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Abstract 

Purpose: A new code based on Helmholtz decomposition is presented to separate longitudinal (pressure) and 

transverse (shear) components of a mixed wave field. This algorithm will help isolate shear or pressure 

components of an elastic wave to further concentrate on each specific wave and its physical characteristics, 

particularly in medical imaging instrument development and image processing techniques. 

Materials and Methods: Using the combination of Fourier transform and Helmholtz decomposition, first, the 

mathematical basis of the work is prepared. After reaching a usable formula, this basis is embedded in the Code 

written in MATLAB program. Then, various test data containing shear and pressure waves were created and fed 

to the Code to evaluate its ability to decompose the displacements into the shear and pressure waves. 

Results: This new algorithm successfully isolated the transverse and longitudinal wavefront of the mixed 

wavefield. The Code demonstrated 100% accuracy for separating the shear wave and more than 99% for the 

pressure wave. Moreover, the background noise was kept under 0.03% in every step. 

Conclusion: The results show that using Helmholtz decomposition in Fourier space on 3D data can help 

decompose a displacement field into its irrotational and solenoidal components with high accuracy. A weak 

dependency on wave thickness and contrast was observed, but the algorithm's accuracy never fell below 99%. 

Keywords: Helmholtz Decomposition; Fourier Transform; Vector Field; Longitudinal Waves; Transverse Waves. 
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1. Introduction  

In biomedical imaging, image reconstruction is a 

critical part of the process. Especially in shear wave 

elastography, detecting shear waves passing through the 

tissue is a significant step. While shear waves do not have 

a predominant presence in biomedical imaging, in many 

research and development cases, it is essential to be able 

to focus on the physical characteristics of these waves. 

Therefore, wave decomposition can be essential in device 

development in shear wave-related medical imaging 

modalities. 

To achieve this goal, it is possible to use Helmholtz 

decomposition [1] in Fourier space. A fair amount of 

knowledge can be borrowed from wave decomposition in 

geophysics and seismicity, where it is often used. In 

geophysics, producing images sometimes requires wave 

separation. Typically, the pressure and shear modes are 

separated and addressed separately. Otherwise, the two 

modes are blended on every component of the wave field, 

resulting in crosstalk and image artifacts [2]. 

A method of separation based on finite-difference 

extrapolation has been offered as a comparatively 

improved strategy [3]. This method was then further 

developed by rectifying the phase shift produced by the 

Helmholtz decomposition of the wavefield [4]. This 

method was extended from 2D to 3D, which splits the data 

into scalar pressure wave data and 3D vector shear wave 

data [5]. The 3-C (three Component) split shear wave data 

were then converted into scalar data for scalar migration 

[6]. 

Using the Helmholtz decomposition, Yan and Sava 

separated the waves in 2008 [2]. The divergence and curl 

processes alter the amplitude and phase of the split 

pressure and shear wave fields, resulting in incorrect 

amplitudes and phases in the migrated images. 

Researchers are interested in vector wavefield 

separation methods to avoid the issues associated with 

wavefield separation techniques based on Helmholtz 

decomposition. They proposed one method to perform 

vector wavefield separation by solving an additional 

pressure or shear wave equation [7]. The introduction of 

the notion of vector wavefield separation in isotropic and 

anisotropic media occurred in the same year [8]. Since this 

method is done in the wavenumber domain, it is 

challenging to manage velocity models with significant 

variances. The wavefield separation operators were then 

simplified by using the low-rank approximation and 

reducing the cost to a small number of FFT operations per 

time step. However, this approach is still time-consuming 

in heterogeneous media due to the substantial increase in 

the model size [9]. 

Researchers introduced a new algorithm based on 

vector Helmholtz decomposition in 2017 [10]. They 

perform vector wavefield separation in the space domain, 

which differs from the method developed earlier by Zhang 

and McMechan in 2010 [8]. This method begins with the 

solution of Poisson's equation before applying twice the 

spatial derivatives. Additionally, it generates pressure and 

shear wavefields with the same amplitude and phase as 

elastic wavefields. Later, an amplitude and phase 

correction technique was developed to avoid solving 

Poisson's equation, drastically reducing the computational 

cost of vector wavefield decomposition [11, 12]. 

Researchers theoretically analyzed the amplitude and 

phase distortion characteristics of wave fields in the 

decomposition of pressure and Shear waves based on 

Helmholtz decomposition in the time-space domain and 

formulated accurate wavefield decomposition and 

recomposition equations [13]. However, for some 

complicated structures, the proposed approach will be 

affected by energy leakage along the interface, reducing 

its precision. 

Even though these studies provide considerable 

insights into wave-mode separation in anisotropic media, 

numerous obstacles remain, particularly in the 

computational implementation, if the proposed methods 

are implemented directly in practice. For instance, using 

nonstationary filtering to separate modes is 

computationally expensive, especially in three 

dimensions. 

Based on the limits and expense of the current models 

and the limited data in biomedical research, it has been 

recommended to construct a MATLAB program capable 

of decomposing displacement fields in three dimensions. 

This paper investigates the uses of Helmholtz 

decomposition in Fourier space and has specific needs and 

traits. Based on these conditions, it consists of an elastic 

wave emerging and propagating in a 2D axisymmetric 

environment, and the displacements in each direction were 

exported to be further analyzed. Since the simulation was 

done in a 2D axisymmetric environment, the exported data 

is a 2D cut in a cylindrical coordination system and must 

be taken back to its original form for analysis. Thus, the 
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objective was to create a code that could take the data, turn 

it back to its original form, perform the decomposition 

process based on the Helmholtz theorem in 3D, and assess 

the displacements made by each wave (pressure wave and 

shear wave). 

2. Materials and Methods  

2.1. Mathematical Basis 

This work is based on Helmholtz's theorem, which states 

that any sufficiently smooth, rapidly decaying vector field 

in three dimensions can be resolved into the sum of an  

In this project, instead of continuous functions, there are 

two 3D arrays containing displacements caused by an 

elastic wave (Figure 1), one of which contains 

displacements in the r-direction and the other in the z-

direction. These arrays are treated as discrete functions. 

Then, the conversion formulas can convert these 

displacements to cartesian (Figure 2). A vector P in 

cylindrical coordinates can be written by its unit vectors 

𝑃 = 𝑃𝜌�̂� + 𝑃𝜙�̂� + 𝑃𝑧�̂� . Cylindrical unit vectors can be 

converted to cartesian unit vectors using the following 

formula (Equation 3): 

Thus, the displacement vectors in each pixel can be 

converted to their cartesian equivalent. 

Note that since the simulation was done in a 2D 

axisymmetric environment (cylindrical coordinate system) 

and the exported data from COMSOL is a 2D cut by  

irrotational (curl-free) vector field and a solenoidal 

(divergence-free) vector field [14].  

We can have a vector function F(r), of which we know 

the curl 𝛻 × 𝐹 and the divergence 𝛻 ⋅ 𝐹 in the domain and 

the fields on the boundary. Writing the function using the 

delta function in the form of (Equation 1) 

𝛿3(𝑟 − 𝑟′) = −
1

4𝜋
𝛻2

1

|𝑟 − 𝑟′|
 (1) 

Where 𝛻2: = 𝛻 ⋅ 𝛻 is the Laplacian operator, and with 

the identity 𝛻 × 𝛻 ×= 𝛻𝛻 ⋅ −𝛻2, we have (Equation 2): 

 

default, the data for the second dimension, the angle, is 

always zero. 

For instance, for vector 𝑃 = 𝑃𝜌�̂� + 𝑃𝜙�̂� + 𝑃𝑧�̂�, the 

conversion mentioned in Equation 3 gives Equation 4:  

 

 

 

 

 

 

 

  

𝑥 = 𝑐𝑜𝑠 𝜙 �̂� − 𝑠𝑖𝑛 𝜙 �̂� 

�̂� = 𝑠𝑖𝑛 𝜙 �̂� + 𝑐𝑜𝑠 𝜙 �̂� 

�̂� = �̂� 

(3) 

𝑃𝑥 = 𝑃𝜌 𝑐𝑜𝑠 𝜙 − 𝑃𝜙 𝑠𝑖𝑛 𝜙 

𝑃𝑦 = 𝑃𝜌 𝑠𝑖𝑛 𝜙 + 𝑃𝜙 𝑐𝑜𝑠 𝜙 

𝑃𝑧 = 𝑃𝑧 

(4) 

𝐹(𝑟) = ∫𝐹(𝑟′)𝛿3(𝑟 − 𝑟′)𝑑𝑉′

𝑣

 

= −
1

4𝜋
𝛻2 ∫

𝐹(𝑟′)

|𝑟 − 𝑟′|
𝑑𝑉′

𝑣

= −
1

4𝜋
[𝛻 (𝛻 ⋅ ∫

𝐹(𝑟′)

|𝑟 − 𝑟′|
𝑑𝑉′

𝑣

) − 𝛻 × (𝛻 × ∫
𝐹(𝑟′)

|𝑟 − 𝑟′|
𝑑𝑉′

𝑣

)] 

= −
1

4𝜋
[𝛻 (∫ 𝐹(𝑟′) ⋅ 𝛻

1

|𝑟 − 𝑟′|
𝑑𝑉′

𝑣

) + 𝛻 × (∫ 𝐹(𝑟′) × 𝛻
1

|𝑟 − 𝑟′|
𝑑𝑉′

𝑣

)]

= −
1

4𝜋
[−𝛻 (∫ 𝐹(𝑟′) ⋅ 𝛻′

1

|𝑟 − 𝑟′|
𝑑𝑉′

𝑣

) − 𝛻 × (∫ 𝐹(𝑟′) × 𝛻′
1

|𝑟 − 𝑟′|
𝑑𝑉′

𝑣

)] 

(2) 

 

 

Figure 1. Each pixel in the 2D cut contains the 

displacement of its center in a specific direction, r or z 
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In this project 𝜙 = 0 → 𝑠𝑖𝑛 𝜙 = 0, 𝑐𝑜𝑠 𝜙 = 1 and 

𝑃𝑧�̂� is the same in both coordinates; from 3 and 4 (Equation 

5):  

𝑃 = 𝑃𝑥�̂� + 𝑃𝑦�̂� + 𝑃𝑧�̂� = 𝑃𝜌�̂� + 𝑃𝜙�̂� + 𝑃𝑧�̂� 

𝑃 = 𝑃𝑥�̂� + 𝑃𝑧�̂� = 𝑃𝜌�̂� + 𝑃𝑧�̂� 
(5) 

The Fourier transformation will be used to estimate the 

differential and integral operators present in the Helmholtz 

theorem's mathematical basis. The rationale is to use the 

characteristics of the Fourier transform, which can solve a 

wide range of equations, from ordinary differential 

equations to complex curl or divergence equations.  

In that sense, there is the following identity for the 

Fourier transform of a derivative (Equation 6): 

𝐹𝑇[𝑓(𝑝)(𝑥)] = 𝐹𝑇 [
𝑑𝑝𝑓

𝑑𝑥𝑝
] = (𝑖𝑘)𝑝𝑓(𝑘) (6) 

Thus, applying a Fourier transform to terms and 

equations involving derivatives replaces the differential 

components with a simple algebraic component 𝑓, which 

can be easier to solve. 

If we write a function 𝑓(𝑥) as a Fourier integral, we have 

(Equation 7):  

𝑓(𝑥) =
1

2𝜋
∫ 𝑓(𝑘)𝑒(𝑖𝑘𝑥)𝑑𝑘 (7) 

Differentiation with respect to 𝑥 can be taken inside the 

integral, so (Equation 8); 

𝑑𝑓

𝑑𝑥
=

1

2𝜋
∫ 𝑓(𝑘)𝑖𝑘𝑒(𝑖𝑘𝑥)𝑑𝑘 (8) 

and we can recognize 𝑖𝑘𝑓(𝑘) as the Fourier transform 

of the 
𝑑𝑓

𝑑𝑥
.  

Also, the Fourier transform of the divergence of a vector 

field in three dimensions can be shown (Equation 9): 

𝐹𝑇[𝛻 ⋅ 𝑣(𝑥)] = 𝑖𝑘𝑥 ⋅ 𝑓(𝑘𝑥)𝑖 + 𝑖𝑘𝑦 ⋅ 𝑓(𝑘𝑦)𝑗

+ 𝑖𝑘𝑧 ⋅ 𝑓(𝑘𝑧)�⃗⃗� 
(9) 

For the Fourier transform of the curl of a vector field, we 

have (Equation 10): 

𝐹𝑇[𝛻 × 𝑣(𝑥, 𝑦, 𝑧)] = 𝑖𝑘𝑥 × 𝑓(𝑘𝑥)𝑖 + 𝑖𝑘𝑦 ×

𝑓(𝑘𝑦)𝑗 + 𝑖𝑘𝑧 × 𝑓(𝑘𝑧)�⃗⃗�. 
(10) 

Using this mathematical basis, the functions we need to 

calculate and perform the decomposition can be produced. 

If we have a vector field F, which is not bounded, F shall 

decay faster than 1/r; thus, the Fourier transform of F, 

denoted 𝑓, is guaranteed to exist [15]. We apply the 

convention (Equation 11): 

𝐹(𝑥, 𝑦, 𝑧) = ∭ 𝑓(𝑘𝑥)𝑒𝑖𝑘𝑥𝑥 + 𝑓(𝑘𝑦)𝑒𝑖𝑘𝑦𝑦

+ 𝑓(𝑘𝑧)𝑒𝑖𝑘𝑧𝑧𝑑𝑉𝑘𝑥,𝑦,𝑧
 

(11) 

The Fourier transform of a scalar field is a scalar field, 

and the Fourier Transform of a vector field is a vector field 

of the same dimension. Consider the following scalar and 

vector fields (Equations 12-14): 

𝑓𝛷𝑥,𝑦,𝑧
(𝑘) = 𝑖

𝑘𝑥𝑓𝑥(𝑘)

‖𝑘‖2
+ 𝑖

𝑘𝑦𝑓𝑦(𝑘)

‖𝑘‖2

+ 𝑖
𝑘𝑧𝑓𝑧(𝑘)

‖𝑘‖2
 

(12) 

𝑓𝐴𝑥,𝑦,𝑧
(𝑘) = 𝑖 (

𝑘𝑦𝑓𝑧(𝑘)

‖𝑘‖2
−

𝑘𝑧𝑓𝑦(𝑘)

‖𝑘‖2
) �̂�

+ 𝑖 (
𝑘𝑧𝑓𝑥(𝑘)

‖𝑘‖2
−

𝑘𝑥𝑓𝑧(𝑘)

‖𝑘‖2
) �̂�

+ 𝑖 (
𝑘𝑥𝑓𝑦(𝑘)

‖𝑘‖2
−

𝑘𝑦𝑓𝑥(𝑘)

‖𝑘‖2
) �̂� 

(13) 

𝛷(𝑥, 𝑦, 𝑧) = ∭ 𝑓𝛷[(𝑘𝑥)𝑒𝑖𝑘𝑥.𝑥 + (𝑘𝑦)𝑒𝑖𝑘𝑦.𝑦

+ (𝑘𝑧)𝑒𝑖𝑘𝑧.𝑧]𝑑𝑉𝑘𝑥,𝑦,𝑧
 

𝐴(𝑥, 𝑦, 𝑧) = ∭ 𝑓𝐴[(𝑘𝑥)𝑒𝑖𝑘𝑥.𝑥 + (𝑘𝑦)𝑒𝑖𝑘𝑦.𝑦

+ (𝑘𝑧)𝑒𝑖𝑘𝑧.𝑧]𝑑𝑉𝑘𝑥,𝑦,𝑧
 

(14) 

Hence, 

 

Figure 2. Cylindrical unit vectors are given in the 

Cartesian coordinate system 
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𝑓(𝑘𝑥,𝑦,𝑧) = −[+𝑖𝑘𝑥𝑖 + 𝑖𝑘𝑦𝑗

+ 𝑖𝑘𝑧�⃗⃗�]. 𝑓𝛷(𝑘𝑥,𝑦,𝑧)

+ [𝑖𝑘𝑥𝑖 + 𝑖𝑘𝑦𝑗 + 𝑖𝑘𝑧�⃗⃗�]

× 𝑓𝐴(𝑘𝑥,𝑦,𝑧) 

(15) 

𝐹(𝑥, 𝑦, 𝑧) = ∭[𝑖𝑘𝑥𝑖 + 𝑖𝑘𝑦𝑗

+ 𝑖𝑘𝑧 �⃗⃗�]. 𝑓𝛷[(𝑘𝑥)𝑒𝑖𝑘𝑥.𝑥

+ (𝑘𝑦)𝑒𝑖𝑘𝑦.𝑦

+ (𝑘𝑧)𝑒𝑖𝑘𝑧.𝑧]𝑑𝑉𝑘𝑥,𝑦,𝑧

+ ∭[𝑖𝑘𝑥𝑖 + 𝑖𝑘𝑦𝑗 + 𝑖𝑘𝑧�⃗⃗�]

× 𝑓𝐴[(𝑘𝑥)𝑒𝑖𝑘𝑥.𝑥

+ (𝑘𝑦)𝑒𝑖𝑘𝑦.𝑦

+ (𝑘𝑧)𝑒𝑖𝑘𝑧.𝑧]𝑑𝑉𝑘𝑥,𝑦,𝑧
 

(16) 

Therefore, we conclude (Equation 17): 

𝐹(𝑥, 𝑦, 𝑧) = −𝛻 ⋅ 𝛷(𝑥, 𝑦, 𝑧) + 𝛻 × 𝐴(𝑥, 𝑦, 𝑧) (17) 

It can be seen that the vector field is successfully written 

as a divergence-free and a curl-free component, as the 

Helmholtz theorem states. 

Finally, in the Fourier space, one can have (Equation 18): 

𝐹(𝑥)𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 = 𝑘𝑥 ⋅
𝑘𝑥 ⋅ 𝑓(𝑘𝑥)

‖𝑘𝑥‖2
 (18) 

and the same can be written for other directions, y and z. 

Also, it is correct to assume (Equation 19): 

𝐹𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 = 𝐹 − 𝑘 ⋅
𝑘 ⋅ 𝑓(𝑘)

‖𝑘‖2
 (19) 

since it is faster to compute the longitudinal component. 

Now, to address the means of this approach, the Fast 

Fourier Transform can be used since its objective is to 

perform the Discrete Fourier Transform faster. It is known 

that executing DFT requires performing O(N2) complex 

operations for N data points, while the FFT reduces the 

number of computations for the same problem to O(NlogN) 

[10]. 

In MATLAB, the FFTN function is used since it 

computes the Discrete Fourier Transform (DFT) using a 

Fast Fourier transform algorithm in n dimensions. 

2.2. Coding Procedure 

The mathematical basics and necessary touches were 

implemented to successfully decompose an elastic wave to 

its transverse (shear wave) and longitudinal (pressure wave) 

components in 7 consecutive steps. These steps are: 1) 

creating the test data (or importing the data from 

COMSOL), 2) converting the 2D data to 3D, 3) changing 

the coordinate system, 4) performing Helmholtz 

decomposition, 5) Plotting the data, performing 

evaluations, 6) repeating the process with different input, 

and 7) Evaluation Using COMSOL input.  

In order to have a specific set of data that can be checked 

quickly and precisely and remove any unwanted external 

interference, two simple 2D matrices were produced. Each 

of them contained displacements in a particular direction, r 

or z. These matrices are created as one side of a diameter 

cut from a cylindrical medium to replicate the exported data 

from a 2D axisymmetric simulation from COMSOL 

Multiphysics (Figure 3). Here are extra explanations to 

clarify the process further, with the help of the block 

diagram in Figure 8: 

- The test data here is two matrices that we created and 

consist of displacements in perpendicular directions to 

model displacement fields with longitudinal (pressure 

waves) and transverse (shear wave) waves. On their own, 

the said matrices are just matrices with different values. 

However, it acts as a single displacement field with 

wavefronts of known size (displacement amplitude) and 

location when it goes through the procedure. Therefore, it is 

an ideal "test data" to test the performance of our algorithm. 

- The synthesis of the test data is simple. We created two 

matrices with a specific value on specific arrays and zeroed 

 

Figure 3. In a 2D axisymmetric model, our exported 

data is one side of a diameter cut from the cylindrical 

model 
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in on others. One of these matrices will be processed as a 

displacement map in the r-direction and the other as the 

displacement map in the z-direction. When, as part of the 

algorithm, they both revolve around the z-axis, one acts as 

a displacements field with a longitudinal wave in it (since 

the wave propagation is considered to be outward and the 

displacement is pointing outward or along the r-axis, as 

well) and the other acts as a displacement field with a 

transverse wave inside it (since the wave propagation is 

considered to be outward and the displacement is pointing 

upward, or along the z-axis, therefore perpendicular). 

- The characteristics of the test data are discussed chiefly 

above. Plus, the nature of it, the size and direction of 

displacements, and their location are known. They also 

have known width (the number of pixels with displacement 

values). 

- The reason for these characteristics consists of two 

parts: 1) to give them the properties of longitudinal or 

pressure waves, and 2) to keep all the essential data and 

remove any unwanted properties that are unnecessary to the 

algorithm and only complicate the results. 

- Considering a wavefield is just a vector field, and a 

vector field is just a matrix with values and directions, the 

created test data should (in theory) cover every situation in 

the book. However, to make sure of the fact that practical 

properties (such as the width of the wave and the difference 

between the strength of the wave and background) do not 

affect the results too negatively, we tested the algorithm 

with test data with different properties in step 6 of the 

procedure. 

Since our model and its interactions were done in a 2D 

axisymmetric environment, it contains crucial 3D 

information as well. Thus, the 2D data is converted into a 

3D data set to maintain its integrity during decomposition. 

The primary tool here was the "revolve2D" function which 

is built in the k-wave toolbox for MATLAB. This function 

takes an m by n matrix, revolves it around the first 

dimension (the m dimension), and produces a 3D array. The 

new array has the same size in the first dimension, while the 

second and third dimensions have a 2n-1 size.  

Note that if there is a wavefront with displacements in 

the z-direction, revolved around the z-axis, as there is in this 

project, it will end up with a wavefront resembling a 

transverse wave (Figure 4a) since the direction of 

displacement is perpendicular to the direction of 

propagation. Similarly, if a wave with displacements in the 

r-direction revolved around the z-axis, the final product will 

resemble a longitudinal wave pattern since the propagation 

and displacements are in the same direction (Figure 4b). 

Thus, this test data will have two distinguished wavefronts, 

one longitudinal or pressure wave and one transverse or 

shear wave. In order to validate the final results, the 

longitudinal wave was purposefully designed with a smaller 

radius and less displacement, and the transverse wave with 

a larger radius and displacement. 

 

After running the first part of the program, two matrices 

are obtained, shown in Figures 5a and 5b below. 

 

 

Figure 4. a) Displacements in the z-direction form a 

transverse wave after revolving. b) displacements in the 

r direction form a longitudinal wave 

 

Figure 5. The 2D test data. a) The wavefront with the 

displacement in the r-direction represents the 

longitudinal waves (with a radius of 2 and smaller 

displacement). b) The wave with the displacement in the 

z-direction, representing the transverse wave (with a 

radius of 8 and larger displacement) 
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After revolving the matrices shown in Figure 5, we get a 

cube with a cylindrical wavefront inside it. Horizontally 

slicing this cube will result in 2D matrices with circular 

wavefronts, as shown in Figure 6. Furthermore, a plotted 

row from the middle of each slice (row 121) can be 

presented as a profile of the wavefronts, which can help to 

obtain the expected information (Figure 7). 

Since our simulation was done in a 2D axisymmetric 

environment, the data collected was in cylindrical 

coordinates. However, now it should be converted to 

cartesian coordinates to facilitate the rest of the process. 

The displacements in the z-direction are the same in both 

coordinate systems, but the displacements in the r-direction 

will be decomposed into data in the x and y directions. Each 

displacement in the r direction can represent two separate 

displacements in the x and y directions using the sine and 

cosine operators based on each voxel's angle in reference to 

the original 2D cut. This step is the most complicated part 

of the program, where the decomposition of the test data is 

performed. The main reason for this complication is 

aligning the directions in the data set and the Helmholtz 

function. 

Based on Equations 18 and 19, the decomposition 

process was performed on all three 3D arrays containing the 

displacement value in each cartesian direction, x, y, and z. 

After obtaining two sets of three 3d arrays, one 

containing the displacements made by the longitudinal 

wave and the other containing the displacements from the 

transverse wave, each set of 3 arrays is combined to produce 

the displacements made by each wavefront in its entirety.  

The last step is to extract one slice of each 3D array to 

present and do the necessary measurements. By creating a 

diameter cut and plotting the profile of each slice, the 

displacement made by each wavefront can be easily 

observed and measured. 

With the evaluation cycle completed, new parameters 

were given to the data set to eliminate any link between 

parameters and results. Therefore, new data sets were 

created with I) reversing the position of transverse and 

longitudinal waves, II) higher contrast between the 

wavefronts (0.1 and 0.9 instead of 0.25 and 0.5), and III) 

thicker and thinner wavefronts.  

Figure 8 is a block diagram showing the complete 

process with two entries. The algorithm was originally 

designed to take exported files from COMSOL (which 

needs different preparations, as seen in Figure 8) but now 

can create and examine a test wavefield as well. Finally, the 

Code is tested with a wavefield exported from COMSOL. 

This wavefield consists of two CVS files, one containing 

the displacements in the r-direction and the other containing 

the displacements in the z-direction. These CVS files are 2D 

matrices, and each column is a vector containing 14,641 

pixels which are 121 squared. It also has 2703 columns, the 

number of time steps in COMSOL simulation. To 

 

Figure 6. A horizontal cut in the z-axis of the test data, 

after being revolved, gives us a cylindrical (circle in 2D) 

wavefront. a) Wavefront with the displacement in the r-

direction, which represents the longitudinal waves (with a 

radius of 2 and smaller displacement), b) Wave with the 

displacement in the z-direction, representing the 

transverse wave (with a radius of 8 and larger 

displacement) 

 

Figure 7. Profile of the wavefronts in the r (a) and z (b) 

directions 
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qualitatively evaluate the performance of the Code, a third 

CVS file is exported, which contains the total displacements 

of each voxel. By comparing the presence of each 

wavefront at a specific time during their propagation, the 

Code's ability to decompose and separately present the 

waves is evaluated. 

3. Results  

After running the program in its entirety, two 

subplots are obtained, one showing only the 

longitudinal wave and the other only the transverse or 

shear wave (Figure 9). Then, row 121 (the middle) is 

taken out and plotted as the profile for the wavefront 

and background. By plotting the profile of each 

matrix, the displacement made by each wave was 

measured, as shown in Figure 10. 

Here, we can use the data in matrices in Figure 9 

and vectors plotted in Figure 10 to evaluate the 

accuracy of our algorithm. We can compare the 

obtained (decomposed) value for displacements with 

the input value, measure the noise in the background, 

and observe the waves visually. 

The displacements of isolated shear and pressure 

waves were acquired to analyze the results 

quantitatively. Then, the mean values of the 

wavefronts were calculated, and for the shear wave, 

the mean displacement value was precisely 0.5, and 

for the longitudinal wave, it was 0.2490. Furthermore, 

three patches on the background were randomly 

 

Figure 8. Block diagram of the entire process based on the origin of the test data, which can 

be COMSOL exported CVS files or two matrices of the wavefield created inside the 

algorithm 
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chosen, and the mean of the absolute values was 

calculated (using the mean function in MATLAB). For 

the shear wave, the average absolute value was 

calculated as 1.7427 × 10-4; for the longitudinal wave, 

the background contained noises with an average 

absolute value of 1.7057 × 10-4.  

Next, to find any link between the location of the 

waves and the accuracy of our model, the locations 

were replaced, and the results showed the average 

shear wave and pressure wave displacements of 0.5 

and 0.2495, respectively. Here, the average absolute 

value of the background was slightly lower, calculated 

at 1.5081 × 10-4 and 1.5211 × 10-4. 

The next step was to evaluate any relationship 

between the wavefronts' contrast and the model's 

accuracy. The results of the decomposition code for 

different intensities of the waves are presented in 

Table 1.  

Changing the thickness of the waves was the last 

step in evaluating the model and testing its accuracy 

against input wave parameters. Waves with relatively 

thinner and thicker wavefronts were created, and the 

responses are presented in Table 2. 

A short description of each parameter in Table 1 is 

presented here: 

- I) Average wave displacement for pressure 

wave: the average displacement of a point in space 

caused by the pressure wave passing through after 

decomposition. The set value in the primary model 

was 0.25 units, while after decomposition, it was 

slightly reduced to 0.249, which shows the model's 

accuracy. 

- II) Average Absolute noise in pressure wave 

background: after the decomposition, we have two 

matrices. One contains the shear wavefront, and the 

other contains the pressure wavefront. Here we declare 

the average absolute value in the background (which 

is supposed to be zero, but after the decomposition, we 

expect to produce some noise) of the matrix that 

contains the pressure wave. 

- III) Average wave displacement for shear wave: 

the same as (I), but for shear wave. The initial value 

for shear wave displacement was set to be 0.5 unit, and 

after the decomposition, it was precisely 0.5, which 

shows 100% accuracy for our algorithm. 

- IV) Average Absolute noise in shear wave 

background: the same as (II) but for the matrix that 

contains the shear wave. 

- V) Accuracy of the model for pressure waves: 

the ratio of the displacement of the decomposed 

pressure wave (I) to the set value for the same wave.  

- VI) Accuracy of the model for shear waves: the 

ratio of the displacement of the decomposed shear 

wave (III) to the set value for the same wave. 

- VII) Pressure wave Noise/Displacement: the 

ratio of the values in the background (II) to the  

 

Figure 9. The final result of the Code gives us a 

completely separate transverse and longitudinal wave 

 

Figure 10. Displacement made by each wavefront after 

completing the decomposition 
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displacement of the decomposed pressure wave (I). 

Theoretically, it should be zero (since the background 

of the test wave didn't have any noise). However, after 

the decomposition, it remains very close to zero, 

which shows the algorithm's accuracy.  

 

 

- IX) Shear wave Noise/Displacement: the ratio 

of the values in the background (IV) to the 

displacement of the decomposed shear wave (III). 

Theoretically, it should be zero (since the background 

of the test wave didn't have any noise). However, after 

Table 1. Results were obtained from the model for various contrast intensities 
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5 

High-cont. 

 0.8 – 0.2 
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6.86× 10-

4 

1.74× 10-

5 
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0.7 – 0.3 
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4 
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4 

Regular 

0.5 - 0.25 
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0.6 – 0.4 
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Table 2. Results were obtained from the model for various thicknesses of the wavefronts 
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Regular 

(100%) 
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Thick 

(125%) 
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the decomposition, it remains very close to zero, 

which shows the algorithm's accuracy. 

The pictorial output of the Code for some of the 

variations is presented in Figures 11 to 14. They are 

the compressed versions of Figures 7, 9, and 10, with 

different inputs to eliminate any link between the 

properties of the input wave or created wave and the 

results and accuracy of the Code. 

As the final step in evaluating the algorithm's 

performance, the input wavefield is changed to two 

CVS files exported from COMSOL, as discussed at 

the end of section 2. By observing the total 

displacement file, the pressure wave can be seen at the 

earlier stages of the simulation due to its faster 

propagation velocity (Figure 15). However, the shear 

wave can't be seen at the final time steps because the 

wavefield is full of echoes and residual waves. 

The output of the algorithm can be seen in Figures 

16 and 17.  

 

Figure 11. The code output for the reversed location for 

the transverse and longitudinal waves. A) The image of 

the completely separated transverse and longitudinal 

waves. B) Profile of the created transverse and 

longitudinal waves. C) Profile of the decomposed 

longitudinal wavefront. D) Profile of the decomposed 

transverse wavefront 

 

Figure 12. The code output for higher contrast (0.1 

and 0.9) for the longitudinal and transverse waves, 

respectively. A) The image of the completely 

separated transverse and longitudinal waves. B) 

Profile of the created transverse and longitudinal 

waves. C) Profile of the decomposed longitudinal 

wavefront. D) Profile of the decomposed transverse 

wavefront 
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Figure 16 shows that there is a clear pressure 

wavefront that matches the total displacement map 

and there is no shear wave, which is also physically 

accurate. The algorithm really shines in Figure 17, 

where there is a clear shear wave, which is expected 

and extracted from the nearly homogenous 

background. At the same time, the echoed pressure 

waves create an undetectable overall displacement. 

4. Discussion and Conclusion 

We set out to investigate the implementation of 

Helmholtz decomposition in Fourier space to decompose 

shear and pressure wavefronts from a displacement 

vector field. This research is part of a more extensive 

study evaluating the feasibility of laser-induced shear 

wave elastography. Several approaches were previously 

made to separate a mixed elastic wave's transverse and  

 

Figure 13. The code output for increased thickness 

of the longitudinal and transverse waves. A) The 

image of the completely separated transverse and 

longitudinal waves. B) Profile of the created 

transverse and longitudinal waves. C) Profile of the 

decomposed longitudinal wavefront. D) Profile of 

the decomposed transverse wavefront 

 

Figure 14. The code output for thinner longitudinal 

and transverse waves. A) The image of the 

completely separated transverse and longitudinal 

waves. B) Profile of the created transverse and 

longitudinal waves. C) Profile of the decomposed 

longitudinal wavefront. D) Profile of the decomposed 

transverse wavefrontz 
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longitudinal modes. These approaches are mainly rooted 

in geophysical research, and a lack of data in biomedical 

research is apparent. Our findings show that the 

developed algorithm can isolate the shear and pressure 

components in a vector field. 

The final results show that the Code does not interfere 

with the pure data, and the accuracy of our model is 

100% for the shear wave displacements and above 99% 

for pressure waves. The best and worst results for 

pressure waves come from tampering with the thickness 

of the wavefront. It demonstrates the algorithm's 

dependency on the amount of data it works with; the 

thicker the wavefront, the more accurately it will be 

decomposed. However, its ability to isolate shear waves 

is entirely impervious to the thickness of the waves. 

Moreover, the background noises were kept under 0.03% 

in every situation, which is astonishing.  

Changing the contrast between shear and pressure 

waves did not alter the accuracy of the algorithm, and the 

intensity and noise in the final products remained almost 

the same as the isolated shear wave kept 100% of its 

amplitude and the amplitude of the pressure wave 

hovered around 99.6% of its original value. In each step, 

the Code's performance exceeded 99% accuracy, and the 

complications such as altered intensity and phase change 

reported in previous studies were eliminated. 

 

Figure 15. Total displacement map of the simulated 

wave induction, exported from COMSOL. a) Total 

displacement at 3.1 µs after the induction. The fast 

pressure wave can be seen in the picture. b) 40.4 µs 

after the induction, the shear wave should be present 

but can't be observed due to the background 

displacement containing echoes and residual waves 

 

Figure 16. Decomposition of the wavefield at 3.1 µs 

after the wave induction 
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Considering the data has gone through the Fourier 

transform, mixed with complex values, and underwent 

a complete decomposition computation, the amount of 

noise produced in the process seems acceptable. 

By feeding the exported data from simulations in 

COMSOL, the algorithm decomposed the wavefield 

and demonstrated its value regarding realistic 

simulations in this field. 

In addition, the decomposition process took no 

more than a few seconds (maximum of 4 seconds) on 

a typical PC with four processing cores and 16 

gigabytes of RAM, with MATLAB 2016b running. It 

shows that the algorithm has the computational 

efficiency and speed that was lacking in the previous 

research mentioned in the introduction. 

This research aimed to create a platform to 

decompose a dataset containing longitudinal and 

transverse waves. It was a part of a more extensive 

study to generate a shear wave suitable for shear wave 

dynamic elastography using COMSOL Multiphysics. 

The final product was short, simple, easy to use, and 

accurate, and has a solid mathematical and physical 

basis. It can be used to purify the data to its 

longitudinal or transverse components or can be 

further developed to perform other tasks. 

The most apparent limitation to the team was the 

absence of external datasets to evaluate the algorithm's 

validity further. 

Moreover, here the longitudinal component is used 

to calculate the transverse part of the wave. Based on 

Equations 18 and 19, the number of functions doubles 

if the transverse wave is decomposed first, which will 

add to the computation time of the algorithm. 

However, for further development, it can be 

restructured to compute the transverse data first. 

The Code is available for interested researchers 

upon request; contact authors for more information. 
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