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Abstract 

Purpose: Developing an efficient and reliable method for the identification of depression is highly important. 

This paper aims to propose an approach for depression diagnosis using an interhemispheric asymmetry matrix 

and machine learning algorithms. 

Materials and Methods: First, an EEG signal was acquired from 24 depressed patients and 24 healthy subjects. 

The EEG signal was acquired from participants for 5 minutes in Eyes-Closed (EC) and 5 minutes in Eyes-Open 

(EO) condition. After preprocessing data, interhemispheric asymmetry for absolute and relative powers of theta 

and beta frequency bands, theta-to-alpha power ratio, and Individual Alpha Frequency (IAF) features were 

computed. Then, the proposed asymmetry matrix is used as a feature for statistical and classification analysis. In 

this paper, the classification was performed using a Support Vector Machine (SVM), logistic regression, and 

Multi-Layer Perceptron (MLP). 

Results: The results demonstrated that central and temporal theta absolute power, central and temporal IAF 

asymmetries in the EC condition and occipital beta absolute power, temporal theta relative power, temporal theta-

to-alpha power ratio, and temporal IAF asymmetries in the EO condition have significant differences between 

depressed and healthy groups. Findings show that beta absolute power asymmetry in the occipital region and EO 

condition is a good biomarker for depression identification with 77.1% accuracy using the Gaussian SVM 

classifier. 

Conclusion: The results of this study show performance of proposed asymmetry matrix features in depression 

detection. Findings show that beta absolute power asymmetry in the occipital region and EO condition is a good 

biomarker for depression identification. 

Keywords: Depression; Electroencephalogram; Asymmetry Matrix; Machine Learning Algorithms. 
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1. Introduction  

Major Depressive Disorder (MDD) is a mental illness 

that includes symptoms such as hopelessness, lack of 

motivation, loss of interest, feeling of sadness, and even 

suicidal thoughts.  According to the World Health 

Organization (WHO), all over the world, approximately 

800,000 people die due to this disorder every year [1]. 

Depression is associated with a stressful condition, genetic 

vulnerability, and an imbalance in hormones and 

neurotransmitters [2]. Approximately, half of MDD 

patients are unaware of their illness or their illness is 

misdiagnosed. Traditionally, depression diagnosis 

depends on subjective evaluation using interview sessions 

and psychiatric scales. These methods are useful but time-

consuming and may lead to misdiagnosis due to 

environmental and human factors. Therefore, it is crucial 

to develop an accurate method for classifying depressed 

and healthy subjects. For this aim, the brain activity of the 

patients can be monitored objectively using imaging 

techniques. Among various imaging modalities, EEG has 

gained attention as it is non-invasive and cost-effective 

with high temporal resolution [3]. Nowadays, EEG-based 

depression diagnosis using machine learning algorithms is 

of great interest. In [4] absolute and relative beta power 

bands have been analyzed with separate three-way 

multivariate analysis (ANOVA). The results of this study 

indicate that relative beta power was greater in depressed 

patients than in healthy subjects at all electrode locations 

and absolute power has the same manner for some of the 

electrode locations. This paper does not use any 

classification method to separate depressed and normal 

groups using these features. The authors in [5] find 

increased activity in theta and alpha bands in the occipital 

and parietal regions of the brain in depressed subjects. A 

study conducted by Hosseinifard et al. [6] with 90 subjects 

presented evidence that alpha and theta bands are good 

discriminators between depressed and healthy controls. 

They used K-Nearest Neighbors (KNN), linear 

discriminant analysis, and Logistic Regression (LR) for 

discriminating the two groups. In [7], the classification of 

normal subjects from depressed patients was identified by 

using the power spectrum of EEG signals and Support 

Vector Machine (SVM) classifier. The experimental 

results of this study are carried out with the help of 13 

depressed patients and 12 normal subjects. Authors in [8] 

and [9] conducted experiments with 176 and 170 subjects, 

respectively. Only 3 electrodes (Fp1, Fp2, and Fz) were 

used in these studies. The results show that beta frequency 

band activity achieved the best results between MDD and 

healthy group classifications. In these studies, KNN, 

SVM, Artificial Neural Network (ANN), and Deep Belief 

Network (DBN) were used to analyze the data. Mumtaz et 

al. [10] used LR, SVM, and Naïve Bayesian (NB) 

methods for classifying 33 MDD and 30 healthy controls. 

They used band power and alpha interhemispheric 

asymmetry as linear characteristics of EEG signals. Saeedi 

et al. [11] employed Discrete Wavelet Transform (DWT) 

to decompose EEG signals into detailed and approximate 

coefficients. Then, the delta, theta, alpha, beta, and gamma 

frequency bands of the EEG signals were used as linear 

features. They utilized KNN, and SVM machine learning 

algorithms, and also Multi-Layer Perceptron (MLP) as a 

deep learning method to identify depressive cases. Most 

of the studies [3, 10, 12] show that interhemispheric 

frontal alpha asymmetry is a key marker of the human 

brain in depression detection. Except for the alpha 

frequency band, asymmetry activities in other brain 

regions and frequency bands may also be associated with 

depression. This paper investigates the absolute and 

relative power of theta and beta frequency bands, 

Individual Alpha peak Frequency (IAF), and theta-to-

alpha power ratio features asymmetries capability in 

depression detection using statistical analysis and machine 

learning algorithms.  

The rest of the paper is organized as follows: In the 

“Materials and Methods” section, participants, EEG 

recording and preprocessing, asymmetry matrix 

extraction, statistical analysis, and classification methods 

are described. In the “Results” section, the output of the 

statistical analysis and classification of the proposed 

features are investigated. In the last section, the discussion 

and conclusion are presented.  

2. Materials and Methods  

2.1. Subject 

This study includes 24 MDD and 24 normal 

subjects that were referred to the Asayesh 

rehabilitation clinic, Tabriz, Iran.  

The MDD diagnosis was made based on DSM-V 

criteria by an expert psychiatrist. All of the subjects 

were medication-free and expressed their consent to 

participate in this research. The demographic 

information of the subjects is illustrated in Table 1. 
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Based on this table, there are no significant differences 

between MDD and normal subjects in age and gender. 

2.2. EEG Recording and Preprocessing 

First, the resting state EEG signal was acquired 

from subjects for 5 minutes in Eyes-Closed (EC) and 

5 minutes in Eyes-Open (EO) conditions according to 

the 10-20 system using Mitsar 19 channel device. 

Then, recorded signals passed through the low-pass 

filter with a 50 Hz cut-off frequency and the high-pass 

filter with a 0.1 Hz cut-off frequency. Also, a notch 

filter with 45 and 55 Hz cut-off frequencies was used 

to remove the electrical noise (Gamma and high 

gamma bands were analyzed in simulations. However, 

the results of these frequency bands are not mentioned 

in this paper. For this aim, 50 Hz was used for lowpass 

filter’s cut-off frequency, and for removing line power 

artifact notch filter was used). For removing eye 

movement artifacts such as saccades and blinking the 

Infomax Independent Component Analysis (ICA) was 

used [13]. Recordings were further cleaned with an 

automated z-score-based method using the FASTER 

plugin [14]. 

2.3. Asymmetry Matrix Computation 

After preprocessing EEG signals, interhemispheric 

asymmetry of theta (4-8 Hz) absolute power, theta 

relative power, beta (13-30 Hz) absolute power, beta 

relative power, theta-to-beta power ratio, and IAF 

were computed based on Equation 1: 

Where ch1 is a channel in the left hemisphere and 

ch2 is the analogous channel of ch1 in the right 

hemisphere. Fch defines the specific feature value in 

channel ch. 

Figure 1 shows a schematic of EEG asymmetry 

calculation. Using Equation 1, it is possible to 

calculate the difference between the features of two 

channels for each channel pair, and hence the 

difference in activity corresponding to each part of the 

brain can be identified [15]. 

After calculating asymmetry values for each pair of 

electrodes, an asymmetry matrix according to Table 2 

is proposed to express the asymmetry values of each 

feature. This matrix is used as a feature for statistical 

and classification analysis. 

2.3.1. IAF Calculation 

IAF is defined as a frequency associated with the 

strongest EEG power within the alpha frequency band. 

For IAF calculation, the Fast Fourier Transform (FFT) 

based power spectrum analysis (Welch method) was 

obtained for each subject. The frequency within the 

extended alpha range (8-13 Hz) showing a power peak 

in the power spectrum was considered as the IAF [16]. 

𝐴(𝑐ℎ1, 𝑐ℎ2) =
𝐹𝑐ℎ1 − 𝐹𝑐ℎ2

𝐹𝑐ℎ1 + 𝐹𝑐ℎ2

 (1) 

Table 1. Demographic information of participants 

 Gender Age 

 Male Female Total Male Female Total 

Depression 12 (50%) 12 (50%) 24 35.66±11.39 38.25±14.40 36.95±12.77 

Healthy 12 (50%) 12 (50%) 24 32.58±7.11 33.16±8.03 32.99±7.73 

 

 

Figure 1. Schematic of EEG asymmetry calculation. 

For example, the red line shows asymmetry calculated 

between Fp1 and Fp2 

Table 2. Asymmetry matrix. Orange, yellow, blue, 

green, and gray cells define frontal, central, temporal, 

parietal, and occipital regions asymmetry 
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2.4. Statistical Analysis 

In this study, to investigate asymmetry features’ 

ability in depression detection statistical analysis was 

performed to measure the level of statistically 

significant differences between various groups. Due to 

the non-normal distribution of asymmetry features, the 

Mann-Whitney U-test (α≤0.05) was applied to 

asymmetry matrixes. This test takes a value of two 

groups as input. For prepare inputs, first 4×2 

asymmetry matrixes are reshaped into 8×1 vectors 

resulting in 24 vectors with a size of 8×1 per group. 

By accumulating these vectors in one vector, a suitable 

input with a size of 192×1 was generated for each 

group (see Appendix). Then, Mann-Whitney U-test 

was applied to them. Since the Mann-Whitney test is 

a non-parametric test the length of each input vector 

indicates the degree of freedom. To investigate brain 

regions’ effects on depression detection, statistical 

analysis was also performed at the level of the region. 

For this aim, the asymmetry matrix of each feature was 

divided into 5 brain regions according to Table 3. 

Then, the Mann-Whitney test was applied to these 

electrodes for investigating the related brain region's 

role in depression detection. 

2.5. Classification 

A classifier utilizes features as input to predict the 

corresponding label of each input by training a number 

of parameters from the training dataset. A trained 

classifier can recognize a new instance in an unseen 

testing dataset [17]. In this study, three types of 

classifiers, including SVM, LR, and MLP were used 

to categorize normal and depressed subjects. SVM has 

been widely used for the classification of EEG signals 

for the diagnosis of neural disorders [18]. This method 

transforms input data into higher dimensional space 

using a kernel trick. Then, it segregates the data via a 

hyperplane with maximal margins. LR is a 

classification algorithm used to find the best-fitting to 

describe the relationship between features and labels. 

This method transforms its output using the logistic 

sigmoid function to return aprobability value [19]. In 

1958, Rosenblatt [20] introduced the first neural 

network called perceptron which is the basic unit of 

deep learning. When perceptron is combined  

with other components, it can solve complex 

problems. When several perceptrons combine in 

layers, an artificial neural network named MLP is 

created that comprises three sequential layers: input, 

hidden, and output. 

3. Results  

3.1. Statistical Analysis 

The results of the comparison of healthy and MDD 

groups using different asymmetry matrixes in EC and 

EO conditions are illustrated in Table 4. According to 

this table, features extracted from all 19 channels do 

not show any significant differences between the two 

groups. But, in region-based analysis, theta absolute 

power asymmetry and IAF asymmetry in the central 

and temporal regions in the EC condition are 

statistically significant between healthy and MDD 

groups. In the EO condition, beta absolute power 

asymmetry in the occipital region, and theta relative 

power asymmetry, theta-to-alpha power ratio 

asymmetry, and IAF asymmetry in the temporal 

region have significant differences between the two 

groups.  

Figure 2 shows box plots of significant features. 

According to this figure, in the EC condition, theta 

absolute power asymmetry in the central and temporal 

regions has greater values in MDD patients than in 

normal subjects. But, IAF asymmetry in the central 

and temporal regions has larger values in normal 

subjects than in MDD patients. In the EO condition, 

MDD patients have large theta relative power 

asymmetry, theta-to-alpha power ratio asymmetry, 

and IAF asymmetry in the temporal region, and 

healthy subjects have large beta absolute power 

asymmetry in the occipital region. 

3.2. Classification 

In this section, the classification ability of 

statistically significant features was investigated using 

Table 3. Channel clustering for each brain region 

Frontal A(Fp1, Fp2), A(F3, F4), A(F7, F8) 

Central A(C3, C4) 

Parietal A(P3, P4) 

Temporal A(T3, T4), A(T5, T6) 

Occipital A(O1, O2) 
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SVM with the quadratic kernel, LR, and MLP neural 

network. The MLP used in this paper has one hidden 

layer with 20 neurons and the sigmoid function was 

used as activation of neurons. For this aim, 70% of the 

dataset was used in the training phase and 30% was 

used in the testing phase. Also, a 5-fold cross-

validation method was used in the training of 

classifiers, and the evaluation criteria are reported as 

mean ± standard deviation of folds. The criterion 

applied for classification evaluation is accuracy. 

Based on Equation 2, the classification accuracy is the 

Table 4. Results of the statistical analysis between two groups of depressed and healthy by Mann-Whitney test. P, U, Z, 

and DF indicates the p-value, U-value, Z-value, and degree of freedom respectively. F, C, P, T, and O indicates frontal, 

central, parietal, temporal. and occipital regions of the brain 

Features 
EC EO 

All F C P T O All F C P T O 

Theta absolute 

power asymmetry 

P 0.43 0.24 0.01 0.65 0.005 0.15 0.26 0.42 0.42 0.26 0.40 0.50 

U 19280 2883 164 266 1531 218 17229 2393 249 234 1266 255 

Z 0.78 1.16 -2.54 -0.44 2.77 -1.43 -1.11 -0.79 -0.79 0.83 -1.10 -0.67 

DF 192 72 24 24 48 24 192 72 24 24 72 24 

Beta absolute 

power asymmetry 

P 0.88 0.99 0.28 0.79 0.09 0.08 0.14 0.20 0.54 0.47 0.96 0.01 

U 18590 2594 236 301 1381 205 16840 2276 318 253 1158 165 

Z 0.14 0.00 -1.06 0.26 1.67 -1.70 -1.46 -1.26 0.61 -0.71 0.04 -2.53 

DF 192 72 24 24 48 24 192 72 24 24 48 24 

Theta relative 

power asymmetry 

P 0.74 0.75 0.58 0.95 0.63 0.70 0.16 0.88 0.17 0.94 0.003 0.38 

U 18790 2671 261 258 1217 307 19959 2629 222 292 1547 331 

Z 0.32 0.31 -0.54 -0.05 0.47 46 1.40 0.15 -1.35 0.07 2.89 0.88 

DF 192 72 24 24 48 24 192 72 24 24 48 24 

Beta relative 

power asymmetry 

P 0.16 0.16 0.30 0.78 0.17 0.46 0.62 0.53 0.94 0.57 0.92 0.48 

U 16919 2241 338 302 965 252 17899 2437 292 316 1165 254 

Z -1.39 -1.40 1.02 0.28 -1.37 -0.73 -0.49 -0.62 0.07 0.57 0.09 -0.69 

DF 192 72 24 24 48 24 192 72 24 24 48 24 

Theta-to-alpha 

power ratio 

asymmetry 

P 0.73 0.61 0.47 0.87 0.35 0.71 0.14 0.19 0.38 0.54 0.001 0.12 

U 18804 2719 253 280 1280 270 20010 2266 245 318 1594 362 

Z 0.34 0.51 -0.71 -0.15 0.93 -0.36 1.45 -1.30 -0.87 0.61 3.24 1.52 

DF 192 72 24 24 48 24 192 72 24 24 48 24 

IAF asymmetry 

P 0.29 0.27 0.01 0.55 0.03 0.73 0.78 0.55 0.17 0.94 0.05 0.78 

U 17283 2319 402 863 259 305 18135 2741 354 284 889 274 

Z -1.06 -1.09 2.34 -2.11 -0.59 0.34 -0.27 0.59 1.35 -0.07 -1.92 -0.28 

DF 192 72 24 24 48 24 192 72 24 24 48 24 

 

 

Figure 2. Mean value of significant features in depressed and healthy groups 
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number of correctly predicted data points out of all the 

data points. 

𝐴𝐶𝐶 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2) 

In this equation, TN, FN, TP, and FP are 

respectively true negative, false negative, true 

positive, and false positive values.  

Figure 3 shows MDD and healthy subjects' 

classification mean accuracy using different 

asymmetry features and various classifiers. Based on 

this figure, occipital beta absolute power in the EO 

condition achieves the best classification result with 

77.1% accuracy using the SVM classifier. Also, this 

feature shows good classification performance with 

72.7% accuracy using MLP as a classifier. Temporal 

theta absolute power asymmetry in the EC condition 

has good classification performance with 74.2% and 

70.8% accuracy using MLP and SVM classifiers, 

respectively.   

4. Discussion and Conclusion 

According to previous studies, interhemispheric 

frontal alpha asymmetry is a key marker for 

depression detection. This paper investigates other 

frequency bands and brain regions’ abilities in this 

field. For this aim, interhemispheric asymmetry for 

theta and beta absolute power, theta and beta relative 

power, theta-to-beta power ratio, and IAF features 

were computed. Then, the asymmetry matrix was 

calculated from the asymmetry values of pair 

electrodes for each feature. This matrix was used as a 

feature for statistical and classification analysis. The 

results showed that, in the EC EEGs, theta absolute 

power and IAF asymmetries in the central and 

temporal regions have significant differences between 

MDD and healthy groups. In the EO EEGs, beta 

absolute power asymmetry in the occipital region, 

theta relative power, theta-to-alpha power ratio, and 

IAF asymmetries in the temporal region show 

significant differences between the two groups.  

Structural MRI studies in adult samples show 

differences in shape and volume between depressed 

and healthy groups in the temporal region [18]. In line 

with this finding, in current research, the asymmetry 

matrix of different features mostly shows significant 

differences between MDD and healthy groups in the 

temporal region.  

Each EEG frequency band is associated with some 

mechanisms in the brain. The beta band is related to 

expectancy and theta band is related to emotion 

processing [19]. Analysis of this paper shows that beta 

absolute power asymmetry in the occipital region is 

significantly lower in MDD patients. In support of our 

finding, a recent work [20] reports reduced beta waves 

in the left side of the brain for depression. 

Furthermore, authors in [8, 9] indicate that beta band 

features had good depression prediction ability. In the 

present study, the best classification result was 

achieved by occipital beta absolute power asymmetry. 

The authors in [5] found increased activity in theta, 

alpha, and beta bands in the occipital and parietal areas 

of the brain of depressed subjects. In line with this 

 

Figure 3. Classification accuracy of healthy and depressed subjects using significant features and SVM, MLP, and 

regression methods. The results were reported based on the mean ± standard deviation of folds 
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research, asymmetry matrix features of theta 

frequency band are greater in MDD patients. But in 

contrast with [5], asymmetry matrix features are 

significant in the temporal and central brain areas. 

Using the accuracy of a classifier, Hosseinifard et al. 

[6] find that theta band especially in the left 

hemisphere is a good feature to discriminate depressed 

from healthy subjects. Our classification results show 

good performance using theta absolute power 

asymmetry of the temporal region, too. The authors 

could not find any article that used theta-to-alpha 

power ratio and IAF for depression detection. 

However, these features’ interhemispheric 

asymmetries show significant differences between 

healthy and MDD groups in our dataset.  

To evaluate the ability of proposed features in 

depression detection, classification was performed 

using frontal interhemispheric alpha asymmetry [3, 

10, 12], theta absolute power [5, 6], beta absolute 

power [4], and alpha absolute power [5, 6] features 

that were used in previous studies. The results of 

classification using these features are illustrated in 

Figure 4. This figure shows that the proposed 

asymmetry-based features show better classification 

performance than traditional frequency-based 

features. 

In this study, the ability of asymmetry features in 

depression prediction has been investigated using 

SVM, LR, and MLP classifiers. According to Figure 

3, occipital beta absolute power asymmetry and 

temporal theta absolute power asymmetry show good 

classification performance using SVM and MLP 

classifiers. This research has a limited number of 

features for training classifiers. It is expected that by 

increasing the number of data, classification 

performance increased too.  
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Appendix 

Mann-Whitney U-test takes the value of two groups 

as a vector. The asymmetry features are as a matrix 

(i.e. it is a 4×2 matrix in 19-electrode analysis). 

Therefore, there are 24 4×2 matrixes per group as 

Figure a. It is impossible to use this matrix as input for 

statistical analysis in Matlab (it takes two n×1 vectors 

as input). So, 4×2 asymmetry matrixes are reshaped 

into 8×1 vectors. Now, based on Figure b, there are 24, 

8×1 vectors per group. By accumulating these vectors 

in one vector the proper input for the statistical test 

was performed for each group. Since the Mann-

Whitney test is a non-parametric test the length of each 

input vector was reported as the degree of freedom 

(i.e. when all of the electrodes were used in the 

analysis, the length of the input vector is 4×2×24 = 192 

for each group). Because we do not have 1 feature for 

each subject, the degree of freedom is not equal to 24.  

The rank mean of one group is compared to the 

overall rank mean to determine a test statistic called a 

Z-value. Below is the formula to compute Z-value for 

the Mann-Whitney test: 

𝑧 = (𝑈1 + 0.5) − (
𝑈1 + 𝑈2

2
) /√

𝑛1𝑛2(𝑛1 + 𝑛2 + 1)

12
 

Where U1, U2, n1, and n2 indicate the U-value of 

group 1, the U-value of group 2, the number of 

subjects in group 1, and the number of subjects in 

group 2, respectively. A positive Z-value indicates an 

upward trend and a negative Z-value indicates a 

downward trend in data. 

 

 

Figure a. Schematic of initial inputs 



 M. Torabi Nikjeh, et al.  

83   FBT, Vol. 11, No. 1 (Winter 2024) 75-83 

 

 

 

 

 

 

Figure b. Schematic of final inputs 


