially the SSIM analysis, provide a comprehensive 

comparison of the proposed algorithm and those from 

previously published sources. Therefore, we can easily 

apply the trained model to other test data from different 

centers to achieve better P-CT-generating performance. In 

the following, the main results of several studies have been 

compared with our proposed method based on the statistical 

measurements. For example, Yang et al. [43] propose a 

structure-constrained cycle-GAN and position-based 

selection strategy for selecting training images using 

unpaired data for brain MR-to-CT synthesis. They 

proposed methods that achieved to MAE value of 129. Tie 

et al. [40] achieved an MAE error of 75.7 using multi-

channel multi-path conditional GAN to pseudo-CT 

generation from multi-parametric MR images. 

The high the SSIM and PSNR, the lower the MAE 

values should be. In some of the articles, only the values of 

MAE are reported. In general, we have been able to reach 
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relatively good statistical results compared to other studies. 

For example, in Liang [47], the values of PSNR are better, 

but the image SSIM map value is lower compared to our 

article. Table 2 shows a more complete comparison of the 

results between the proposed method and some other 

studies as MAE, PSNR, and SSIM values. 

5. Conclusion 

A deep learning approach consisting of simultaneous 

training of conversion of noisy T1w MR images to de-

noised MR and aligned P-CT images was employed. This 

work shows the feasibility of using P-CT images generated 

with a deep learning method based on pix2pix generative 

adversarial networks from noisy MR data. The image 

similarity between pseudo and true CT warrants further 

development of a MRI-only radiotherapy planning. 
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