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Abstract 

Purpose: 32-time scan duration reduction of 18F-Fluorodeoxyglucose )18F-FDG( Positron Emission Tomography 

(PET) images through the generation of standard scan duration images using a multi-slice cycle-consistent 

Generative Adversarial Network (cycle-GAN) was studied. Also, the effect of the image augmentation methods 

on the performance of the cycle-GAN model was evaluated. 

Materials and Methods: Four subsets of standard and 32-time short scan duration PET image pairs, each contacting 

image data of 10 patients were used to train and test (80 percent for training and 20 percent for testing) a multi-slice 

cycle-GAN separately. Another patient’s image data was used as the validation dataset for different training subsets. 

When training the cycle-GAN model for each subset, two approaches were followed: with and without image 

augmentation. Common image quality metrics of  Peak Signal-to-Noise Ratio  )PSNR (, Structural Similarity Index 

Measure )SSIM(, and Normalized Root Mean Squared Error )NRMSE( were used to assess the generation 

performance of the cycle-GAN model. Paired sample t-test statistical testing with a confidence interval of 0.95 

was used to determine whether the differences between approaches were statistically significant or not. 

Results: For subsets 1-3, both training approaches improved the image quality of the short scan duration inputs 

(p  <  0.001) while for subset 4 only the training approach with image augmentation was capable of improving the 

image quality. However, the training approach with image augmentation offered better results than the approach 

without image augmentation (p <  0.001). 

Conclusion: Employing the training approach with image augmentation, the cycle-GAN model was capable of 

improving the image quality of 1/32nd short scan duration images through the generation of synthetic standard scan 

duration images. In the case of the training approach without image augmentation, except for subset 4, the model 

trained on all subsets 1-3 was capable of improving the image quality. Image augmentation does indeed improve the 

performance of the cycle-GAN model, especially in the case of insufficient available training datasets. 
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1. Introduction  

Positron Emission Tomography (PET) modality 

provides semi-quantitative and functional data and has 

multiple applications in different subjects of medicine 

[1-4]. Positron Emission Tomography / Computed 

Tomography (PET/CT) is an extended modality compared 

to stand-alone PET used for various purposes, including 

diagnosis and prognosis since it has the added capability 

of providing fine anatomical structural information [5, 

6]. Image quality, cost-efficiency, and radiation safety 

considerations of PET imaging are affected by the scan 

duration or radiotracer dosage [4]. Imaging department 

throughput and patient comfort are affected by the scan 

duration while radiation dose and scan cost are controlled 

by the radiotracer dosage [4]. There are sensible reasons 

for decreasing the scan duration or radiotracer injected 

dose since it addresses important matters, including 

the cost of imaging and addressing radiation safety 

considerations. However, it comes at the cost of much 

more noise in the images with a subsequent decrease 

in the accuracy of diagnosis [4, 7, 8].  

Deep learning methods have found their role in the 

medical imaging field, including diagnosis [9], image post-

processing, and restoration by performing operations 

like denoising [10 - 21]. Generative Adversarial Networks 

(GANs) are deep learning models learning to capture the 

distribution of data [22]. GANs are typically composed 

of a generator and discriminator network training to 

outperform the other network in an adversarial manner. 

The generator intends to generate more realistic images 

to deceive the discriminator network to label the synthetic 

images as real ones [22]. On the other hand, the 

discriminator network tries to improve its classification 

accuracy to not misclassify synthetic or generated images 

as real ones [4, 22-23].  

Multiple previous studies have attempted to generate 

standard dose/scan duration images from various inputs 

[4, 16, 21, 24-28] and achieved notable results. Xue et al. 

[4] implemented a mapping between low-count sinogram 

data to full-count PET images using a GAN framework. 

As stated by the authors [1], their implementation had 

the advantage of faster reconstruction speed compared to 

iterative methods and the capability of direct reconstruction 

of the full-count images from low-count sinogram inputs. 

Zhao et al. [21], to restore low-dose Brain PET images, 

developed the S-cycleGAN to achieve a non-linear and 

end-to-end mapping. They [21] used the cycle-consistency 

loss, Wasserstein distance, and supervised learning loss 

in their model. They [21] reported high accuracy and 

appropriate efficiency of their model using the 

quantitative evaluation of metrics like Peak Signal-to-

Noise Ratio (PSNR). Wang et al. [27] used a Convolutional 

Neural Network (CNN) to predict 18F-Fluorodeoxyglucose 

 )18F-FDG ( PET images using the 6.25% simulated low-

dose inputs. Ouyang et al. [25] used a GAN along with 

feature matching and task-specific perceptual loss specific 

to generate amyloid PET images with standard-dose using 

only low-dose PET. In this study, 40 PET datasets were 

obtained from 39 patients using a PET/MR scanner. The 

two-dimensional encoder-decoder network has been used 

as a generator to produce standard-dose images and a 

discriminator to evaluate them. The quality of the image 

was evaluated using the PSNR, the Structural Similarity 

index (SSIM) and the Root Mean Square Error (RMSE). 

Finally, the authors concluded that standard-dose PET 

images of amyloid can be produced using very low-

dose images. Also, it is necessary to apply adversarial 

learning, feature matching, and task-specific perceptual 

loss to ensure image quality and maintain pathological 

features. Lei et al. [29] studied the possibility of reducing 

scan time or injected radiotracer activity in PET imaging 

and solving the subsequent problem of low-count statistics 

using a cycle-consistent GAN model. They proposed this 

model to estimate PET images with diagnostic quality 

from low count data. The authors were able to develop 

a deep learning-based procedure that can correctly 

estimate PET data with diagnostic quality from 1/8th 

fraction of standard photon counts having great potential 

for improving low-count PET image quality. 

However, little or no effort has been made to clarify 

the effect of image augmentation in the process of image 

generation since providing enough data to train the 

generative model is a challenge and it is not always 

feasible to acquire a large amount of data for training 

due to different considerations, including costs of imaging 

and radiation hazards. This matter of low available 

training data can be addressed using image augmentation 

techniques that increase the variability of data available. 

In this study, we aim to assess the effect of image 

augmentation on the performance of the cycle-GAN model 

generating standard scan duration 18F-FDG PET images 

using the 1/32nd short scan duration inputs for four 

different subsets of data. 

The rest of this paper is organized as follows: Section 2 

provides details about the materials and methods used in 



 A. Ghafari, et al.  

FBT, Vol. 10, No. 2 (Spring 2023) 195-203 197 

the study. Section 3 reports the results that are discussed 

in Section 4. Section 5 concludes the study and states the 

possible future extension to this study. 

2.  Materials and Methods  

2.1.  Materials 

Using a PET/CT scanner (5-ring BGO-based GE 

discovery-IQ), whole-body PET scans of 41 patients were 

acquired using a standard 18F-FDG radioactivity dose 

of 294.52  ±  45.18 MBq. Image data were reconstructed 

using Ordered-Subset Expectation Maximization (OSEM) 

(four iterations and 12 subsets). 1/32nd short scan 

duration image data of the patients were acquired through 

post-reconstruction of the image data using the same 

reconstruction settings but with only 1/32nd scan duration 

for each bed position. 

A patient was randomly assigned as the validation 

dataset and the remaining 40 patients were randomly 

divided into 4 subsets (subsets 1 through 4) to explore the 

effects of image augmentation and generation performance. 

More detailed information about the subsets is present 

in Table 1. For each subset, image data of eight patients 

were used for training the multi-slice cycle-consistent 

generative adversarial network (cycle-GAN) and the 

image data of the two remaining patients were used for 

testing the performance of the cycle-GAN. 

2.2.  Methods 

2.2.1.  Image Generation 

GANs are used for image generation using a mapping 

learned from input-target pairs or data distributions. In 

this study, a cycle-GAN is used for style transfer or 

mapping between short scan duration images (referred 

to as shortSD) as input and standard scan duration images 

(referred to as  StandardSD) as targets. Cycle-GAN offers 

better performance over simple GAN and mostly has 

overcome previous GAN types problems [4, 30, 31]. 

Cycle-GAN has two generator and discriminator network 

pairs (one for short to standard scan duration generation 

and one in the reverse direction). The generator generates 

synthetic images and the discriminator tries to differentiate 

between synthetic and original images. Both generator 

and discriminator try to improve their performance leading 

to the overall improved performance of the cycle-GAN 

network. The image dimensions are (192, 192) and the 

three following slices are stacked together in to provide 

multi-slice input to the cycle-GAN network and decrease 

the training time. The ADAM optimizer with a learning 

rate of 0.0002 was used to optimize the models. More 

detail about the generator and discriminator models’ 

structure is provided in Figures 1 and 2. 

2.2.2.  Implementation Process 

We followed two approaches when training the cycle-

GAN model for each subset: first, training the cycle-

GAN for 250 epochs Without Image Augmentation 

(WoIA). Second, training the cycle-GAN With Image 

Augmentation for 250 epochs (WIA). In this study, image 

augmentation is achieved through methods that do not 

alter the pixel values of the images for the simplicity and 

consistency between short and standard scan duration 

image counterparts. Before each epoch, all Image pairs 

(short scan duration and standard scan duration) go 

through the following process of image augmentation. 

All augmentations steps were done randomly: 

Table 1. Detailed information about the data used in this study 

Subsets Standard Scan Duration (s) Activity (MBq) Number of slices 

Subset 1 
Train 541.25 ±  87.66 267.6 ± 3.54.96 2808 

Test 570 ± 77 285.83 ±  50.88 702 

Subset 2 
Train 660.63 ±  84.15 328.34 ±  48.18 2937 

Test 675 ± 35 311.45 ±  28.21 768 

Subset 3 
Train 570 ± 89.24 286.11 ±  45.53 2871 

Test 780 ± 130 301.33 ±  18.72 768 

Subset 4 
Train 622.5 ± 46.21 301.13 ±  22 2778 

Test 620 ± 30 264 ± 11.28 702 

Validation 570 284.9 351 
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𝑈𝑝 𝑎𝑛𝑑 𝑑𝑜𝑤𝑛 𝑓𝑙𝑖𝑝 → 𝐿𝑒𝑓𝑡 𝑎𝑛𝑑 𝑟𝑖𝑔ℎ𝑡 𝑓𝑙𝑖𝑝 →

𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑠 𝑜𝑓 45 𝑑𝑒𝑔𝑟𝑒𝑒 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 

(0, 45, 90, 𝑎𝑛𝑑 135 𝑑𝑒𝑔𝑟𝑒𝑒𝑠) 

2.2.3.  Performance Evaluation Metrics 

The performance of the cycle-GAN model on different 

subsets (with and without augmentation) was evaluated 

using the PSNR, SSIM [32] and Normalized Root Mean 

Squared Error (NRMSE) (Equations 1-3). PSNR measures 

the noise level of the test images (short scan duration and 

synthetic standard scan duration) compared to the ground 

truth images (standard scan duration). SSIM measures the 

similarity of structures present in the two images (short 

and synthetic standard scan duration compared to original 

standard scan duration). NRMSE is also a measure of the 

error between test and standard scan duration images.  

𝑃𝑆𝑁𝑅 = 10 log10 (
𝑀𝐴𝑋2

1
𝑛

 ∑ (𝑇𝑖 −  𝐼𝑖)2𝑛
𝑖=1

) (1) 

𝑆𝑆𝐼𝑀 =  
(2𝜇𝑇𝜇𝐼 + 𝐶1)(2𝜎𝑇𝐼 +  𝐶2)

(𝜇𝑇
2 + 𝜇𝐼

2 +  𝐶1)(𝜎𝑇
2 +  𝜎𝐼

2 +  𝐶2)
 (2) 

𝑁𝑅𝑀𝑆𝐸 = √∑
(𝑇 − 𝐼)2

𝑛

𝑛

𝑖=1

 (3) 

In Equations 1-3, 𝜇, and 𝜎 stand for mean and variance. 

Also, T, I, n, and MAX denote original value, predicted 

value, number of pixels, and maximum pixel value. C1 

and C2 are constants used in the calculation of the 

SSIM. To determine whether the difference between 

synthesized (generated) standard scan duration and 

original standard scan duration images (ground truth 

used for calculation of metrics) in terms of PSNR, SSIM, 

and NRMSE metrics are statistically significant, we 

used the paired-sample t-test with a confident interval 

of 0.95.   

3. Results  

For all subsets of data, both training approaches (with 

and without augmentation) of the cycle-GAN model were 

capable of improving the image quality evaluation metrics 

i.e., PSNR, SSIM, NRMSE. The paired sample t-test 

statistical testing was performed with a confidence interval 

of %95 to determine whether the difference between 

the results was statistically significant. Table 2 presents 

the results of the cycle-GAN model for all subsets and 

both training approaches. Differences between all results 

were proved to be statistically significant (p  <  0.001). 

Although both approaches lead to quality improvement of 

the short scan duration images, however, training the cycle-

 

Figure 1. The structure of the U-shaped generator network has Add and Concatenate skip connection to 

preserve the structural details as the network deepens 

 

Figure 2. The structure of the discriminator network 
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GAN model with the image augmentation approach leads 

to better performance of the model.  

Exploring the performance of the model after each 

training epoch can provide useful insight into the effects 

of image augmentation. For this purpose, we analyzed 

the performance of the cycle-GAN model trained using 

different training subsets on a separate subset of patient 

image data (validation subset) to observe the changes in 

the metric values. Figures 3-5 plots the value changes 

of the PSNR, SSIM, and NRMSE metrics during the 

training process for all four subsets.  

Table 2. Results of the standard scan duration PET image generation using the 1/32nd short scan duration input on test 

data of each training subset 

Subset 

PSNRa SSIMb NRMSEc 

shortSDd 
sStandardSDe 

(WoIAf) 

sStandardSD 

(WIAg) 
shortSD 

sStandardSD 

(WoIA) 

sStandardSD 

(WIA) 
shortSD 

sStandardSD 

(WoIA) 

sStandardSD 

(WIA) 

1 27.8770 30.8170 31.1178 0.929116 0.943015 0.944623 0.049078 0.032113 0.031690 

2 26.2693 30.2898 30.4851 0.927221 0.944137 0.945881 0.053920 0.032654 0.032487 

3 26.340558 29.119623 30.040367 0.920549 0.930521 0.937733 0.054980 0.036639 0.033876 

4 27.914110 27.914252 31.625818 0.934889 0.934889 0.951590 0.046740 0.046739 0.028404 

a: Peak signal-to-noise ratio with the standard scan duration images as ground truth. b: Structural similarity index regarding 

the standard scan duration images. c: Normalized root means squared error. d: Short scan duration. e: Synthetic standard 

scan duration. f: Training approach without image augmentation. g: Training approach with image augmentation 

 

Figure 3. Changes of the PSNR metrics with the increasing training epochs number for both training approaches 

(with and without augmentation) for all four subsets 
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4. Discussion  

Using a multi-slice input cycle-GAN, we synthesized 

standard scan duration PET images. Synthetic image 

quality was improved compared to the short scan duration 

inputs in terms of PSNR, SSIM, and NRMSE metrics 

for all four subsets using image augmentation approaches. 

In the case of the training approach without  image 

augmentation, except for subset 4, all of the other subsets 

experience improvement in considering the PSNR, SSIM, 

and NRMSE metrics. Table 2 reports the results of the 

PSNR, SSIM, and NRMSE metrics for all four subsets 

in the case of training approaches with and without 

augmentation (WIA and WoIA, respectively). WIA 

approach provided statistically and significantly better 

results than the WoIA approach, especially in the case of 

subset 4 where the WoIA approach failed to improve 

the image quality of the short scan duration inputs while 

the WIA approach yielded better results consistent with 

the other subsets (1-3). The model trained on the subset 

4 dataset using the without image augmentation training 

approach collapsed and could not synthesize standard 

scan duration PET images; whereas, the model trained 

using the training approach with image augmentation 

approach provided a notable outcome. Also, this could 

be considered as another merit to image augmentation 

which is to prevent models from collapsing.  

Figures 3-5 plot the curves of the PSNR, SSIM, and 

NRMSE metrics calculated after each epoch of training 

for all subsets and both training approaches. It is noticeable 

that the model trained using the approach with image 

augmentation keeps on improving as the training epoch 

increases and surpasses the model trained using the 

approach without image augmentation. 

Image augmentation techniques used in this study, 

i.e., random up-and-down flip, random left-and-right 

flip, and multiple 45-degree rotations were all basic 

image augmentation techniques compared to much 

more advanced techniques. It was shown that image 

augmentation techniques do improve the image generation 

performance of the generative models, including the cycle-

GAN model, especially in the case of standard scan 

duration PET image generation that could be extended to 

other applications as well. However, more complicated 

and sophisticated image augmentation techniques should 

be adopted and evaluated as the techniques employed in 

this study did not alter the pixel values of the images. 

 

 

 

 

Figure 4. Changes of the SSIM metrics with the 

increasing training epochs number for both training 

approaches (with and without augmentation) for all four 

subsets 
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Xu et al. [4] evaluated the PSNR, SSIM, and NRMSE 

metrics. Using raw list-mode count data and 0.5% 

resampling, 200-time low-dose data were acquired which 

is so much lower than the 32-time lower scan duration 

data used in this study. They reported a 19.395%, 7%, 

and 73.75% improvement of two selected slices of the 

brain regarding the PSNR, SSIM, and NRMSE metrics. 

However, in our study using the without image 

augmentation method, PSNR, SSIM, and NRMSE 

improved on average for all subsets by about 9.101%, 

1.101%, and 26.842%, respectively. The image 

augmentation approach did improve the performance 

with 13.754%, 1.834, and 38.198% improvement of 

the PSNR, SSIM, and NRMSE metrics, respectively. 

Although the results of the study implemented by the 

Xu et al. [4] are better, their study was dedicated to the 

brain region while our study was using whole-body 

data. Zhao et al. [21] used 10% and 30% of the original 

counts as the low-dose inputs. They also measured the 

PSNR, SSIM, and NRMSE metrics. Excluding the PSNR, 

which experienced a 0.824% and 0.034% decrease for 

10% and 30% low-dose inputs, the SSIM improved by 

1.975% and 0.303% for 10% and 30% low-dose inputs. 

The NRMSE metrics were also improved by 31.4% and 

14.84% for 10% and 30% low-dose inputs. Our study, 

with much fewer data and using the whole-body data, 

compared to brain data used by Zhao et al. [21], offered 

better results. Although some studies had better results, 

however, to the best of our knowledge, the effect of 

image augmentation on the performance of the standard 

scan duration or standard-dose PET images is not 

evaluated in related works.  

The following study has multiple advantages and 

disadvantages. Few studies have explored the 32-time 

reduction in scan duration or injected radiopharmaceutical. 

Also, exploring the effect of image augmentation on 

the performance of deep learning models for the task 

of generating standard scan duration or standard-dose 

PET images is scarce. We evaluated the performance 

of our model with and without image augmentation 

approaches for four different subsets. Nonetheless, there 

are shortcomings to this study. It would be better to have 

more patient data in each training subset to have a more 

comprehensive evaluation. Much more advanced image 

augmentation methods should be explored to determine 

the difference in the performance of image augmentation 

methods in this specific task. 

 

 

 

 

Figure 5. Changes of the NRMSE metrics with the 

increasing training epochs number for both training 

approaches (with and without augmentation) for all four 

subsets 
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5. Conclusion 

In this study, we trained a multi-slice cycle-GAN using 

four subsets of 1/32nd short scan duration and standard 

scan duration PET image pairs using two training 

approaches: with and without image augmentation. Both 

approaches improved the image quality of the short 

scan duration inputs. However, models trained using 

the image augmentation approach offered statistically 

significant and better results than those without the 

image augmentation approach. Image augmentation proves 

to be useful when a more comprehensive dataset is not 

available for applications like the generation of synthetic 

standard scan duration PET image of this study. A more 

comprehensive study should also be conducted about 

other more advanced and sophisticated techniques of 

image augmentation.  
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