
Copyright © 2023 Tehran University of Medical Sciences.  
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International 
license (https://creativecommons.org/licenses/by-nc/4.0/). Noncommercial uses of the work 
are permitted, provided the original work is properly cited.  
DOI: https://doi.org/10.18502/fbt.v10i4.13723 

 

 

Frontiers in Biomedical Technologies Vol. 10, No. 4 (Autumn 2023) 417-426 

 

 

 

 

 

Fetal ECG Arrhythmia Detection Based on DensNet Transfer Learning 

Rajeev Kumar Rai 1, Ashutosh Singh 2, Ranjeet Srivastva *3 , Gyanendra Kumar 4 

1 Department of Computer Science, Aryabhatta College, University of Delhi, Delhi, India 

2 Department of Computer Science, Keshav Mahavidyalay, University of Delhi, Delhi, India 

3 Department of Computer Science & Engineering, Government Girls Polytechnic Meja, Prayagraj, India 

4 Department of Computer Science & Engineering, Babu Banarasi Das Institute of Technology and Management, Lucknow, India 

*Corresponding Author: Ranjeet Srivastva 
Email: ranjeetbbdit@gmail.com 

Received: 22 June 2022 / Accepted: 14 September 2022  

Abstract 

Purpose: The mortality rate of fetuses due to heart defects is a major concern for clinicians. The fetus's heart is 

monitored non-invasively using the abdominal Electrocardiogram (ECG) of the mother. Most of the methods in 

literature diagnose fetal arrhythmia based on fetal heart rate. However, there are various challenges in fetal heart 

rate monitoring and arrhythmia detection. Therefore, very few methods are explored for fetal arrhythmia 

classification and have not achieved promising results.  

Materials and Methods: In this article, a fetal arrhythmia classification method is investigated. The method has 

exploited the transfer learning principle where DenseNet architecture is utilized to learn fetal ECG patterns. Fetal 

ECG (fECG) signal extracted from the mothers abdominal has been processed for denoising and heartbeats are 

segmented using signal processing techniques. The extracted heartbeats have transformed into 2D fECG images 

to re-train the pre-trained DenseNet architecture. 

Results: The proposed method has been evaluated on the publicly available Non-Invasive Fetal Arrhythmia 

Database (NIFADB) of Physionet and achieved 98.56% classification accuracy, thus outperforming other existing 

methods. 

Conclusion: The arrhythmia in a fetus can be detected using a non-invasive fetal ECG. Due to the faster 

convergence of the learning algorithm, the proposed method offers better fetal diagnosis in real-time. 

Keywords: Fetal Electrocardiogram; Arrhythmia; Transfer Learning; DenseNet. 
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1. Introduction  

As of 2015, more than 96 million individuals were 

affected by congenital disabilities [1]. They impacted 

around 3% of infants in the United States and were 

responsible for over 628,000 deaths in 2015 [2]. 

Congenital disabilities are often referred to as congenital 

anomalies. Congenital anomalies are functional or 

structural abnormalities that arise during the prenatal 

period and can be discovered at birth or later in childhood, 

such as hearing impairments, vision defects, or heart 

defects. Heart defects are one of the major defects in 

fetuses or infants. According to the American Heart 

Association report, 21.8% of infants who died of a 

congenital disability had a heart defect [3]. 

Heart defect also called Cardio Vascular Disease 

(CVD) is the name for the group of heart disorders. Heart 

disease has different types of abnormalities in the fetus's 

heart during the mother's pregnancy [4]. In the current 

scenario, fetuses have common diseases during heart 

formation at an initial stage. Still, the baby appears healthy 

for a long time, and it may be severe by having some 

defects during labor in the heart of the fetus [5]. Therefore, 

it is essential to detect the malfunctioning of the fetus for 

the clinical cure at an early stage. The fetus's heart function 

can be monitored using Phonocardiogram (PCG), 

Electrocardiogram (ECG), Cardiography (CTG), or 

Fetal Magnetocardiography (FMCG) [6, 7, 8, 9]. Each 

of them has certain advantages and limitations over the 

other. CTG, for example, does not give any information 

regarding beat-to-beat variability and is not ideal for 

long-term continuous monitoring of the foetal heart [10]. 

PCG acquisition, on the other hand, is quite sensitive to 

noises. FMCG makes it simple to do fHR morphological 

analysis, but it is expensive and requires skilled personnel 

[11]. 

The use of non-invasive fetal ECG (fECG) is the most 

preferred method as it places two electrodes at the 

mother's abdomen to accurately monitor the mother and 

fetus's electrical activity. It has a number of advantages, 

including motion estimation, long-term continuous 

monitoring, lower cost, monitors both atrial and ventricular 

activity, and can be taken throughout the pregnancy 

[12]. However, its clinical usability for arrhythmia 

detection in fetuses has rarely been studied [13]. 

An abnormality in the heart rate of prenatal is referred 

to as fetal arrhythmia. The normal prenatal heart beats 

120–160 times per minute (bpm) [14]. The prenatal heart 

rate beyond this range either below 120 bpm (bradycardia) 

or above 160 bpm (tachycardia) is considered arrhythmia. 

While most arrhythmias are not life-threatening, some 

can cause poor cardiac output, fetal hydrops, and death 

[15]. Therefore, several arrhythmia detection techniques 

have been developed in the past. Most of the methods 

in the literature related to fetal ECG monitoring either 

extract fetal ECG from abdominal ECG or detects fetal 

heart rate [16-21]. Few methods are found in the literature 

for detecting and classifying arrhythmia using fECG 

[16, 17, 20, 22, 23]. The major task in arrhythmia detection 

using fECG is its extraction from multichannel maternal 

recordings. Independent Component Analysis (ICA) is 

used for fetal ECG signal extraction [16-18].  

Devika et al. used ICA blind source separation 

algorithm to de-noise the raw input data [16]. Further, 

fifth-order polynomial fitting and peak detection 

algorithm are employed on filtered ECG data. They used 

the Naive Bayes classifier for the detection of myocardial 

infarction based on the ST segment of ECG signal and 

achieved 96.77% accuracy. Apsana et al. have used a 

similar algorithm for fetal arrhythmia detection [17]. 

After the ICA's signal extraction, they used state machine 

logic for peak detection. They extracted seven temporal-

amplitude domain features that are applied to a trained 

Naive Bayes classifier and achieved 93.71% accuracy 

for arrhythmia detection. 

Patel et al. have applied a compressive sensing 

algorithm on abdominal ECG and employed ICA on com-

pressed ECG signal [18]. For the separation of fetal and 

maternal beats, smoothed l0 algorithm was used to 

reconstruct the independent components. They reported 

the F1 scores of 94.64% and 95.82% for Physionet 

challenge dataset A and Silesia dataset, respectively. A 

continuous wavelet transform-based technique along with 

a histogram and heuristic algorithm was developed by 

Karvounis et al. [19]. Firstly, they detected the maternal 

QRS complexes using time-frequency analysis and 

medical knowledge and eliminated them. Secondly, 

complex wavelets and matching theory were used to 

locate the foetal R-peaks. Finally, histogram and heuristic 

algorithms are used in the third stage to find the foetal 

R-peaks overlaid with the previously excluded maternal 

QRS complexes. They achieved 97.47% accuracy for 

fetal heart rate detection. 

Veenadevi et al. used adaptive filtering algorithms 

such as the Kalman filter and Least Mean Square to 

extract fECG from abdominal ECG [20]. They used a 
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differentiation technique for R-peak detection and 

measuring the fetal heart rate. Further, the measured 

heart rate identifies two classes of arrhythmia i.e.,  

bradycardia and tachycardia. A deep-learning-based fetal 

ECG detection from abdominal ECG is proposed by 

Lo et al. [21]. The short-time Fourier transform is 

applied to normalized and segmented ECG waveforms. 

The performance of fetal ECG detection is evaluated 

using two classifiers i.e., k-Nearest Neighbour (k-NN) 

and CNN. CNN achieved the best detection accuracy 

of 92.65% while the k-NN reports 83.33% accuracy. In 

order to detect arrhythmia affected fetuses, Pavel et al., 

extracted eight significant features, including Tea-ger 

energy operator [22]. They utilized Gaussian kernel-based 

Support Vector Machine (SVM) and achieved 83.33% 

accuracy for arrhythmia detection. Recently, an algorithm 

for fetal arrhythmia detection and classification is 

proposed by Ganguly et al. [23]. The time domain features 

of ECG are extracted using 1D convolution with a 

wavelet kernel and fed to a trained ANN. They have 

used NIFEADB database and reported the overall 

accuracy of 96%. 

Despite these studies on fetal arrhythmia detection, 

several existing challenges still motivated us to perform 

a rigorous analysis of fetal ECG to detect the arrhythmia 

accurately. These includes: 

1.  Although non-invasive abdomen recorded fECG 

provides valuable clinical information on the fetus's health 

status, effective detection, and extraction of fECG is 

challenging because the signal is frequently polluted with 

a high amount of noise and the timing and frequency of 

fECG and other noise signals overlap. A simple high-pass 

filtering of abdominal signals for fECG separation is 

thus not achievable. 

2.  Due to a lack of advanced signal processing 

techniques for measuring fECG morphological properties, 

most foetal monitoring approaches rely on foetal heart rate 

and do not incorporate fECG waveform characteristics. 

As a result, significant information concerning the foetal 

health may be omitted. 

3.  Fetal arrhythmia identification and categorization 

is a promising but difficult area to work in because the 

mother’s heart rate influences the fetus’s heart rate. 

This article presents a unique framework for classifying 

arrhythmias from fECG utilizing a pre-trained architecture 

i.e., DenseNet [24]. The novelty of the proposed method 

is that it employs transfer learning that is yet to be explored 

by any method of arrhythmia detection using fECG. 

With the help of transfer learning, the existing model 

developed for general image classification is used as the 

starting point specifically for the classification of fECG 

images. Among several pre-trained models on ImageNet 

dataset [25], the DenseNet model is chosen heuristically. 

We re-train the existing DenseNet architecture using 2D 

fECG images prepared from a publicly available dataset. 

Due to previous knowledge gathered by DenseNet, 

learning of fECG patterns begins at a higher level, 

decreasing training and testing time [26]. Thus, a novel 

framework for arrhythmia classification is developed 

utilizing transfer learning that is more resilient than 

existing methods currently available in the literature. In 

a nutshell, this work makes the following contributions 

(Figure 1): 

1.  Transfer learning is utilized to develop a novel 

framework for arrhythmia classification using fECG. 

It offers significantly lower training and testing time 

because learning of fECG patterns by pre-trained models 

begins at a higher level. 

2. The proposed method classifies heartbeats with 

high sensitivity in a computationally efficient manner. 

 The rest of the paper is laid out as follows: Sec. 2 

presents a detailed description of the proposed transfer 

learning model for arrhythmia classification using fECG. 

Sec. 3 contains the dataset details, experimental findings, 

and comparative analysis. Finally, the conclusion is 

drawn in Sec. 4. 

2. Materials and Methods  

The proposed architecture for classifying fetal 

arrhythmias via transfer learning is depicted schematically 

in Figure 1. It includes three major stages: abdominal 

 

Figure 1. The proposed framework for fetal arrhythmia 

classification 
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ECG acquisition, signal-to-image transformation, and 

transfer learning & classification. After acquiring the 

fECG signal, it is preprocessed for denoising and then 

segmented into heartbeats. Following that, the fECG 

signal is converted to two-dimensional images. Exploiting 

its previous learning, the DenseNet model learns the 

features of fECG images. After successful training, the 

proposed framework can classify fECG images as normal 

or arrhythmic. 

2.1.  Fetal ECG Basics 

Despite differences in mechanical functionality, the 

beat-to-beat electrical activity of fetal and adult heart 

is quite similar. The muscle fibers of the myocardium 

coordinate its contraction (depolarization or systole) and 

relaxation (repolarization or diastole) [27]. A complete 

cycle of myocardium contraction and relaxation results 

in the so-called PQRST-complex, as represented in 

Figure 2. The spread of electrical impulses through the 

atria forms P-wave. The depolarization of ventricles 

results in the formation of QRS-complex. Although 

repolarization happens at the atria at the same time, it 

is obscured by the depolarization of the ventricles. While 

the repolarization of the ventricles forms the T-wave. The 

morphological patterns of ECG are quite similar for 

adults and fetuses. However, significant variations have 

been observed in relative amplitudes of the fetal complexes. 

For example, the T-waves change significantly, and that 

are found to be weak for fetuses and newborns [28]. 

2.2.  Fetal ECG Signal Processing 

The abdominal-acquired fECG signal is frequently 

contaminated with noises such as contact, muscle and 

electrode motion, power line interference, and baseline 

drift. The distinctive features of heartbeats may be 

significantly affected by these unwanted noises. 

Therefore, for effective data representation, conditioning 

of the fECG signal is necessary that consequently 

improves the classification performance. The noise 

contaminated with fECG signal is usually distributed over 

different frequency bands. So, the signal conditioning 

is done with the filters of different frequency bands. A 

combination of low-pass and high-pass filters is designed 

to restrict the signal frequency in the range of 5–15 Hz. 

The order of low-pass filter is two that allow passing 

of signal up to 15 Hz [29]. For example, the raw input 

signal anτ generates a filtered output signal, fnτ. It can 

be represented by n data samples at the discrete instance 

of time τ, as follows (Equation 1) [29], 

fnτ = 2f(n-1)τ – f(n-2)τ + anτ - 2a(n-6)τ + a(n-12)τ (1) 

Then to reduce the edge effect, a high-pass filter 

with 5 Hz cutoff frequency and the following difference 

equation is applied to the signal (Equation 2) [29]. 

fnτ = 32a(n-16)τ – (a(n-1)τ + anτ - a(n-32)τ) (2) 

2.3.  Heartbeat Segmentation 

After ECG signal processing for noise removal, the 

heartbeats are identified using Pan & Tompkins’s QRS 

detection method [29]. To find the slope of QRS complex 

the signal is differentiated using a five-point derivative. 

Equation 3 and Equation 4 illustrate its transfer function 

and difference equation, respectively [29]. 

𝐻(Ƶ)  =  (
1

8
𝜏)(−Ƶ − 2 −  2 Ƶ − 1 +  2 Ƶ 1 +  Ƶ 2) (3) 

𝑓𝑛𝜏  =  (
1

8
𝜏)[−𝑎(𝑛𝜏 − 2𝜏 )  −  2𝑎(𝑛𝜏 − 𝜏 )  

+  2𝑎(𝑛𝜏 + 𝜏 ) + 𝑎(𝑛𝜏 + 2𝜏 )] 

(4) 

Once the derivative operation completes the signal 

is squared point-by-point. Further, a moving window 

integrator is calculated as follows [29] (Equation 5): 

𝑓𝑛𝜏 = (
1

𝑁
)[𝑎(𝑛𝜏−(𝑁−1)𝜏) + 𝑎(𝑛𝜏−(𝑁−2)𝜏) + ... + 𝑎𝑛𝜏] (5) 

 

Figure 2. Representative 2D fECG images having a) normal heartbeats and b) heartbeats with arrhythmia 
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Where N is the number of samples within the window. 

Finally, from each heartbeat QRS complexes are 

recognized using an adaptive thresholding technique. 

Once the R-peaks are identified, we set a window of 

700 ms around R-peak ranging from 200 ms to the left 

of R-peak and 500 ms to the right of R-peak. As a result, 

the heartbeats are segmented and normalized with z-score 

normalization [30]. The benefit of performing this 

normalization is that it transforms the outlier in the dataset 

so that it will no longer have as big of an influence as it 

might have on the model fit. 

Following the extraction of the heartbeats, the 

amplitude values of ECG signals within the windows are 

plotted on Y-axis with respect to time on X-axis, thus 

forming one-channel 2D fECG images. The pre-trained 

models evaluated in this study require three-channel 2D 

images. So, we created two more copies of each image and 

superimposed them on each other and obtained three-

channel 2D fECG images that are further reshaped to 

size 200 × 200. The procedure for signal-to-image 

transformation is shown in Figure 3.  

2.4.  Transfer Learning Architecture 

Transfer learning refers to applying a learned model 

in a different context. It enables the training of deep 

neural networks with data of a smaller size [31]. The 

rationale behind using transfer learning is that it provides 

faster convergence of optimization algorithms. With 

transfer learning, a machine utilizes previous task 

expertise to increase generalization about another [26]. 

For example, the patterns of the fECG are learned in this 

study using the learning of the DenseNet architecture on 

the Imagenet dataset. Formally, suppose we have an 

architecture pre-trained on a dataset κ1 and its learning 

curve is represented by ϕ1. Transfer learning enables 

the improvement of a new model’s learning curve (ϕ2) 

using a fresh dataset (κ2). It transfers the pre-trained 

model’s learned behaviour to a prediction function, φ, 

which improves the learning curve ϕ2 on the dataset κ2. 

The ImageNet dataset comprises millions of images 

of diverse categories [25]. Several image classification 

tasks were performed utilizing the ImageNet dataset with 

the help of different deep neural networks. The learning 

of these architectures is utilized to develop transfer 

learning models in different areas such as computer vision, 

pattern analysis, object classification and image analysis. 

The vanishing gradient problem is a common issue that 

affects deep neural networks. This problem occurs when 

the back-propagated gradient gets indefinitely smaller due 

to repeated multiplication. The DenseNet architecture 

avoids the vanishing gradient problem by repetition of the 

dense block. This work of arrhythmia classification from 

fECG images uses DenseNet architecture [24]. The upper 

layers are fine-tuned to utilize the DenseNet architecture 

on the prepared fECG dataset. 

The architecture of DenseNet is shown in Figure 4. 

It comprises several densely connected blocks to avoid 

feature loss at output layer through larger network depth. 

It also requires few parameters. Formally, let us pass an 

fECG image ξ0 through a convolutional network of n 

layers. Each layer of the network performs a non-linear 

transformation Φn(.) that includes Batch Normalization 

(BN), rectified linear units (ReLU), pooling, and 

convolution. At nth layer of DenseNet, the output ξn is 

calculated as follows (Equation 6), 

𝜉𝑛 =  𝛷𝑛([𝜉0, 𝜉1, . . . , 𝜉𝑛 − 1]) (6) 

Where [ξ0, ξ1, ..., ξn−1] is the concatenated feature-

maps of the layers (0, 1, ..., n − 1). 

 

Figure 4. Dense block of DenseNet architecture 

 

Figure 3. Signal-to-image transformation 
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A 1×1 convolution is introduced to limit the number 

of input feature-maps in order to eliminate redundant 

features owing to recursive concatenation. This step 

lowers by a factor of four the number of feature maps 

generated by succeeding 3×3 convolutional layers. 

Several architectures implement this design option to 

optimize computational cost, and we realize it is 

particularly useful for DenseNet. Further, to change the 

feature-map size the pooling layers are generally used in 

convolutional networks. Here, the network is divided 

into multiple densely connected blocks and there is a 

transition layer between two dense blocks. This network 

has a transition layer between two dense blocks, separated 

into many densely connected blocks. The transfer layer 

is responsible for convolution and pooling. The 

architecture’s transition layer is made up of a batch 

normalization layer, a 1 × 1 convolutional layer, and a 

2 × 2 average pooling layer, among other components. 

3. Experimental Setup and Results 

In this part, we provide details about the dataset, 

experimental setup, and metrics used for performance 

evaluation. Moreover, the section demonstrates the 

experimental results and a comparative analysis with 

existing methods for fetal arrhythmia classification is 

also presented. 

3.1.  Database 

The performance of the proposed fetal arrhythmia 

classification method is evaluated on Non-Invasive Fetal 

ECG Arrhythmia Database (NIFEADB) [32]. The database 

consists of twelve fetal arrhythmia and fourteen normal 

rhythm recordings. The median gestational age for 

arrhythmia recording is 36 weeks, ranging from 22 to 41 

weeks, and for normal recording it is of 21 weeks, ranging 

from 20 to 36 weeks. The sampling frequency is 1 kHz 

except for the four arrhythmia recordings (ARR06–

ARR09) that are sampled at 500 Hz. Four to five 

abdominal channels and a maternal chest channel are 

recorded for each session. The duration of each recording 

varies from 7 to 32 minutes and the average length of 

recordings (in min:sec) are 13:03 and 10:06 for abnormal 

and normal subjects, respectively. Around 250-300 

heartbeats are extracted from each recording. For this 

experiment, 3500 heartbeat images are taken from each 

normal and arrhythmia classes. Thus, a dataset is created 

with a total sample size of 7000 images that are further 

divided in the 80:20 ratio across training and testing 

datasets. 

3.2.  Performance Evaluation Metrics 

The proposed method for classifying fetal arrhythmias 

is evaluated using different performance metrics based 

on True Positive (TP), False Positive (FP), True Negative 

(TN), and False Negative (FN). The correct classification 

of a sample is TP and the system's rejection of unknown 

samples is termed TN. The FP and FN are called Type-I 

and Type-II errors, respectively. When the system accepts 

the unknown sample as a legitimate class, it is Type-I 

error; whereas, Type-II error occurs when a legitimate 

sample is classified as an incorrect class. These metrics 

form the basis for the calculation of the following error 

metrics: 

•  False Positive Rate (FPR): The FPR measures the 

proportion of falsely reported positive cases in the data 

(Equation 7):  

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (7) 

•  False Negative Rate (FNR): The FNR is the measure 

of the proportion of falsely reported negative cases in 

the data (Equation 8): 

𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 (8) 

•  Accuracy: The ratio of correct classifications to the 

total samples (Equation 9). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 +  𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 (9) 

•  Precision: Precision measures the fraction of correctly 

classified positive predictions (Equation 10). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (10) 

•  Recall: Recall measures positive class predictions 

from the dataset's positive instances (Equation 11). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (11) 

•  F1-score: It considers both false positives (FP) and 

false negatives (FN) and is measured as a weighted 

average of precision and recall (Equation 12). 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
  (12) 
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3.3.  Results 

The proposed method for fetal arrhythmia classification 

utilizes pre-trained DenseNet architecture chosen 

heuristically. All experiments are performed on AMD 

ryzen 5 3600 CPU, 32 GB RAM, RTX 2060 Super GPU 

using Anaconda 1.10.0, Jupyter Notebook 6.2.0 

environment for Python. To leverage transfer learning 

the required pre-trained models are taken using Keras 

application. For mathematical calculations using tensors 

and incorporating GPU for these calculations, Tensorflow-

GPU is used. The conversion of images to respective 

multidimensional arrays is performed with the help of 

CV2 library. 

The testing accuracies, precision, recall, and F1-score 

of different tested architectures, including DenseNet are 

given in Table 1. The testing accuracies of MobileNet–

V2 and ResNet–152 are not satisfactory on the prepared 

database of fetal ECG images and are reported as 69.14% 

and 86.41%, respectively. Although Inception–V3 and 

InceptionResNet–V2 achieve better accuracies, the 

DenseNet outperforms these architectures and obtains 

the highest accuracy of 98.56%. The values for other 

performance metrics such as precision, recall, and F1-

score also confirm the efficacy of DenseNet model. 

Therefore, we use DenseNet architecture for fetal 

arrhythmia classification.  

The training and testing accuracy of DenseNet 

architecture concerning the number of epochs is shown 

in Figure 5. From the very first epoch, the training and 

testing accuracies of DenseNet are reported as 67.47% 

and 57.89%, respectively. It shows that the utilization 

of the transfer learning principle can start training the 

model from a higher level, thus reducing computation 

costs. It is apparent from the figure that the model achieves 

the highest accuracy of 98.56% at epoch 14. Thus, the 

proposed fetal arrhythmia classification system is 

computationally efficient due to the exploitation of 

transfer learning through DenseNet. 

In order to effectively depict the classification accuracy 

of the system, a Receiver Operating Characteristic (ROC) 

curve is drawn. It plots the False Positive Rate (FPR) on 

the x-axis and True Positive Rate (TPR) on the y-axis. The 

ROC curve for the proposed fetal arrhythmia classification 

system is shown in Figure 6. The proposed method reports 

TPR of 91.7% at 0% FPR while at a marginal FPR of 

0.1% it becomes 99.8%. The experimental results of 

precision, recall, and f1-score for normal and arrhythmia 

classes are also shown in Table 2. It shows that the 

proposed method achieves higher values for these metrics. 

Further, there are fewer variations among these metrics 

values that prove the proposed method's robustness. 

 

Figure 5. Training and testing accuracies achieved by 

transfer learning architecture 

 

Figure 6. ROC curve achieved by proposed transfer 

learning architecture 

Table 2. Values of different performance metrics obtained 

for normal and arrhythmia classes 

 Precision Recall F1-score 

Normal 0.9818 0.9853 0.9835 

Arrhythmia 0.9839 0.98 0.982 

 

Table 1. Values of different performance metrics for transfer 

learning architecture on different pre-trained models 

Pre-trained 

architectures 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Accuracy 

(%) 

Inception–V3 95.07 95.12 95.09 95.22 

ReseNet–152 86.37 86.38 86.38 86.41 

InceptionResNet–V2 95.98 95.98 95.98 96.17 

MobileNet–V2 68.97 68.96 69.96 69.14 

Xception 91.2 91.19 91.19 91.34 

DenseNet 98.28 98.27 98.28 98.56 
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A confusion matrix is also drawn to visualize the 

proposed method's performance for fetal arrhythmia 

classification. It represents a description of the outcomes 

of the identification. The confusion matrix effectively 

shows the accuracy of predictions for each class. The 

confusion matrix obtained using the proposed method 

is shown in Figure 7. 

The true and predicted class designations are displayed 

on the x and y-axes, respectively. Each square in the 

confusion matrix shows how likely it is that the predicted 

class and the real class are the same. The confusion matrix 

makes it easy to figure out the number of TP, TN, FP, and 

FN. The probability of correct classification for both 

classes is higher and reported as 0.98. The probability 

of predicting ‘Normal’ class as ‘Arrhythmia’ class is 0.2, 

whereas the probability for arrhythmia prediction for 

a normal class is 0.14. It shows that there is less chance 

of incorrect prediction by the proposed method.  

3.4.  Comparative Analysis 

There are very few existing methods for fetal arrhythmia 

classification. We evaluated our proposed method on 

the Non-Invasive Fetal ECG Arrhythmia Database 

(NIFEADB) of Physionet [32]. Pavel et al. and Ganguly 

et al. also worked on the same database to detect fetal 

arrhythmia [22, 23]. Pavel et al. used 8 fiducial features 

and support vector machine classifiers for fetal arrhythmia 

detection and achieved an overall classification accuracy 

of 83.33% [22]. The abdominal signals are usually 

contaminated with noise elements that may affect the 

accurate detection of fiducial points, and thus may not 

be able to extract discriminating features of fetal ECG. 

It may be one of the reasons behind the lower accuracy 

achieved by their method. 

Ganguly et al. extracted time-domain features of fetal 

ECG using a 1D convolution network that are fed to 

the artificial neural network [23]. They achieved 96% 

classification accuracy. It is obviously reducing the 

computational burden of feature engineering as required 

in fiducial-based methods. We used a pre-trained DenseNet 

architecture for arrhythmia detection using fECG that 

reported the best accuracy of 98.56% and outperformed 

other methods. 

4. Discussion and Conclusion 

The studies show that infant heart defects are more 

prominent than other birth defects. So, the accurate 

diagnosis of fetal arrhythmia is essential for lowering 

the mortality rate of infants. One convenient and non-

invasive method for fetal arrhythmia diagnosis is the 

analysis of fetal ECG taken from mother's abdomen. 

This paper has proposed an automatic diagnosis system 

for the detection of arrhythmia in fetuses using the 

principle of transfer learning. The proposed diagnosis 

system takes ECG signals from the abdominal of pregnant 

women as input. The fECG signals are qualitatively 

improved using signal-processing techniques and 

heartbeats are detected [33]. The heartbeat detection 

forms the basis for signal-to-image transformation. We 

transformed the 1D signal of the heartbeat into 2D fECG 

images. Thus, a 2D fECG image database is prepared 

from the publicly available Non-Invasive Fetal ECG 

Arrhythmia Database (NIFEADB). 

The proposed method has used the pre-trained DenseNet 

architecture to exploit the transfer learning principle. 

DenseNet is pre-trained on a diverse category of millions 

of images from ImageNet database. The architecture is 

well-trained and achieved 98.56% accuracy in image 

classification. Therefore, the architecture of DenseNet is 

utilized and it is re-trained on the fECG images freezing 

the existing weights and biases. The utilization of pre-

trained architecture causes the optimization algorithm 

to converge faster, thus reducing the training time. 

The performance of the proposed method for arrhythmia 

classification from fECG has been evaluated on publicly 

available Non-Invasive Fetal ECG Arrhythmia Database 

of Physionet. The method has reported higher classification 

accuracy of 98.56% and outperformed other existing 

methods. Further, the proposed method has proved to be 

computationally efficient. Future research may include a 

 

Figure 7. Confusion matrix obtained by proposed 

transfer learning architecture 
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deeper analysis of different types of arrhythmia present 

in fetuses. 
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