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Abstract 

Purpose: Diagnosis of musculoskeletal abnormalities is critical because of the large number of people affected by 

these disorders worldwide. The recent advances in deep learning techniques show that convolutional neural networks 

can be a useful tool for the computer-aided detection of radiographic abnormalities. This study focuses on diagnosing 

musculoskeletal abnormalities in the lower extremities using X-Ray images by deep architecture neural networks. 

Materials and Methods: The dataset contains 61,098 musculoskeletal radiographic images, including 42,658 normal 

and 18,440 abnormal images. Each image belongs to a single type of lower extremity radiography, including the 

toe, foot, ankle, leg, knee, femur, and hip joints, which were prepared with standard projection without artifacts and 

with high quality. A novel deep neural network architecture is proposed with two different scenarios that perform 

the lower extremity lesion diagnosis functions with high accuracy. The foundation of the proposed method is a 

deep learning framework based on the Mask Regional Convolutional Neural Network (R-CNN) and Convolutional 

Neural Network (CNN). The model with the best results incorporated the Mask R-CNN algorithm to produce the 

bounding box, followed by the CNN algorithm to detect the class based on that. 

Results: The proposed model can identify different types of lower limb lesions by an Area Under the Curve (AUC) 

of the Receiver Operating Characteristics (ROC) curve 0.925 with an operating point of 0.859 of sensitivity and a 

specificity of 0.893. 

Conclusion: The results indicated that the consecutive implementation of Mask R-CNN and CNN has a higher 

efficiency than Mask R-CNN and CNN separately in lesion detection of lower limb X-ray images. 

Keywords: X-Ray; Lower Limb; Deep Learning; Detection; Mask Regional Convolutional Neural Network. 
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1. Introduction  

Over the past few decades, medical imaging techniques 

have helped diagnose and better treat diseases. Determining 

the exact location of a lesion on radiographic images 

is an important step in diagnosis and treatment. The 

interpretation of these images is the responsibility of 

experienced physicians and radiologists. In addition to 

the quality of images, which plays an important role in 

the accuracy of the diagnosis and depends on the imaging 

system and its protocols, the physician's experience has 

a significant impact on the accuracy of the diagnosis and 

can sometimes be extremely challenging for younger 

physicians. Diagnosis of musculoskeletal lesions is critical 

because more than 1.7 billion people are afflicted with 

musculoskeletal lesions worldwide. Also, severe pain and 

disability in the long term are among the most common 

symptoms of this lesion type [1]. In addition to significantly 

affecting the quality of life, these conditions impose a 

heavy economic burden on the health care system, resulting 

in total spending of 796 billion US$ in the United States 

between 2009 and 2011 [2]. Extensive pathological 

changes and human error might delay the correct diagnosis 

of these lesions. Computer systems and assisting software 

for doctors help make the right decision, especially in 

centers with a heavy workload and in emergency centers 

with few radiologists during the day and night shifts. 

These systems are used to improve physicians' work 

accuracy and reduce the time of radiographic interpretation. 

The recent advances in deep learning techniques show 

that Convolutional Neural Networks (CNNs) can be helpful 

in Computer-Aided Detection (CADe) of radiographic 

abnormalities [3-5].  

There are systems for detecting and characterizing 

lesions, such as CADe and Diagnosis (CADx) [6]. 

However, despite the progress in their capabilities, these 

systems still have limitations due to using handmade 

features [7]. In recent years, numerous studies have been 

conducted on the presentation and application of artificial 

intelligence in medical diagnosis, and significant progress 

has been made in image classification using CNN [8, 9]. 

In a recent study, Pauwels et al. [10] compared CNNs 

with human observers. They concluded that CNNs were 

effective in detecting periapical lesions. Previous studies 

on deep learning methods for interpreting medical images 

have usually focused on identifying a single pathology 

in a particular body part. Gonella et al. [11] developed 

neural networks to process and classify lesions in 

mammograms. Savelli et al. [12] employed multi-depth 

CNNs for the detection of small lesions in medical images.  

However, studies that use transfer learning techniques, 

especially those that include trained models in the 

large natural image collection ImageNet, can detect 

abnormalities such as liver failure and osteoarthritis 

damage through images of body organs [13-18]. 

In some studies, mainly in chest x-ray assessments, 

scientists have designed models that can detect multiple 

pathologies with high accuracy. Nevertheless, these are 

usually suitable for highly homogeneous images of a 

single body part [4, 19, 20]. Similarly, some previously 

designed models can assess different types of medical 

images. However, they usually include the identification 

of defined pathologies [21, 22]. Consequently, there is 

limited research on developing general models that can 

express various body parts and diverse pathologies. This 

study aimed to diagnose musculoskeletal abnormalities 

in the X-ray images of lower extremities via deep 

architecture neural networks. 

2. Materials and Methods  

In the proposed model for detecting Musculoskeletal 

Disorders (MSDs), two scenarios were considered. In the 

first scenario, the Mask R-CNN technique was used to 

determine the bounding box, and the CNN algorithm was 

implemented for classification based on the bounding 

box. In the second scenario, both classification and 

bounding box generation operations were performed 

using the Mask R-CNN algorithm. Finally, the two 

scenarios were compared, and the evaluation results 

were presented. To the best of the authors’ knowledge, 

no other research has used the combination of Mask 

R-CNN and CNN. 

In this research, an extensive database of lower limbs 

(toe, foot, ankle, leg, knee, femur, and hip joint) was 

collected, and an intelligent model based on deep neural 

networks was trained. Also, the generalizability of the 

model in diagnosing a lesion was investigated. The 

musculoskeletal lesion of the lower limbs can be 

identified by a radiologist specializing in various fractures, 

dislocations, subluxation, and any other detectable 

abnormality appearance. This study incorporated a deep 

learning method to automate the bounding box of 

musculoskeletal lesions. A region-based Mask R-CNN 

with a ResNet-101 backbone was used for the bounding 

box. As in big data studies, collecting this labeled data 
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is important and valuable for this study. A large collection 

of radiographs, including 61,908 musculoskeletal images 

of the lower extremities, was presented. Each image was 

manually labeled as normal or abnormal by proficient 

radiologists because experienced radiologists are more 

reliable for labeling [23, 24]. The radiologists in this 

study have 10 to 16 years of experience.  

Diagnostic labeling of images as normal and abnormal 

was performed for images that were acceptable regarding 

X-ray penetration and image quality. This task required 

appropriate imaging processes and skilled radiographers. 

Images that contained any bone fracture, dislocation, 

sublocation, crack, tendon or ligament tear, and any 

lesions visible to the radiologist were labeled abnormal. 

Images without these symptoms were labeled normal. 

Images are shown in Figure 1.  

2.1.  Data Set 

In this study, 61,098 X-rays with MSDs were collected 

retrospectively from the diagnostic imaging service at 

trauma centers in Tehran, Iran. The data were gathered 

from the department of medical imaging in Rasool-e-

Akram, Haft-e-Tir, and Shafa Yahyaian hospitals in 

Tehran, Iran. The dataset contains 42,658 normal images 

and 18,440 abnormal images from male and female patients 

aged 18 to 82 years. Each image belongs to a single type 

of lower extremity radiography, including the toe, foot, 

ankle, leg, knee, femur, and hip joint (Table 1).  

 

a 

 

b 

Figure 1. (a) Different X-ray images of the lower limbs in both normal and abnormal positions. (b) 

Examples of images with the exclusion criteria: artifacts, foreign objects, platinum, poor imaging 

quality and technique, and no diagnostic value for the radiologist 
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All lower extremity X-ray images from digital imaging 

systems were standardized. First, patient information 

was removed to ensure anonymity. Then, the data were 

saved and archived in the same format Digital Imaging 

and Communications in Medicine (DICOM), and the 

quality of all the images met the requirements. Finally, 

all the images were classified based on the lower 

extremity to which they belonged and stored in a 

secure storage system. In this research, a data 

augmentation strategy is performed to overcome the 

lack of a large dataset. The human research ethics 

board of the Iran University of Medical Sciences 

approved the study (IR.IUMS.REC.1397.537). 

All algorithms were performed on Python 3.7 using 

a GeForce GTX 1080 Ti graphics processor with 32 GB 

of memory. Several preprocessing steps were applied to 

the images before sending them to the network. First, the 

mean pixel value as the average vector in all training 

images was subtracted from the input image. Then, each 

image was rescaled and turned into a tensor. 

Labeling is an important step in machine learning of 

medical images. This process was completed manually 

by two expert radiologists, who used patient information 

to specify the class of each image. In normal images, 

radiologists identified the whole image as a bounding 

box. For abnormal images, the bounding box of the lower 

limb abnormality area was annotated. The inclusion 

criteria were all lower limb images without contrast 

media and artifacts classified as either normal (without 

damage) or abnormal (damaged) groups. This study used 

the random sampling method. Exclusion criteria were 

images with poor quality and technique and a lack of 

diagnostic value to the radiologist. The database was 

then divided into training and test data. 

The model parameters were adjusted using the training 

data. After fixing the parameters, the model was run 

using the test data as the input. The results of this step 

were compared to correct labels of images, determining 

the accuracy and sensitivity of the model, which are 

presented in detail in the Results section. 

2.2.  Network Architecture 

Network architecture has attracted significant attention, 

leading to technological advances in various domains of 

image classification. In this study, the network took the 

input image size as 200  ×  200. DenseNet-161, ResNet-50, 

and ResNet-101 architectures performed the initial 

convolution and max-pooling using 7  ×  7 and 3  ×  3 kernel 

sizes, respectively. An extensive random hyperparameter 

search was performed for each model in the validation set, 

followed by high-performance tuned models evaluated 

in the test set. In contrast to a traditional CNN [25], the 

input vector (x) passes through the CONV-ReLU-CONV 

series using a residual block in ResNet. Then, the output 

vector (F(x)) is added to the original input block x. In 

a traditional CNN, x is plotted directly to F(x), which 

contains no information about the original input [26-34]. 

CNN-based strategies such as Mask R-CNN [26] have 

exhibited increasing success in object detection tasks. 

Mask R-CNN [26] is the latest CNN architecture for 

object detection. Its objective for an image is to return 

the class label and coordinate the bounding box for each 

object within the image. Mask R-CNN has two stages. 

The first stage is to suggest areas that might be object-

based in the input image, and the second stage, based 

on the outputs of the previous stage, predicts the object 

class, refines the bounding box, and creates a mask at 

the pixel level of the object [28]. The general model of 

the Mask R-CNN is shown in Figure 2. The Mask R-

CNN architecture can involve ResNet-101, ResNet-

50, MobileNet [29], U-Net [30], or Inception V2 [31] 

networks. As shown in Figures 2 and 3, the Region 

Proposal Network (RPN) suggests an area of an object 

bounding box. 

3. Results  

3.1.  Network Training and Testing 

The deep network was trained and evaluated using 

61,098 X-ray images. The parameters trained in this model 

Table 1. The dataset containing 42,658 normal and 

18,440 abnormal cases 

Study Normal Abnormal Total 

Toe 4991 2706 7697 

Foot 4769 1294 6063 

Ankle 5647 2031 7678 

Leg 8862 3169 12031 

Knee 5860 2820 8680 

Femur 4902 2964 7866 

Hip joint 7627 3456 11083 

Total No. of 

Studies 
42658 18440 61098 
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are as follows. The learning rate is 0.0001 for the heads 

mask and R-CNN, and the learning rate is 0.001 for the 

Region Proposal Network (RPN) plus the backbone 

network. The momentum during the training is set to 0.9, 

and a stochastic gradient descent optimizer is used. The 

learning rate and momentum are adjusted by monitoring 

the loss level during the training process. With a low 

learning rate, training will progress extremely slowly as 

the network weight does very few updates. However, 

high learning rates can lead to undesirable divergence 

behavior in loss performance. In this study, reasonable 

learning rate values and momentum were found for Mask 

R-CNN and CNN through the experiments performed. 

Each part in Mask R-CNN and CNN is trained for 300 

epochs. Most of the model parameters were selected 

based on the default Mask R-CNN parameters. In the 

two scenarios, the 61,098 images were divided into three 

groups: 70% (42,769), 10% (6,110 frames), and 20% 

(12,219 frames) for training, validation, and testing. The 

20% of training data (8,553) were augmented during 

training by applying flips, rotations, shifts, and scaling. 

The number of training data became 51,322 images 

after augmentation. The whole dataset was augmented, 

with each model having a 20% random chance to be 

augmented and an 80% chance of not being augmented 

at all. The augmentation is done during runtime, meaning 

that each image has an 80% chance of not being augmented 

at all, a 5% chance of being only flipped, a 5% chance of 

being only rotated, a 5% chance of being only shifted, 

and a 5% chance of being only scaled. During the next 

epoch, each image is augmented again with the above 

strategies. Augmenting the images during runtime and 

not performing the full augmentation beforehand have 

an advantage; to achieve the same results, multiple new 

datasets should be created and the model trained on the 

combined large dataset. This study had no problem with 

data limitations. Therefore, by testing different numbers 

and comparing the results against the cost and time spent 

on resources, 20% was the most appropriate amount of 

augmentation. Mask R-CNN training time was 

approximately 14 hours, and CNN training time was 

approximately 11 hours. The existing GPU was GeForce 

GTX 1080 Ti. 

In this study, the Mask-RCNN network was trained 

by applying ImageNet pre-trained weights [35]. Some 

studies in the literature used transfer learning with fine-

tuning for better outcomes in MSDs classification and 

detection [36, 37]. A data augmentation method was used 

to generalize the trained model and avoid overfitting. 

It should be noted that some augmentation techniques 

such as shearing, elastic deformations, and adding noise 

did not prove effective in the present model. Therefore, 

this study used simple augmentation methods, including 

flips, rotations, shifts, and scaling. Segmentation and 

detection occur simultaneously on the Mask RCNN 

applied to the dataset. The performance of this multi-task 

model is checked against the validation data that are kept 

primarily for this assessment. In case of over-fitting, the 

regularization hyperparameter must be tuned. Developing, 

validating, tuning, and repeating were duplicated until the 

best accuracy against the validation data was achieved. 

Transfer learning and data augmentation strategies were 

applied to mitigate overfitting. In this study, the Mask-

RCNN network was trained by applying ImageNet pre-

trained weights. Transfer learning with fine-tuning was 

used for better outcomes in MSD classification and 

detection. Fine-tuning consists of unfreezing the part 

of the obtained model and re-training it on the new data 

with a very low learning rate. This has potential for 

improvements by incrementally adapting the pre-trained 

features to the new data.  

3.2. Evaluation Metrics 

Performance metrics in classification are fundamental 

in evaluating the quality of learning methods [32]. 

Accuracy, sensitivity, specificity, and area under the 

 

Figure 2. The two stages of the Mask R-CNN network. 

The first is the region proposal network, which predicts 

bounding boxes based on anchor boxes. The second stage 

involves an R-CNN detector classifying and generating 

pixel-level segmentation [21] 
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receiver operating characteristics (AUC-ROC) are metrics 

used for evaluating the present model. Accuracy is the 

most common and straightforward measure for assessing 

a classifier. It is defined as the degree of correct 

predictions of a model (or conversely, the percentage 

of misclassification errors) [32]. Equation 1 represents 

the accuracy formula. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
 (1) 

Sensitivity and specificity are usually used in biomedical 

and medical applications and studies containing images 

and visual data. They evaluate the performance of a 

classifier in different classes [33]. Equations 2 and 3 

display these two metrics.   

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 (2) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑡𝑛

𝑓𝑝 + 𝑡𝑛
 (3) 

 

 

As seen in the above equations, all these metrics are 

based on a confusion matrix that records correctly and 

incorrectly recognized examples for each class [33]. 

This matrix is shown in Table 2.   

The AUC-ROC is not dependent on the actual predicted 

values but relies only on the ordering of the cases. In this 

method, it is practical to configure how well the positive 

cases are ordered before the negative ones, and it is possible 

to consider this as the outline of the model performance 

throughout all available thresholds [38].  

Figure 4 shows the efficiency of the proposed method. 

It should be noted that every result produced by the 

Mask R-CNN consists of three components: a confidence 

value, the coordinates of a bounding box, and a 

 

Figure 3. In the first scenario, both the classification and bounding box generation operations were performed using 

the Mask R-CNN algorithm. In the second scenario, the Mask R-CNN technique was used to determine the bounding 

box, and then the CNN algorithm was implemented for classification based on the bounding box 

Table 2. Confusion matrix 

Class/ recognized As positive As negative 

Positive True positive False negative 

Negative False positive True negative 
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segmentation mask. Tables 3 and 4 represent the results 

of applying both proposed Mask R-CNN and CNN 

models and the evaluation metrics (accuracy, sensitivity, 

specificity, and AUC-ROC). The values in Table 5 

demonstrate that the proposed Mask R-CNN and CNN 

outperformed Mask R-CNN in achieving highly accurate 

detection results. The multi-task loss function of Mask 

R-CNN is designed to combine the loss of classification, 

localization, and segmentation mask on each sampled 

RoI. The loss function for classification and box regression 

is the same as Faster R-CNN, that is:  

𝐿({𝑝𝑖}, {𝑡𝑖}) =
1

𝑁𝑐𝑙𝑠

∑𝑁𝑐𝑙𝑠(𝑝𝑖 , 𝑝𝑖
∗)

𝑖

+ 𝜆
1

𝑁𝑐𝑙𝑠

∑𝑝𝑖
∗𝐿𝑟𝑒𝑔(𝑡𝑖, 𝑡𝑖

∗)

𝑖

 

(4) 

The first term is the classification loss, and the 

second term is the regression loss of bounding boxes. 

Additionally, regularizing the loss function improved 

the success of the Mask R-CNN framework. 

4. Discussion  

This study presented several supervised deep learning 

approaches for automated binary classification of 

abnormalities in lower extremity radiographs. Also, the 

utilization of Mask R-CNN and CNN in identifying a 

range of abnormalities was explored across multiple 

types of lower extremity radiographs. The application 

of Mask R-CNN and CNN for detection and classification 

was compared to applying only Mask R-CNN. As 

evidenced, the proposed Mask R-CNN and CNN 

exhibited higher efficiency than the other approach.  

One of the models achieved an AUC-ROC of 0.925 

on lower extremity radiographs. This is a promising 

result due to the high degree of variability in input images, 

the inclusion of multiple body parts, and the presence 

of diverse and unannotated abnormalities [28]. The 

results showed that using Mask R-CNN to produce the 

bounding box and CNN for classification based on the 

bounding box achieved better results than Mask R-

CNN for classification and detection. A deeper network 

can achieve higher performance in the natural image 

domain. Also, as Tables 4 and 5 show, the ResNet101 

backbone delivered the best performance. ResNet models 

define residual blocks that are made up of multiple 

convolution processes and have skip connections for better 

performance of the model. One of the advantages of 

the proposed framework in working with deeper layers 

is that the accuracy of the classification model based 

on the ROI is high, and the marginal features are less 

important. It is much easier for the model to predict the 

abnormality of an image. Any additional information 

can achieve a more accurate classification. Most existing 

models have multiple outputs that perform both 

classification and localization in parallel. However, 

this study used the localization output for more accurate 

classification, reducing the detection space, so the network 

needs to examine fewer features. 

 

Figure 4. A detailed block diagram of the proposed 

framework 

Table 3. Lower limb abnormalities detection accuracy 

of Mask R-CNN 

Backbone Accuracy Sensitivity Specificity 
AUC-

ROC 

ResNet-50 0.819 0.776 0.962 0.889 

ResNet-

101 
0.841 0.825 0.867 0.894 

DenseNet-

161 
0.791 0.713 0.980 0.878 

 
Table 4. Lower limb abnormalities detection accuracy of 

Mask R-CNN and CNN 

Backbone Accuracy Sensitivity Specificity 
AUC-

ROC 

ResNet-50 0.819 0.776 0.962 0.889 

ResNet-

101 
0.841 0.825 0.867 0.894 

DenseNet-

161 
0.791 0.713 0.980 0.878 

 

Table 5. Lower limb abnormalities detection accuracy 

Method Accuracy sensitivity Specificity 
AUC-

ROC 

Mask R-

CNN 
0.841 0.825 0.867 0.894 

Mask R-

CNN and 

CNN 

0.891 0.859 0.893 0.925 
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Related studies have CNNs with various model 

architectures. Despite the differences between the model 

structures, no statistically significant difference was 

observed in performance in three CNN architectures 

with different architecture and depth (DenseNet-161, 

ResNet-101, and ResNet-50). It can be concluded that a 

model that requires less training time and computational 

power can be helpful for future deep learning abnormality 

prediction, and the training data should also be increased. 

The three models were compared on the ROC curve for 

Mask R-CNN and CNN architectures, which plots model 

specificity against sensitivity (the proportion of the 

correctly identified negatives against the proportion of 

the correctly identified positives). Since the classification 

in this study is binary (normal and abnormal), the sigmoid 

layer is used. In the ROC curve in Figure 5, the vertical 

axis shows the rate of detected true positives, and the 

horizontal axis shows the rate of detected false positives. 

The models output the probability of abnormality in a 

musculoskeletal study, and the ROC curve is generated 

by changing the thresholds used for the classification 

boundary. The AUC-ROC of the DenseNet-161 model is 

0.884, the ResNet-101 model is 0.925, and the ResNet-50 

model is 0.906.  

In a similar study, Varma et al. examined the CNN 

tool for diagnosing general abnormalities in lower 

extremity radiography on a dataset containing 93,455 

radiographs. They achieved an AUC-ROC of 0.880 

(sensitivity = 0.714, specificity = 0.961) in the abnormal 

classification [39]. Rajpurkar et al. presented a collection 

of upper limb musculoskeletal radiographs containing 

40,561 images. Their deep learning model achieved an 

AUROC of 0.929, with a sensitivity of 0.815 and 

specificity of 0.887 [3]. As can be seen, the results of 

the present research have higher accuracy. Pradhan et al. 

worked on human upper limb bone recognition. They 

employed a deep convolutional neural network for 

recognition and achieved 91.37% accuracy for the 

classification of human upper limb bones [40]. Shao 

and Wang introduced a two-stage technique for the 

classification of a human upper limb bones dataset. They 

achieved the maximum accuracy of 88.5% for the 

SENet154 model in humerus images, and the highest 

accuracy for the DenseNet201 model was again in 

humerus images with 90.94% [41]. Rohrbach et al. used 

the VGG-16 model with transfer learning to classify and 

identify the bone destruction marking for rheumatoid 

arthritis. Due to their highly imbalanced dataset, they 

achieved 77.5% accuracy [42]. Another study examined 

the binomial categorization of infant elbow fractures. They 

revised the Xception architecture to receive monophonic 

gray-scale input and attained 95% AUC, with 88% 

accuracy in elbow classification [43]. 

In recent years, following the improved computational 

power, the entry barrier for deep learning has lowered. 

However, access to large and labeled radiograph datasets 

is still challenging [44]. Transferring learning across large, 

publicly available datasets is a common method for 

addressing this problem [45]. In this study, all models 

were pre-trained on ImageNet to improve the model 

performance. The presented results have several important 

clinical implications. First, the results are not limited to a 

single body part (e.g., only the hip) or a single pathology 

(e.g., fractures only) [46]. Moreover, the model can rapidly 

identify routine examinations with a preliminarily reading 

as ‘normal’ or ‘abnormal.’ These advantages can help 

radiologists spend more time on abnormal and complex 

cases and simplify an increased throughput [39]. Studies 

have shown that fatigue in radiologists increases by the 

end of the workday and can be intensified by increasing 

patient numbers [47]. Therefore, a model that assists the 

radiologist in localizing the abnormality on an image 

can decrease diagnostic errors.  

This study had several limitations that should be 

addressed in future research. First, the proposed Mask 

R-CNN cannot handle a minimal number of MSDs. One 

of the primary challenges for radiologists is detecting 

MSDs [28]. Figure 6 shows examples of successful 

 

Figure 5. ROC curves are evaluated on sensitivity (the 

proportion of the correctly identified positives) and 

specificity (the proportion of the correctly identified 

negatives) for Mask R-CNN and CNN with tree models, 

including ResNet-101 with blue, ResNet-50 with orange, 

and DenseNet-161 with green 
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detection of MSDs. Minimizing the overfitting problem 

is a challenge in developing a deep learning MSDs 

detection approach. Transfer learning and data augmentation 

strategies were applied to mitigate overfitting.  

Second, only binary classes were considered in this 

study, and the model's performance on important subclasses 

was not evaluated. However, subtle abnormalities may 

be obscured by downsampling images to a 224  ×  224 

matrix. 

Future research can develop better strategies to 

overcome the overfitting problem. Mask R-CNN may 

become a favorable technique for MSD detection by 

having access to a better training dataset [28]. Therefore, 

future studies can retrain the proposed model with a 

larger dataset. 

In conclusion, the present study demonstrated that 

deep learning models could identify abnormalities in 

lower extremity radiographs at performance levels of 

clinical importance. With further preclinical assessment, 

these approaches may eventually allow for rapid and 

automated triaging of patients with MSDs. 
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