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Abstract 

Purpose: Drowsy driving accounts for many accidents and has attracted substantial research attention in recent years. 

Electroencephalography (EEG) signals are shown to be a reliable measure for the early detection of drowsiness. 

Unfortunately, there is no comprehensive study showing the applicability of drowsiness detection systems with EEG 

signals. In this research, we targeted the studies under the category of drowsiness detection, which adopted an EEG-

based approach, to inspect the applicability of these systems from different aspects. 

Materials and Methods: We included documented studies that utilized clinical devices and consumer-grade EEG 

headsets for detection of drowsiness and investigated the selected studies from different aspects such as the number 

of EEG channels, sampling frequency, extracted features, type of classifiers, and accuracy of detection. Among available 

headsets, we focused on the most popular ones, namely Muse, NeuroSky, and EMOTIV brands. 

Results: Considerable number of studies have used EEG headsets, and their reports showed that the highest average 

accuracy belongs to EMOTIV, and the highest maximum detection accuracy, 98.8%, was achieved by the Muse 

headset. Spectral features extracted from short periods of 1, 2, or 10 secs are the most popular features, and the support 

vector machine is the most commonly used classifier in drowsiness detection systems. Therefore, implementing 

a reliable detection system does not necessarily include complicated features and classifiers. 

Conclusion: It is shown that, despite their few electrodes, commercial headsets have gained decent detection accuracy. 

This study sheds light on the current status of drowsiness detection systems and paves the way for future industrial 

designs of such systems. 

Keywords: Drowsiness Detection; Fatigue; Electroencephalography Features; Commercial Electroencephalography 

Headsets; Hybrid Systems. 
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1. Introduction  

Alertness is crucial in many duties, such as driving, 

shift working, press shop jobs, night-time security guarding, 

pilotage, and construction works. The drowsiness of drivers 

is the primary reason for accidents all over the world.  

Drowsy driving can occur in any driving vehicle scenario 

but is more common in long-distance transportation. 

According to the statistical analysis of the US National 

Highway Traffic Safety Administration (NHTSA), 91,000 

reported crashes involved drowsy drivers in 2017. These 

crashes led to an estimated 50,000 people being injured 

and nearly 800 deaths [1,2]. Studies have shown that the 

rate of accidents due to fatigue in Iran is approximately 

20 to 40% of total annual accidents, much higher than the 

average rate in other countries, which is 8 to 17% [2].  

Several factors affect accidents caused by fatigue and 

drowsiness. Factors like the type of vehicle, time of 

occurrence, the mental-physical condition of the driver 

before the trip, the length of the journey, driving history, 

the amount of sleep the driver had before the trip, the 

weather condition, and uniformity of the road are reported 

to be involved in drowsiness related crashes. According 

to the reports, the most involved vehicles in such fatigue-

based accidents are passenger vehicles and, then, trucks.  

Most of the accidents happened from 6 a.m. to noon. The 

average age of the drivers involved in the accident was 

34, ranging from 21 to 57. The longest driving history 

was 29 years, the minimum was less than one year, and 

the average was eight years [2].  

Alerting the driver before the onset of drowsiness is one 

way to prevent crashes caused by drowsy driving. Car 

industries have spent significant resources on developing 

new devices to detect and preferably predict driver 

drowsiness. More than 28 car companies (including Nissan, 

Renault, Tesla, Ford, etc.) have offered different drowsiness 

detection systems as assistive deriver technologies. These 

built-in solutions measure a variety of vehicle-based indices 

to detect fatigue, micro-sleep, or the onset of drowsiness. 

In addition to the car companies, several independent 

businesses have developed numerous drowsiness detection 

systems not integrated into the vehicle that work regardless 

of the vehicle’s brand and model. Progress in developing 

drowsiness detection systems indicates that this market 

will grow and become profitable. A variety of methods 

have been investigated to detect drivers’ drowsiness so 

far. The most famous ones can be classified as follows. 

• Vehicle-Based Measures 

• lateral or longitudinal position deviation 

• time to lane crossing 

• steering wheel movement/angle pattern 

• acceleration pedal pressure pattern 

• Behavioral Measures 

• percentage of eyelid closure over the pupil  

• eyeblink duration and frequency 

• head movement patterns 

• eye fixation pattern 

• face temperature 

• driving performance measures (other than 

lateral position) 

• physiological Measures 

• Electroencephalography (EEG) 

• Electrocardiography (ECG) 

• Electromyography (EMG) 

• Electrooculography (EOG) 

• Photoplethysmography (PPG) 

• Electrodermal Response or conductivity (EDR) 

Vehicle-based assistive technologies utilize different 

sensors, such as steering-angle sensors, Global Positioning 

System (GPS), ultrasonic sensors, or pedal pressure sensors, 

embedded in the cars to reflect the driver’s performance. 

The unobtrusiveness and contactless nature of these methods 

are considered as their positive points. However, these 

technologies suffer from the following issues [3, 4]. 

•  Sometimes driver fatigue does not affect his performance. 

•  Some interfering factors, such as strong wind, rutted 

road surfaces, and paying attention to road-side signs may 

increase false alarm in these available technologies. 

•  Most of these technologies need to be designed based 

on the characteristics of each car brand. Therefore, it is 

not easy to adapt them to other cars. 

•  Since they are primarily embedded in the cars, and 

their installation and maintenance procedures depend on 

the cars' features and the companies' regulations, it is not 

easy to estimate the expenses. 

•  Technologies developed based on these techniques 

cannot easily be used in other duties such as shift working, 

night-time security guarding, pilotage, etc. 
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Behavioral measures that are usually extracted from 

the facial behavior of the driver include eye closure, 

eye blinking, head pose, yawning, face components’ 

temperature, etc. These measures are monitored through 

a camera, and the driver is alerted if any of these indices 

indicate symptoms of drowsiness. Non-intrusiveness is 

the main advantage of behavior-based detection devices. 

However, these methods have the following disadvantages. 

•  There are concerns over being monitored in one’s 

private space. 

•  The screen size for monitoring is limited, and, in some 

applications, it is hard to find an appropriate place to mount 

the device; hence it is almost not applicable with non-desk 

jobs. 

•  Wearing glasses may disrupt the accurate performance 

of the device [5]. 

•  An actual moving vehicle introduces new challenges 

such as variable lighting, changing background, and 

vibrations that can degrade the performance of camera-

based detection systems [6]. 

•  The Cost-inefficiency of thermal cameras for drowsiness 

detection makes them impractical despite their robustness 

to lighting conditions and good accuracies [7–10]. 

Most of the available commercial tools work based on 

vehicle-based or behavioral indices. Although such indices 

have benefits, the mentioned drawbacks and the fact that 

they detect drowsiness rather than predicting it are not 

negligible. Physiological indices have been introduced 

to overcome the mentioned issue (i.e., the inability to 

predict the onset of drowsiness). Among all methods of 

drowsiness detection, EEG shows the strongest relation 

with drowsiness and is capable of detecting drowsiness 

promptly with high accuracy [4, 11, 12]. EEG is widely 

considered a reliable measure for drowsiness, fatigue, 

and performance evaluation [11–16]. 

The wireless devices that have been developed in recent 

years, some of which are available in the [8] market as 

consumer-grade headsets, are considered as a solution 

to deal with the relatively intrusive nature of measuring 

EEG signals [17]. Developing less intrusive methods for 

data collection has undoubtedly a positive effect on their 

real-life applicability. Processing and monitoring algorithms 

are performed in various ways, such as using smartphones 

[17]. While there are concerns about the quality of data 

acquired by the consumer-grade headsets, comparative 

studies on the performance of wireless and clinical devices 

demonstrate the acceptable performance of these new 

wireless technologies [3, 18–22]. Another approach to 

improving the accuracy of wireless recording in drowsiness 

detection is combining their outcomes with other biological 

signals, behavioral or vehicle-based measures. The suggested 

combination can be easily implemented since many wireless 

devices provide auxiliary sensors for recording other 

signals (e.g., PPG, gyroscope signal, heart rate variation, 

etc.) besides EEG. 

In this paper, we review the studies that investigated 

the capabilities of EEG biomarkers in drowsiness detection. 

Data acquisition, preprocessing, feature extraction, and 

classification are the main stages of a typical EEG-based 

drowsiness detection system. After defining drowsiness 

and its causes and effects in section 1.1, we discuss the 

essential stages in drowsiness detection studies in section 

2, materials and methods. Section 2.1 provides details 

about the data acquisition stage, including the general 

considerations in conducting a drowsiness detection study, 

typical devices used for recording, and the common 

labeling methods. Since drowsiness detection is a real-time 

procedure, fast and simple techniques are usually used 

in the preprocessing stage, described in section 2.2. After 

preprocessing, the cleaned data is given to the feature 

extraction stage. More commonly investigated features in 

drowsiness detection systems are introduced in section 2.3. 

Extracted features are fed to a classifier to distinguish 

drowsy periods from the alert ones. An assortment of 

classifiers used in drowsiness detection studies is introduced 

in section 2.4. Results of studies with an EEG-based 

approach are presented and discussed in section 3, followed 

by a conclusion in section 4. 

1.1. Drowsiness-Definition, Causes, and Effects  

Drowsiness is defined as a transition of the 

psychophysiological state from alertness towards sleep, 

causing degradation in concentration, thereby increasing 

the response time [23]. Fatigue, and in a few cases, sleepiness 

and tiredness, are used in drowsiness detection literature, 

as well. Physiologically, fatigue and drowsiness are not the 

same, but the desire to sleep or need to rest may accompany 

both of them.  

The main brain structures that have an essential role in 

controlling wakefulness/sleep are the posterior hypothalamus, 

anterior hypothalamus, the upper part of the midbrain, 

reticular formation of the brainstem, and hypothalamus 

(Figure 1). It is shown that interactions between the thalamus 

and the cortex are involved in sleep [24, 25]. 
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A variety of factors, such as heavy meals during the day, 

lack of enough sleep, mental states, taking medications, 

or special medical conditions, can cause drowsiness. 

However, several other influential factors should be taken 

into account while referring to the causes of drowsiness. 

For instance, age shows a considerable impact on the 

progression of drowsiness. Due to their ongoing cognitive 

and physical development, young adults have higher sleep 

needs and get drowsy faster [26, 27]. Gender is another 

factor influencing drowsiness development. A faster increase 

of homeostatic pressure to sleep in women necessitates 

more sleep demands [28]. Another factor that can bias the 

results of studies on drowsiness is smoking addiction. 

Although evidence shows poor sleep patterns in cigarette 

smokers, studies on driver drowsiness showed that smokers 

were more alert. This result can be justified by attributing 

the lower levels of drowsiness to the smoker’s anxiety 

and impulsiveness that increases because they were not 

allowed to smoke during the driving experiments [26]. 

Body Mass Index (BMI) also affects alertness; however, 

there are contradicting reports on the correlation of BMI 

and drowsiness progression [26].  

Regardless of what causes drowsiness and what 

influencing factors are involved, feeling drowsy can lead 

to a state of reduced alertness, usually accompanied by 

performance degradation and psychophysiological changes, 

which may result in loss of vigilance or clear thinking [3]. 

Such changes and declines in cognitive functions and 

behavioral patterns are due to the alternations in our neural 

systems’ activities that can be measured and quantified 

using bio-potential recording systems and mathematical 

processing described in the following sections. 

2. Materials and Methods 

Figure 2 shows the common methodology used in EEG-

based drowsiness detection studies. Each block of this 

system is described in the following subsections in detail. 

2.1.  Data Acquisition 

2.1.1.  Considerations in a Drowsiness Experiment 

Driver drowsiness experiments are usually conducted 

in driving simulators due to the risks of drowsy driving on 

real roads. Driving on real roads is prone to fatal accidents 

and can be disturbed by unexpected events. Furthermore, 

in real road drowsiness tests, another person must be 

present in the vehicle in the front seat to control the car 

in a drowsy situation. The second person's presence would 

affect the progression of drowsiness, yet the chances of 

crashes from human errors are still not negligible. On the 

other hand, driving simulators will provide a safe and 

controllable condition to repeat a specific driving scenario 

without any risks. Recent studies have shown that the 

signs and progression of sleepiness over time are generally 

similar in the simulator and on the real road, though the 

drowsiness level is higher in the simulator [29]. 

Driving simulators are designed to mimic the conditions 

in real driving. They are usually equipped with a steering 

wheel, gear, pedals, and a display to present the driving 

environment. Some of the simulators also include a real 

cockpit. The desired driving course can be constructed 

with virtual reality software packages. Driving in the alert 

condition is usually performed in metropolitan areas which 

are crowded and are full of stimuli and distractors such as 

cars and people. On the contrary, data recordings in drowsy 

conditions need to take place in monotonous roads with 

very few or no stimuli on the road.  

Another factor that influences the driving performance 

is circadian rhythm, i.e., the process which controls the 

sleep/wake alternation during the day [30]. Pack and 

colleagues [31] found that most of the drowsiness-related 

car accidents occurred in the peaks of sleep need, namely 

during early mornings (2-6 a.m.) and in the early afternoons 

(2-4 p.m.) post-lunch. 

 

Figure 1. Main brain regions involved in wakefulness  
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Studies have used different strategies in order to induce 

fatigue and drowsiness. A list of common strategies is 

provided below. 

•  Subjects should not have an adequate amount of sleep 

during the night before the test [32]. 

•  They should avoid anti-fatigue and caffeinated drinks 

for a certain time before the test [32]. 

•  Experiments are conducted during a time of the day 

when subjects usually feel drowsy, such as dawn, early 

afternoons and after lunch, and midnights [15, 33]. 

•  Test durations are set to be lengthy, varying from 

30 minutes to more than 2 hours [15, 33]. 

•  Monotonous driving roads are chosen with little or 

no stimuli on the road [34]. 

2.1.2.  EEG Recording Systems 

EEG recording systems are generally categorized into 

conventional clinical recording systems and wireless portable 

EEG headsets. The former records signals using wired 

electrodes, and most of them have direct-wired connections 

to a computer or a processor for data storage and analysis. 

These systems are commonly used in clinics by trained 

and qualified operators who know how to identify and 

prepare electrode sites, inject an appropriate amount of 

conductive gel, fixate electrodes position, be cautious about 

electrode impedance, and other issues that affect clean 

data recording. The cumbersome nature of conventional 

clinical EEG recording systems, their high cost, their 

relatively long installation time, and the need for an expert 

operator make considerable barriers to their usage in 

different applications, such as Brain-Computer Interface 

(BCI) and assistive technologies. The developments in 

wireless technologies and advancements in conductive 

materials led to considerable progress in manufacturing 

EEG headsets. A variety of headset models have been 

produced so far for different purposes. Muse, NeuroSky, 

and EMOTIV are three consumer-grade EEG headsets 

commonly used in drowsiness detection research and market. 

Table 1 shows some characteristics of these three EEG 

headsets.  

Although using wireless technology diminished the 

mentioned issues with conventional clinical recording 

systems, researchers were concerned about the quality 

of the signals recorded by the EEG headsets. Several 

studies have been conducted to show the validity of these 

devices [18, 19, 35–38]. These comparative studies revealed 

that although the signal quality of these headsets is not as 

good as clinical devices, their performance is acceptable 

and even promising in some applications, especially for 

drowsiness detection purposes. 

Table 1. Characteristics of EEG headsets commonly used in drowsiness detection research and market 

Name Features Electrodes Platforms 
Other 

provided 

signals 

NeuroSky 

MindWave 

Weight: 90g / Sampling frequency: 512 

Hz / Battery life: 8 hours 

Passive-dry / Num. of Channels: 1 / 

Electrode site: FP1 / Ref: ear 

Windows (XP/7/8/10), Mac 

(OSX 10.8 or later), iOS (iOS 

8 or later), and Android 

(Android 2.3 or later) 

--- 

Muse 2 
Weight: 51g / Sampling frequency: (2021 

version) 256 Hz / Battery life: 5 hours 

Gold electrode / Active-dry / Num. of 

Channels: 4 / Electrode sites: AF7, 

AF8, TP9, and TP10 / Ref: Fpz 

Muse App Compatibility 

(iOS 11.2 or later, Android 

5.0 or later) 

PPG, SpO2, 

Accelerometer, 

Gyroscope 

signals 

Muse S 
Weight: 41g / Sampling frequency: (2021 

version) 256 Hz / Battery life: 10 hours 

Silver electrode / Active-dry / Num. of 

Channels: 4 / Electrode sites: AF7, 

AF8, TP9, and TP10 / Ref: Fpz 

Muse App Compatibility 

(iOS 11.2 or later, Android 

5.0 or later) 

PPG, SpO2, 

Accelerometer, 

Gyroscope 

signals 

EMOTIV 

Insight 5 

Lightweight / Sampling frequency: 128 Hz 

/ Battery life: up to 8 hours using USB 

receiver, up to 4 hours using Bluetooth 

Low Energy 

Hydrophilic semi-dry polymer 

electrode / Num. of Channels: 5 

Electrode sites: AF3, AF4, T7, T8, Pz / 

Ref: CMS/DRL references on the left 

mastoid process 

Windows 7,8,10; macOS 10.11 

or above; iOS 9 or later; iPhone 

5+, iPod Touch 6, iPad 3+, iPad 

mini; Android: 4.43+ 

(excluding 5.0); a device with 

Bluetooth Low Energy 

Accelerometer, 

Gyroscope, and 

Magnetometer 

signals 

EMOTIV 

EPOC x 

Weight: 170g / Sampling frequency: 2048 

internally down-sampled to 128 Hz or 256 

Hz (user configurable) / Battery life:  up to 

12 hours using USB receiver, up to 6 

hours using Bluetooth Low Energy 

Saline soaked felt pads / Num. of 

Channels: 14 / Electrode sites: AF3, F7, 

F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, 

F8, AF4 / Ref:  CMS/DRL references at 

P3/P4; left/right mastoid process 

Not mentioned 

Accelerometer, 

Gyroscope, and 

Magnetometer 

signals 
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2.1.3.  Labeling Methods 

We review seven main labeling methods, in two 

categories of subjective and objective, which were used 

in the previous drowsiness detection studies in this section. 

Labeling refers to the process of tagging short sequences 

of the data acquired from the participants based on the 

level of alertness or drowsiness to prepare them for later 

analysis, such as classification or statistical tests. 

•  Subjective Methods  

In subjective methods, the levels of drowsiness are 

evaluated by the driver’s self-declaration or the scores 

given by trained raters. 

Karolinska’s Sleepiness Scale (KSS), a nine-point 

scale, is among the most common evaluation scales. In this 

method, participants determine which scale best describes 

their psycho-physical state in the last 5 minutes. Reporting 

moments are announced by displaying a text on the 

screenor by playing a sound. The inter-report periods are 

usually set to be relatively large (around 5 minutes each) 

since the process of asking may reduce drowsiness [12]. 

Table 2 describes these levels.  

Stanford Sleepiness Scale (SSS) has been frequently 

used to measure one’s perception of how drowsy one feels. 

It is quite similar to KSS in being a subjective and momentary 

assessment, but it includes seven levels. Table 3 shows 

the descriptors for each level [39].  

Borg’s CR10 scale is usually jointly used with Lee’s 

subjective fatigue scale in drowsiness detection studies. 

The Borg CR10 Scale is a general method for quantifying 

most perceptions and experiences, including pain and 

perceived exertion. Compared to other subjective methods 

of drowsiness labeling, this is not a recommended fatigue 

assessment method since it is not specifically designed 

for drowsiness and fatigue assessment. Table 4 features 

Borg’s Scale [40].  

Observer Rating of Drowsiness (ORD) is another 

subjective method. In this method, videos of the driver’s 

face and body are captured, and then facial tone, behavior, 

and mannerism of the driver (such as slow eye-lid closure, 

staring, yawning, stretching, head drooping, etc.) are 

assessed by three observers. Using the ORD behavior 

and mannerism checklist presented in [41], the observers 

keep track of what they observe and score the driver’s 

drowsiness level from 1 (Not drowsy) to 5 (extremely 

drowsy) on a regular basis of each 60 seconds or so [42]. 

Table 5 describes these progressive drowsiness levels. 

A checklist of facial descriptors can also be found in [41].  

Table 2. Karolinska’s Sleepiness Scale [12] 

Ratings Verbal descriptions 

1 Extremely alert 

2 Very alert 

3 Alert 

4 Rather alert 

5 Neither alert nor sleepy 

6 Some signs of sleepiness 

7 Sleepy, but no effort to keep awake 

8 Sleepy, some effort to keep awake 

9 
Very sleepy, great effort to keep 

awake, fighting sleep 

 

 

Table 3. Stanford Sleepiness Scale [39] 

Ratings Degrees of sleepiness 

1 
Feeling active, vital, alert, or wide 

awake 

2 
Functioning at high levels, but not at 

peak; able to concentrate 

3 
Awake, but relaxed; responsive but not 

fully alert 

4 Somewhat foggy, let down 

5 
Foggy; losing interest in remaining 

awake; slowed down 

6 
Sleepy, woozy, fighting sleep, prefer to 

lie down 

7 
No longer fighting sleep, sleep onset 

soon; having dream-like thoughts 

x Asleep 

 

Table 4. Borg’s CR10 Scale [40] 

Ratings Descriptions 

0 Nothing at all 

0.5 Extremely weak (just noticeable) 

1 Very weak 

2 Weak (light) 

3 Moderate 

4 Somewhat strong 

5 Strong (heavy) 

6  

7 Very strong 

8  

9  

10 Extremely strong (almost max) 

•  Maximal 
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•  Objective Methods 

Objective labeling methods refer to the techniques that 

use physiological or behavioral signals or indices recorded 

from an individual under the study. They are typically 

independent of the self-interpretations of individuals.  

Reaction time In this method, the driver is labeled as 

drowsy or awake based on his/her performance (reaction 

time) in fulfilling a requested task. There are different 

ways to check one’s performance based on his reaction 

time in drowsiness-related research: 1) At predetermined 

and fixed intervals, the vehicle deviates from the cruising 

lane, and the driver must steer the car back to the center 

of the lane. 2) based on an audio or video announcement, 

the driver must press a key. The reaction time is defined 

as the time between stimulus onset (deviation or 

announcement) and response onset. Previous studies have 

shown that baseline EEG activity is correlated with changes 

in reaction time [43, 44]. However, determining a suitable 

threshold for distinguishing between alert and  drowsy 

states is challenging and not well defined in the previous 

studies. 

The advantages of this method over other subjective 

labeling methods are its strict rules for scoring and voting 

among the opinions of three trained raters, leading to more 

reliable results. 

Facial features Driver’s drowsiness/fatigue level can 

be evaluated by analyzing typical visual cues on a human 

face. These visual signs include Eye blinking frequency, 

percentage of eyelid closure, yawning frequency, facial 

expressions, and head movements [45]. Percentage of 

eyelid closure over the pupil, “PERCLOS,” is introduced 

as a relevant indicator of drowsiness in several studies 

[46]. PERCLOS is assessed as the percentage of time the 

eyes are 80% closed [42]. Eye-related features can be 

detected through EOG signals or eye-tracking devices. 

Normal cameras and infrared illuminators are also used 

to detect facial features. However, the performance of 

the cameras is limited by the lighting condition, posture, 

and skin color. However, they often have a limited field 

of view to capture eye blinks [6]. 

EEG-based In the EEG-based labeling method, a 

feature from time or frequency domain EEG is selected, 

and based on the changes of this index, the EEG signal is 

annotated. An example of such annotation can be found 

in [47], where they have made use of alpha-theta waves 

to mark drowsy and alert periods. In another method, 

at least two well-trained technicians manually score the 

EEG signals according to the 1968 Rechtschaffen and 

Kales manual [48]. Then, the sequences of disagreement 

between the technicians are excluded from the evaluation. 

Table 5. progressive drowsiness levels [41] 

Drowsiness 

Levels 
Description 

Not Drowsy 

A driver who is not drowsy while driving will exhibit behaviors such that the appearance of alertness will be 

present. For example, normal facial tone, normal fast eye blinks, and short, ordinary glances may be observed. 

Occasional body movements and gestures may occur. 

Slightly 

Drowsy 

A driver who is slightly drowsy while driving may not look as sharp or alert as a driver who is not drowsy. Glances 

may be a little longer and eye blinks may not be as fast. Nevertheless, the driver is still sufficiently alert to be able to drive. 

Moderately 

Drowsy 

As a driver becomes moderately drowsy, various behaviors may be exhibited. These behaviors, called mannerisms, 

may include rubbing the face or eyes, scratching, facial contortions, and moving restlessly in the seat, among others. 

These actions can be thought of as countermeasures to drowsiness. They occur during the intermediate stages 

of drowsiness. Not all individuals exhibit mannerisms during intermediate stages. Some individuals appear more 

subdued, they may have slower closures, their facial tone may decrease, they may have a glassy-eyed appearance, 

and they may stare at a fixed position. 

Very Drowsy 

As a driver becomes very drowsy, eyelid closures of 2 to 3 seconds or longer usually occur. This is often 

accompanied by a rolling upward or sideways movement of the eyes themselves. The individual may also appear 

not to be focusing the eyes properly or may exhibit a cross-eyed (lack of proper vergence) look. Facial tone will 

probably have decreased. Very drowsy drivers may also exhibit a lack of apparent activity, and there may be 

largely isolated (or punctuating) movements, such as providing a large correction to steering or reorienting the 

head from a leaning or tilted position. 

Extremely 

Drowsy 

Drivers who are extremely drowsy are falling asleep and usually exhibit prolonged eyelid closures (4 seconds 

or more) and similar prolonged periods of lack of activity. There may be large punctuated movements as they 

transition in and out of intervals of dozing. 
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Manual inspection of continuous brain signals is an arduous 

and difficult work even for trained neurologists since EEG 

signals are easily contaminated by artifacts, and there are 

significant differences between brain signals of different 

individuals [49]. This labeling method is called ‘manual 

labeling’ in this paper and can be considered a semi-

subjective method. 

2.2.  Preprocessing 

EEG signals recorded during driving suffer from various 

types of unwanted patterns categorized as physiological 

or non-physiological artifacts. The former refers to unwanted 

signals originating from electrical activities of different 

parts of our body. The latter relates to the electromagnetic 

activities of devices and machines in the recording 

environment or electrode movements [50, 51]. EEG signals 

are noise-sensitive in nature, and data recording in specific 

conditions may exacerbate this problem. During driving, 

electrode movement artifacts are more likely to happen 

due to the constant vibrations of the vehicle. Moreover, 

in the case of recording with commercial headsets, the 

electrodes are more prone to noise. These artifacts are 

difficult to remove, especially in drowsiness detection 

applications where fast and real-time processing is highly 

important. Followings are some information on physiological 

and non-physiological artifacts and the methods for their 

elimination in the preprocessing phase. 

Eye movements and blink artifacts are one of the main 

sources of EEG artifacts. The amplitude of EOG varies 

from 100 to 3500 μV, and its frequency is between 0.1 to 

20 Hz. Blink artifacts, which are impossible or very difficult 

to avoid during data recording, are associated with the 

conductance changes due to the eyelid and cornea contact. 

The duration of each eye blink is about 200 to 400 ms, 

and its magnitude is more than ten times that of cortical 

signals. The majority of eye movements and blink artifacts 

mostly appear on channels that are close to the eye. However, 

due to their large amplitude, sometimes both ocular artifacts 

can even reach the occipital electrodes.  

As shown in Figure 3, since ocular artifacts are 

considerably larger than the cortical activities, thresholding 

is used to detect and remove them. That is, epochs of EEG 

signals containing amplitudes outside a specified range 

(e.g., between ±70 μV) are excluded in the preprocessing 

stage. Another popular method used for ocular artifacts 

removal is Independent Component Analysis (ICA) [52, 

53]. Using ICA, the signals are decomposed into their 

components. Considering some visual inspection criteria, 

such as ICs’ shape in the time domain, frequency of their 

repetition in the time-trial map, and ICs’ power distribution 

over prefrontal regions in topoplots (Figure 4), ocular 

components are recognized and removed.  

Muscle artifacts are generated due to the head, neck, 

or chin movements, wrinkling of the brow, teeth clenching, 

talking or chewing. The frequency range of these artifacts 

is between 20 to 300 Hz that overlaps entirely with the 

high-frequency bands of EEG signal, especially the gamma 

band. The amplitude of muscle artifacts can increase up 

to about 100 μV [55]. Figure 5 shows a sample of EEG 

signals contaminated by muscle artifacts. Manual rejection 

of epochs contaminated by muscle artifacts is one possible 

method to eliminate this type of artifact. Since muscle 

artifacts have no specific source, their detection through 

ICA needs more precise inspection compared to the ocular 

artifacts. 

 

Figure 3. A sample of ocular artifacts (adapted from [54]) 
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Figure 4. A sample of eye blink artifacts 
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An increase in the power of the higher frequency bands 

or a distinct activity in the power distribution of ICs over 

the brain's temporal regions is usually considered a possible 

sign of muscle artifacts. These two methods (i.e., visual 

inspection and ICA) are not fully automated, which limits 

their usage for real-time applications. Low-pass filtering 

is a common method to reduce the effect of muscle artifacts, 

especially in higher frequencies [56]. Since muscle artifacts 

are not thoroughly removed by applying low-pass filters, 

further studies need to be done to develop better methods 

for muscle artifact rejections.  

The advantage of ICA over the thresholding method 

is that less data will be lost. However, due to the time-

consuming nature of ICA and the need for visual inspection 

to accurately detect ocular components, this method needs 

more improvements before it can be used in real-time and 

fully automatic processes, such as drowsiness detection. 

Glossokinetic Potential (GKP) is another possible 

artifact of EEG signals generated from tongue movements. 

The tongue tip has a negative charge with respect to its base. 

The movement of the tongue alters the steady charge and 

produces GKP. Talking, swallowing food and drink, or 

even saliva or sucking alter the steady charge and produce 

GKP. This artifact can be observed spatially from frontal 

to occipital channels. Its temporal shape is similar to the 

ocular artifacts but is less steep, as shown in Figure 6. 

The frequency of GKPs is variable, but it is dominantly 

in the delta band [57]. Similar to ocular artifacts, visual 

inspection or thresholding are common methods used 

for GKP artifacts removal.  

ECG artifact produced by cardiac muscle depolarization. 

The common methods for the rejection of this artifact are 

ICA, adaptive filtering, and ensemble averaging that are 

time-consuming or need an additional ECG channel as a 

reference [58]. The detection of this artifact is one of the 

current fields of study since such methods are not applicable 

in real-time applications. In addition to physiological 

/biological artifacts, EEG signals can be contaminated by 

other potential sources of interferences such as the ones 

discussed below.  

Electrode artifacts are commonly observed by the 

alteration of electrode impedance. It is suggested to keep 

the electrodes’ impedance less than about 5 KΩ during 

recording [59]. However, drying of the conductive gel 

under the electrode or displacement of the electrodes due 

to the individuals’ movement can increase or change this 

impedance and create artifacts on EEG signals (Figure 7). 

Dry electrodes, which are commonly used in wireless 

 

Figure 5. A sample of muscle artifacts related to chewing  

(adapted from [54]) 
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Figure 6. A sample of Glossokinetic potential  (adapted 

from [54]) 

 

 

Figure 7. Three kinds of electrodes artifacts [50] 
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headsets, are especially prone to electrode displacement. 

The creation of a salt bridge and short connection between 

electrodes due to the excessive use of conductive gels or 

sweating are other possible causes of electrode artifacts. 

Power line noise at 50 or 60 Hz, depending on local 

standards, is the most common non-biological noise that 

interferes with EEG signals recorded via devices connected 

to the source of high voltage power by wire. Suppression 

of this noise is done using a notch filter or ICA. Although 

detection and suppression of this noise are more 

straightforward than other potential noises and artifacts, 

its removal may affect the gamma-band energy. When 

gamma is one of the target bands, electromagnetic shields 

or wireless recording systems can be used to reduce the 

interference of power-line or other electromagnetic noises 

using.  

Since drowsiness detection systems need real-time 

processing and timely feedback plays a vital role in these 

systems, preprocessing steps must be performed as fast 

as possible. Therefore, in most of the proposed systems, 

preprocessing steps are limited to notch filtering (power 

line noise removal), band-pass filtering (drift removal and 

muscle artifacts suppression), and thresholding (ocular 

artifacts removal).  

Although such fast-preprocessing steps are appropriate 

for real-time drowsiness detection, these steps cannot 

remove or suppress the effects of all potential noises and 

artifacts completely. Incomplete noise removal can lead 

to incorrect drowsiness detection and increase the false 

positive or false negative rates. Therefore, one open field 

for future research is developing novel fast and accurate 

preprocessing methods.  

One step after noise and artifact removal is storing 

the cleaned signals as short windows called epochs. These 

epochs are separately used for further processing and feature 

extraction steps. Since switching between wakefulness 

and drowsiness does not occur very fast, the duration of 

the epochs is usually set between 1 to 30 seconds. Figure 8 

demonstrates a summary of common preprocessing steps 

in drowsiness detection systems.  

2.3.  Feature Extraction 

A review of the drowsiness detection studies reveals 

that some features have been used more frequently than 

others. Statistical features, spectral features, especially the 

power of different frequency bands, power ratios, and 

entropy measures, have been widely used in previous 

studies [12, 13, 60–63]. In the following, these common 

features are introduced. 

•  Statistical features 

Statistical features are among the least complicated 

features that can be extracted from EEG signals. 

Nevertheless, they have proved to be quite discriminative 

in drowsiness detection studies, especially when they are 

fused with other features [60, 63]. These statistical features 

include mean, standard deviation, variance, median, 

skewness, kurtosis, etc., that can be applied to the time 

or frequency domain characteristics such as amplitude. 

•  Spectral features 

Power Spectral Density (PSD) shows the distribution 

of the signal power over frequency [64]. Spectral features 

are the most commonly used feature in drowsiness detection 

studies. Previous studies have shown that the power of 

the EEG wavebands changes based on subjects' alertness 

level, and this relative change in the power of brain waves 

can be used in performance analysis and drowsiness 

detection [65, 66]. A review of the PSD estimation methods 

is presented below. 

Non-parametric methods Non-parametric PSD 

estimation techniques are based on the computation of 

the Discrete Fourier Transformation (DFT). Conventional 

periodogram, Welch, Bartlett, Blackman, and Tukey 

methods are well-known non-parametric PSD estimation 

methods [67]. The advantage of non-parametric methods 

over parametric ones is mainly their robustness [68], 

meaning that the estimated PSDs do not contain spurious 

frequency peaks. Further, there is no need for any previous 

knowledge or assumption on the data distribution as opposed 

to the parametric methods. The key limitation with the 

non-parametric method is the windowing length; choosing 

an appropriate data length that satisfies the stationarity 

 

Figure 8. A block diagram of common preprocessing steps in drowsiness detection systems 
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condition and brings about enough frequency domain 

resolution remains a challenging compromise in this 

method.  Once the PSDs are calculated, one might seek 

to define more features from them by summing the PSD 

values over frequency bins to yield energy estimates of 

different frequency bands or computing statistical features 

such as maximum, minimum, mean, etc. Alternatively, it 

may also be of interest to compute spectral entropy, which 

measures the uniformity of signal energy distribution in 

the frequency domain [69]. 

Parametric methods In contrast to non-parametric 

methods, parametric methods do not use data windowing. 

Instead, they rely on parametric models of a time series, 

such as Autoregressive (AR), Moving Average (MA), and 

autoregressive moving average (ARMA) models. Therefore, 

to estimate the PSD of a time series, one must build an 

appropriate model that best reflects the behavior of the 

system that produces the time series. If the model parameters 

and the order are estimated correctly, parametric methods 

allow for accurate calculation of the PSDs for relatively 

short signal lengths [50]. However, in the case of a wrong 

model, spurious frequency peaks emerge in the PSD. 

•  Entropy features 

Entropy is a statistical measure that evaluates the 

uncertainty of a signal. Shannon first introduced it in 

information theory to measure the uncertainty and 

randomness in a time series [70]. Since EEG is a complex 

and nonlinear signal [71–73], entropy has extensively 

been used to analyze it. Several types of entropies, such 

as log energy entropy, spectral entropy, approximate 

entropy, sample entropy, fuzzy entropy, etc., are devised 

for EEG analysis. As reported in [74, 75], normal state 

and fatigue state brain signals show significantly different 

uncertainty degrees. Previous studies have used a single 

measure or a combination of different entropies in their 

research. Wang et al. tested two common entropy measures: 

Spectral Entropy (SEn) and Wavelet Entropy (WEn). They 

showed that the wavelet entropy outperforms spectral 

entropy in its recognition rate of drowsiness [76]. 

Approximate Entropy (ApEn), which is developed to 

quantify regularity and complexity, has also shown 

potential for various applications in physiological signals 

analysis [77]. Low values of ApEn reflect that the system 

contains repeated patterns and is predictive, while high 

values mean that more irregularity and randomness exist 

within the data [78]. However, due to the time-consuming 

calculation of this feature, it is more suitable for shorter-

length data segments [62]. Sample entropy (SampEn), 

a statistic proposed by Richman and colleagues, is an 

alternative regularity statistics to ApEn [79]. Sample entropy 

is less sensitive to the changes in the data length [78], 

but similar to ApEnt; it is computationally time-consuming.  

Fuzzy entropy is similar to sample entropy, but instead 

of Heaviside Function, it uses a fuzzy membership function 

[80]. Fusion of multiple entropies, i.e., spectral entropy, 

approximate entropy, sample entropy, and fuzzy entropy, 

is applied in Min et al.'s work; and they have reported 

these features as significant factors in inferring the fatigue 

state of the driver [62]. In another study, Min et al. have 

demonstrated that wavelet log energy surpasses other entropy 

indices in fatigue state recognition rate and computational 

efficacy [81]. 

•  Wavelet-based features 

Wavelet decomposition is a well-established mathematical 

theory that takes into account the non-stationary nature 

of the EEG signals [49, 60, 82, 83]. A Discrete Wavelet 

Transform (DWT) decomposes a given signal into several 

sets, where each set is a time series of coefficients describing 

the time evolution of the signal in the corresponding 

frequency band [84]. Subasi et al. investigated the effect 

of mother wavelet on drowsy/alert classification accuracy 

by examining a set of mother wavelets including db2, 

db4, db8, sym10, and Coiflet of order 4 (coif4) and 

reported that Daubechies wavelet, especially db2, offer 

better efficiency in EEG signals [60]. Statistical features 

of wavelet coefficients, power of each sub-band, and 

power ratios derived from the coefficients are the most 

used wavelet-related features in previous drowsiness 

detection studies [49, 60, 82]. 

2.3.1.  Auxiliary Signals 

Utilizing other biological signals, referred to as auxiliary 

signals, can improve detection accuracy in EEG-based 

systems. This can be especially beneficial when EEG 

acquisition is performed with few channels. Luckily, some 

of the consumer-grade EEG headsets provide these signals 

along with the recording of brain signals. Below is a list 

of common biological signals used for drowsiness detection 

and the common features extracted from them. 

ECG is a non-invasive signal that indicates the electrical 

activity of the heart. Heart Rate (HR) and Heart Rate 

Variability (HRV), which are derived from ECG, are 

commonly used in drowsiness detection studies. HR is 

considered as the number of heart beats in the ECG signal, 

and HRV is the variations in the time intervals between 
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each two successive heart beats. HRV is highly resistant 

to noise and is proved to be an indicator of the psychophysical 

state of the driver [85]. Jo et al. investigated the changes 

in the Heart rate while driving in drowsy conditions and 

showed that the HR significantly decreased compared to 

normal driving conditions [86]. Consistent with previous 

results, Jing et al. showed a negative correlation between 

HR and driving time, meaning HR decreases as fatigue 

increases with driving [87]. HR and HRV can be measured 

using less intrusive sensors attached to the steering wheel 

[88] or worn on the driver’s wrist [89]. However, less 

intrusive sensors produce less accuracy and are more 

prone to movement artifacts [12]. 

 EOG is used by some researchers to identify driver 

drowsiness through eye movements. EOG is an electrical 

signal generated by the polarization of the eyeball and can 

be measured on the skin around the eyes [90]. By taking 

the derivation of horizontal and vertical EOG signals, 

Thumchiachieh has obtained the speed of eyeball 

movements and has proposed a method to distinguish 

drowsiness from alertness [90]. Among all oculomotor 

parameters, blink duration and frequency remain the best 

indicators of drowsiness [91]. It is known that drowsiness 

is accompanied by increased blink frequency and blink 

duration [92]. However, there are considerable inter-

individual differences in blinking frequency. For example, 

Schleicher et al. reported that several subjects began to 

stare during severe sleepiness and showed almost no blinks 

or saccades after an initial increase in blinks [91]. 

 PPG measures the oxygen saturation of blood, producing 

a photo-plethysmograph. Drivers’ fatigue and drowsiness 

are associated with blood oxygen reduction. Some previous 

studies reported a negative correlation between drowsiness 

and blood oxygen level [93, 94]. However, Jing et al. 

reported no obvious trend for oxygen level as the fatigue 

was deepened [88]. Therefore, they claimed that blood 

oxygen saturation could not be used as an independent 

indicator of fatigue, only as an auxiliary indicator to 

determine whether the driver is experiencing fatigue. In 

general, we failed to find any solid evidence in the literature 

on the strong correlation of PPG and drowsiness, which 

could be easily noticed. 

EMG is a non-invasive index of the level of muscle 

activation [95]. In some drowsiness studies, EMG of the 

muscles involved in the gripping of the steering wheel 

is measured to investigate its relation with drowsiness. 

Previous research has indicated a fall in the magnitude 

of the EMG signal as the driver drowsiness level increases 

[96–98]. Frequency domain parameters such as mean 

power, mean and median frequency are other commonly 

used indices for drowsiness detection. 

EDR is a measurement of electrical conductance between 

two points on the skin and is used in some drowsiness 

detection studies [94, 99]. Electrodermal response or 

conductivity (EDR) reflects the activity of the autonomous 

nervous system [100]. Several parameters of the EDR, 

including skin conductance level and the number of 

spontaneous fluctuations, show potential for revealing 

information about the driver state [101]. 

2.4.  Classification 

Classification groups the segments of EEG signal into 

wakeful and drowsy. Extracted EEG features (or EEG 

samples) are fed into a classifier, and the classifier recognizes 

the class (i.e., drowsy or wakeful). Several types of classifiers 

have been used so far for drowsiness detection. Their 

differences are in the structure and the techniques used 

for the input categorization. Generally, classifiers can 

be grouped into shallow and deep models [102, 103]. 

These two types of classifiers and their characteristics 

are described in the following sections. 

2.4.1.  Shallow Models 

Shallow models have simpler architecture compared 

to deep models and therefore impose a less computational 

cost and are more robust to overfitting when the sample 

size is small [102]. Some of the most famous examples 

of shallow models that are used in drowsiness detection 

systems are Linear Discriminant Analysis (LDA), support 

vector machine (SVM), K-Nearest Neighborhood (KNN), 

tree classifiers, fuzzy-classifiers, and Artificial Neural 

Network (ANN).  

LDA is suitable when classes are linearly separable. This 

classifier uses a linear combination of features that can 

make the most distinction between classes. Therefore, it 

is sometimes used as a preprocessing stage in pattern 

recognition for feature dimension reduction [104].   

SVM is the most commonly used classifier in drowsiness 

detection. In this technique, features are fed as inputs, 

and outputs are decision boundaries that make the highest 

separation between classes or space margins around the 

boundaries. These boundaries can be linear or non-linear. 

When the boundaries between classes are not linear, non-

linear kernels (e.g., Gaussian) are used. Computing the 
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best boundaries amounts to minimizing a predefined cost 

function [34, 105].  

 KNN is a non-parametric method. This algorithm 

assumes that the sample points of each class in the feature 

space are close to each other. The first step is calculating 

the distance between the input data and the existing data. 

Then, the input data is classified by a plurality vote of its 

K-nearest neighbors [106].  

 Tree classifier is another non-parametric method that 

uses a series of conditional statements to partition training 

data into subsets. These series shape a hierarchical structure 

consisting of a root node (with no incoming edges), internal 

nodes (one input edge and two or more output edges), 

and directed edges used to split nodes. Each successive 

split adds some complexity to the model. To boost the 

performance of tree-structured classifiers, ensemble 

methods that get votes among several tree classifiers with 

different levels of complexity are suggested. Although 

these classifiers are simple to interpret and can be used 

in ensemble methods, they are not robust against small 

changes in the data [107]. Tree classifiers have been used 

in a few studies on drowsiness detection and are not popular 

in this field. 

Fuzzy-classifiers use predefined rules on continuous or 

categorical features. Experts define these rules based on 

how features alter in different conditions (e.g., by the 

occurrence of drowsiness). Rule-based classifiers have a 

fuzzy inference engine that decides about the label of input 

based on a combination of all rules’ results. In these 

classifiers, there is no specific boundary between classes. 

That is, each input may belong to different classes with 

different levels of probability. The main advantages of 

fuzzy classifiers are 1) suitable for real data where 

boundaries between classes might not be well defined, 2) 

using the existing knowledge and evidence, and 3) the 

principle behind fuzzy-classifiers is close to the 

mechanisms of human decision making [108]. Although 

fuzzy classifiers have significant benefits, their main 

limitations are the requirement for enough knowledge, an 

experienced expert, and an appropriate definition of 

fuzzification/defuzzification functions and inference 

methods.  

Shallow models of ANNs consist of an input and an 

output layer and one or two hidden layers in between. 

Layers are connected via different weights and their 

optimum values are calculated through learning 

mechanisms. These classifiers can deal with classes that are 

both linearly or non-linearly separable. However, 

determining an appropriate structure (i.e., number of 

neurons, number of hidden layers, the activation function of 

neurons) is challenging, and finding optimal weights in the 

training phase is usually computationally intensive [109]. 

2.4.2.  Deep Models 

Unlike shallow ANNs, deep neural networks (DNNs) 

have more than two or three hidden layers, often of various 

types. The key advantage of DNNs is that we do not need 

to extract features from the signals manually since these 

networks learn to extract features while training. Several 

structures of DNNs have been suggested and used for 

drowsiness detection systems. The following items are 

examples of some common types of layers used for filter 

application and feature extraction [47]. 

• Convolutional layers: These layers are mainly used 

for filtering and feature extraction from raw data. The 

convolution operation can be represented by Equation 1. 

Υ𝑖 = 𝑏𝑖 +∑𝑊𝑖𝑛 ∗ 𝑋𝑛
𝑛

 (1) 

In this Equation, the convolution operation is shown by 

*, the feature map extracted by the layer presented by Υ𝑖, bi 

is the bias term, Win is the sub-kernel of the channel, and Xn 

is the input signal. 

•  Batch Normalization layers: These layers are used to 

speed up the learning process by allowing each layer of the 

network to be trained more independently. It normalizes the 

output of the previous layers by subtracting the average and 

dividing it by the standard deviation.  

•  Dropout layer: This layer is used to prevent a model 

from overfitting by inactivating randomly selected neurons 

in the hidden layers at each update of the training phase.  

•  Max-Pooling 1D layer: Max pooling is an operation 

used for dimension reduction by selecting the maximum 

element from the region of the feature map.  

•  Flatten layer: The output of some layers is 

multidimensional that is not suitable for the next steps. 

Flattening layers convert data into a 1-dimensional array for 

using in the next layer.  

•  Dense layers:  Dense layers are simple, fully 

connected ANNs, meaning that each neuron in this layer 

receives input from all neurons of its previous layer and 
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provides one output to the next layer. Dense layers are 

mainly placed in the final classification steps. 

DNNs have been used in different studies on drowsiness 

detection. Although the possibility of using raw EEG signals 

as input is one of the important advantages of DNNs, 

these methods are significantly costly in terms of time and 

implementation. To use them in real applications, such as 

drowsiness detection systems, researchers are trying to 

boost the speed of these methods and attenuate their cost. 

3. Results and Discussion 

In this research, we targeted the studies under the 

category of drowsiness detection, which adopted an EEG-

based approach or its combination with other signals. We 

investigated the selected studies from different aspects, such 

as recording device, number of EEG channels, sampling 

frequency, epoch length, labeling method, number of 

subjects, extracted features, type of classifiers, and accuracy 

of detection. Table 6 shows the general characteristics of 

EEG-based drowsiness detection studies.  

According to the second column of Table 6, a 

considerable number of studies have used EEG headsets 

instead of clinical recording devices. The number of 

channels in consumer-grade headsets is lower than clinical 

devices, Figure 9a, reducing the costs of electrode 

monitoring and maintenance. The accuracy of drowsiness 

detection using consumer-grade headsets is also promising, 

Figure 9b. The line graph in Figure 9c indicates that 

increasing the number of channels does not necessarily 

accompany a significant rise in detection accuracy; 

therefore, EEG headsets are worth being considered as  

Table 6. General characteristics of EEG-based drowsiness detection studies 

Ref. 
Recording 

Device 
No. 

Channels 
Fs 

(Hz) 

Epoch Time 

(EEG) 
Labeling 

Method 
No. of 

Subjects 
Extracted 

Features 
Classifier Accuracy 

[110] Clinical 32 1000 1s KSS 8 Entropy LDA ~90% 

[111] Clinical 13 256 8s SSS Varied Entropy --- --- 

[62] Clinical 32 1000 1s 

ORD, Driver 

performance, 

Lee's subjective 

fatigue scale 

12 Entropy Shallow ANN 98.3% 

[112] --- 1 (Fz) 100 30s --- --- 

Wavelet 

coefficients 

in each sub-

band 

Thresholding 

Precision 

98.65% 

Sensitivity 

84.98% 

[76] Clinical 32 1000 --- 

Lee's subjective 

fatigue scale 

and Borg's 

CR10 scale 

20 Entropy SVM 90.7% 

[33] Clinical 32 500 3s Reaction time 10 PSD SVM 83.3% 

[113] Clinical 32 500 10s ORD 6 --- 
Deep 

networks 
95% 

[114] Clinical 32 500 30s Reaction time 16 PSD --- --- 

[115] Clinical 
2 

(Fp1,Fp2) 
1000 1s 

Lee's subjective 

fatigue scale 

and Borg's 

CR10 scale 

16 Entropy SVM 95.37% 

[116] Clinical 
1  

(Fpz-Cz) 
--- 5s --- 20 

Complexity 

measures 

Ensemble of 

shallow models 

(KNN,SVM, 

Bayes, Fisher) 

94.45% 

[117] Clinical 32 256 10s EOG, EEG 20 PSD SVM 99.3% 

[118] Clinical 40 1000 1s KSS 11 --- 
complex 

network 
~100% 

 

[119] --- --- 200 1s  Manual 20 

 

PSD, 

Entropy 

ANOVA --- 

statistical 
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Ref. 
Recording 

Device 
No. 

Channels 
Fs 

(Hz) 

Epoch Time 

(EEG) 
Labeling 

Method 
No. of 

Subjects 
Extracted 

Features 
Classifier Accuracy 

[119] --- --- 200 1s  Manual 20 
PSD, 

Entropy 
ANOVA --- 

[82] --- 

2 

(Fpz-Cz 

and  

Pz-Oz) 

100 30s --- --- 

statistical 

moments of 

wavelet 

coefficients 

in each sub-

band 

Unsupervised 

K-means 

clustering 

--- 

[120] Clinical 
2  

(Fp1,Fp2) 
1000 

--- 

 

Lee's 

subjective 

fatigue scale 

and Borg's 

CR10 scale 

13 Entropy SVM 85% 

[16] Clinical 
2  

(Fp1, O1) 
200 60s --- 20 PSD 

regression 

model 
92.2% 

[121] --- 32 1000 10s Eye tracker 6 PSD 

KNN, SVM, 

ELM, H-

ELM, PSO-H-

ELM 

83.12% 

[122] Clinical 32 2000 2s 
ORD, EOG, 

SSS 
43 PSD 

Bayesian 

neural 

network 

88.2% 

[85] Clinical 9 256 8s Manual 16 

Wavelet 

coefficients, 

entropy, 

RQA 

ELM-RBF 

ELM-sig 

SVM 

95.6% 

[60] Clinical 8 150 5s Manual 30 

Wavelet 

Coefficients 

statistics in 

each sub-

band 

ANN 93% 

[123] Clinical 16 256 0.5s ECG, EOG 10 --- CNN 92.68% 

[124] Clinical 16 512 2s Reaction time 10 

PSD, 

entropy, 

complexity 

Shallow ANN 83.3% 

[125] Clinical 32 500 30s --- 13 AR model SVM 81.64% 

[126] Clinical 5 512 2s Reaction time 14 PSD SVM, KNN 96.1% 

[43] Clinical 32 250 1s Reaction time 8 PSD CNN 78.39% 

[61] 
Headset 

(Unknown 

brand) 
24 250 10s, 2s Reaction time 10 

PSD, 

Entropy 

SVM, shallow 

ANN 
97.8% 

[127] 
Headset 

(NeuroSky) 1 512 10s KSS 29 
PSD, 

Entropy 
SVM 72.7% 

[44] 
Headset 

(Unknown 

brand) 
3 512 180s --- 15 PSD Thresholding 

Precision 

76.9% 

Sensitivity 

88.7% 

[128] 
Headset 

(Muse) 
7 220 1s --- 23 PSD SVM 87% 

[129] 
Headset 

(Muse) 
4 256 1s --- 1 --- Deep network 95.76% 
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Ref. 
Recording 

Device 
No. 

Channels 
Fs 

(Hz) 

Epoch 

Time 

(EEG) 

Labeling 

Method 
No. of 

Subjects 
Extracted 

Features 
Classifier Accuracy 

[130] 
Headset 

(NeuroSky) 
1 512 --- --- 6 PSD Thresholding 68.11% 

[131] 
Headset 

(NeuroSky) 
1 512 10s, 60s --- 60 

PSD, 

statistical 
Shallow ANN 97.6 % 

[132] 
Headset 

(NeuroSky) 
1 512 --- --- 3 PSD Thresholding 81% 

[133] 
Headset 

(NeuroSky) 
1 512 --- --- 10 PSD SVM 81.9% 

[134] 
Headset 

(EMOTIV) 
14 128 10s --- --- PSD ANOVA --- 

[135] 
Headset 

(EMOTIV) 
14 128 --- --- --- PSD --- --- 

[136] 
Headset 

(Muse) 
4 250 --- --- 28 PSD 

KNN, SVM, 

shallow ANN 
86% 

[137] 
Headset 

(EMOTIV) 
14 128 2s --- 3 Entropy Shallow ANN 98% 

[138] 
Headset 

(EMOTIV) 
14 128 5s KSS 16 PSD SVM 94.4% 

[139] 
Headset 

(EMOTIV) 
14 128 3min KSS 30 

Statistical, 

PSD 
KNN, SVM 96% 

[140] 
Headset 

(EMOTIV) 
14 128 2s --- 50 PSD ANOVA --- 

[141] 
Headset 

(EMOTIV) 
14 128 10s --- --- PSD SVM 70% 

[142] 
Headset 

(EMOTIV) 
14 128 10s --- 18 

PSD, blink 

features 

KNN, shallow 

ANN 
85% 

[143] 
Headset 

(EMOTIV) 
14 128 --- --- 2 PSD Novel classifier 93.75% 

[144] 
Headset 

(EMOTIV) 
14 128 --- --- 5 PSD KNN, SVM 70% 

[145] 
Headset 

(Muse) 
4 256 2s --- 3 PSD SVM, LDA 73.8% 

[146] 
Headset 

(EMOTIV) 
14 128 --- 

Self-reported 

fatigue level 
15 

PSD, 

entropy 
--- --- 

[147] 
Headset 

(EMOTIV) 
14 128 --- --- 13 PSD KNN 96.8% 

[148] 
Headset 

(Muse) 
4 256 --- --- 48 Entropy 

Naive Bayes, 

shallow ANN, 

SVM, KNN, 

Decision Tree 

77.5% 

[47] 
Headset 

(EMOTIV) 
14 128 3.75s EEG 14 --- Deep network 90.42% 

[149] 
Headset 

(EMOTIV 

Insight) 

5 128 --- KSS 25 PSD --- --- 

[150] 
Headset 

(Muse) 
4 256 2s 

Novel 

proposed 

algorithm 

29 PSD 

negative-

unlabeled learning 

algorithm 

93.77% 
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a substitute for clinical devices in drowsiness detection 

applications. Among several available consumer-grade 

EEG headsets, Neurosky, Muse, and Emotiv are three 

brands that have been frequently used in studies on EEG-

based drowsiness detection. The percentage of usage of 

these three brands is shown in Figure 10. This figure 

shows that the prevalence of EMOTIV headsets is 

relatively twice as much as Muse or Neurosky headsets. 

However, by a more detailed look at the studies, which 

used Emotiv Headsets, it becomes clear that the 14-

channel EMOTIV Headset, which is called EMOTIV 

EPOC, has been much more prevalent in comparison to 

the other headsets of this brand. This prevalence could 

be because this type of headset provides more flexibility in 

channels’ location in contrast to the other headsets. 

Moreover, the greater number of electrodes can lead to 

higher detection accuracy since it covers more brain 

regions and presents more comprehensive data. It should 

also be noted that although this headset can bring about 

better detection accuracy, a considerable increase in the 

set-up time makes it improper for real-life applications. 

However, the Muse family (i.e., Muse 2 and Muse S), 

EMOTIV Insight Headset, and NuroSky MindWave 

Headset do not suffer from such an issue and show 

potentials for real driving scenarios.  

Figure 11 shows that the highest average accuracy 

belongs to EMOTIV. However, the highest maximum 

detection accuracy, 98.8%, was achieved by the Muse 

headset. Again, it should be noted that the accuracy gained 

by EMOTIV headsets is impacted by the high number 

of electrodes (14 channels) in EMOTIV EPOC headset, 

while in Muse and NueroSky headsets, only 4 and 1 

electrodes are available, respectively. 

Ref. 
Recording 

Device 
No. 

Channels 
Fs 

(Hz) 

Epoch Time 

(EEG) 
Labeling 

Method 
No. of 

Subjects 
Extracted 

Features 
Classifier Accuracy 

[151] 
Headset 

(Muse) 
4 256 1s KSS 50 

PSD, blink 

features 
SVM 92% 

[152] 
Headset 

(NeuroSky) 
1 512 2s --- 5 PSD --- --- 

[153] 
Headset 

(NeuroSky) 1 512 60s --- 1 

PSD, 

Statistical 

measures 

Thresholding --- 

RQA: recurrence quantification analysis; RBF: radial basis function; ELM: extreme learning machine; H-ELM: hierarchical 

extreme learning machine, PSO-H-ELM: hierarchical extreme learning machine algorithm with particle swarm optimization; sig: 

sigmoid activation function. 

 

 

Figure 9. A comparison between headsets and clinical devices in terms of (a) detection accuracy and (b)number of 

channels (according to Table 6); (c) shows the detection accuracy versus the number of channels (red diamonds and 

error bars represent the average and the standard devotion of detection accuracies reported in Table 6, respectively) 

(c)

(b)(a)
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As mentioned before, labeling EEG signals with 

drowsy/wakeful states is one of the essential parts of 

drowsiness detection systems design. Figure 12 shows 

how frequently different labeling methods were used in 

the studies reported in Table 6. Among all methods, KSS 

is used more frequently. Although KSS is a subjective 

method and therefore affected by individuals’ feelings 

and interpretations, ease of implementation and the 

momentary nature of its assessment have made it popular. 

After KSS, reaction time, EEG-based labeling, and ORD 

were the most popular labeling methods. Labeling with 

reaction time necessitates designing a specific driving 

scenario with repeated events, which requires the driver’s 

on-time reaction.  

These events may cause distraction and discomfort 

to the driver. Moreover, there is no general rule to determine 

the threshold for separating the reaction times during 

drowsiness and alertness, making reaction time a less 

reliable method for labeling.  

There are two main approaches to EEG-based labeling. 

In the first approach, trained practitioners score segments 

of EEG signals by visual inspection. This labeling method 

is an arduous and challenging task because of the individual 

differences in the brain signals of different people and 

the presence of large-amplitude artifacts that can contaminate 

the signals and change their appearance. In the second 

approach, an index like the power of a specific frequency 

band or a power ratio is targeted, and the epochs are labeled 

according to a threshold for that index. Determining a 

suitable index and threshold is a challenging task and 

requires previous knowledge about the effects of drowsiness 

on the signals. Moreover, in EEG-based systems, the 

classification is done by the features extracted from EEG 

signals; and it does not have logical justification to utilize 

a single metric both for labeling and classification. Despite 

the moderate popularity of ORD, it is a reliable labeling 

technique due to its strict rules for determining the 

 
Figure 10. Percentage of frequency of use of three popular 

headsets in previous studies (according to Table 6) 
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Figure 11. A comparison of performance among three EEG headsets (according to Table 6) 
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Figure 12. Distribution of usage frequency of labeling methods used in different studies on EEG-based 

drowsiness detection (according to Table 6) 
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drowsiness level. The scoring can be done offline by 

checking the videos recorded from the face of the driver. 

The main challenge of this method is the need for three 

observers to watch and score the driving session. 

Figure 13 demonstrates that most of the surveyed studies 

used spectral features rather than other features such 

as entropy. It is repeatedly reported that drowsiness is 

associated with an increase in low-frequency bands power, 

particularly theta and alpha bands, and a decrease in high-

frequency bands, especially beta band; hence these measures 

are widely used for drowsiness detection [13, 154–156]. 

Four ratios of (α+θ)/β, α/β, (α+θ)/(α+β), and θ/β were 

also frequently used for drowsiness detection. Among 

these ratios, (α+θ)/β is proved to be highly useful [156–

158]. Its high values indicate an increase in low-frequency 

and a decrease in high-frequency bands power.  

Although there is no consensus on the most effective 

brain regions for drowsiness detection, previous studies 

reported the association of some brain frequency bands 

with some specific regions of the brain during the drowsy 

state. For instance, the alpha band is more associated with 

the posterior brain regions [158, 159]. For detailed 

information on the relation of frequency bands, brain 

regions, and drowsiness, refer to [13]. Since drowsiness 

detection is a real-time procedure, features are not 

extracted from the whole length data. Instead, features 

are extracted from short time windows of EEG signals.  

Figure 14 shows epoch size variations in different studies 

on EEG-based drowsiness detection. Small windows have 

the advantage of being closer to real-time detection, while 

longer windows can help to estimate the features more 

accurately and reduce the false alarm rate. According 

to Figure 14, 1-s, 2-s, and 10-s windows have more 

repeatedly been used in the previous studies.  

Extracted features are then fed into a classifier to 

distinguish between drowsy and alert periods. In practical 

applications, simpler classifiers that are fast and easy to 

implement are superior to other classifiers. Figure 15 shows 

the popularity of shallow classifiers (e.g., SVM, KNN, and 

shallow ANN), which are simple and easy to implement, 

 
Figure 15. Distribution of classification methods used in different studies on EEG-based drowsiness detection 

(according to Table 6) 

0

5

10

15

20

25

LDA Shallow

ANN

SVM Deep

network

KNN Thresholding

N
u

m
b

er
s 

o
f 

S
tu

d
ie

s

Classifiers

 
Figure 14. Epoch size variations in different studies on EEG-based drowsiness detection (according to Table 6) 
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Figure 13. Distribution of feature extraction methods used 

in different studies on EEG-based drowsiness detection 

(according to Table 6) 
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versus deep models. Among shallow classifiers, SVM 

is more popular than the other ones.  

Changing the recording device, features’ type and 

quantity, or the classifier’s type are some options for 

increasing the accuracy of drowsiness detection. Although 

changing the recording device from headsets to clinical 

devices can increase the accuracy of drowsiness detection, 

it increases the cumbersomeness of EEG recording and 

prevents the practical usage of the designed system. 

Moreover, increasing the number of EEG-based features, 

using more complex features/classifiers can increase the 

computational complexity and the cost of time and may 

not be practical. As mentioned before, another feasible 

and practical option for boosting the accuracy of EEG-

based detection systems is to combine them with other 

biological signals to make use of their discriminative 

characteristic. Table 7 shows the results of several studies 

on such hybrid systems. According to this Table, EOG 

and ECG are among the most popular biological signals 

used for this intention. The highest accuracy, 99.1%, is 

obtained by a combination of EEG- and EOG-based indices.  

Table 7. Results of hybrid-based drowsiness detection studies 

Published Work Signals No. Channels Accuracy 

[160] EEG and EMG 2-ch EEG, 2-ch EMG 99% 

[63] EEG and ECG 1-ch EEG, 1-ch ECG 80% 

[161] EEG and Gyroscope 1-ch EEG, 3-ch gyroscope 96.24% 

[34] EEG, ECG, and vehicle measures 16-ch EEG, 1-ch ECG 82.4% 

[66] EEG and EOG 30-ch EEG/EOG 
--- 

(ANOVA) 

[155] EEG, EOG, EMG and EDA 
8-ch EEG, 2-ch EDA, 4-ch EOG, 

3-ch EMG 

Precision 

76% 

[162] EEG, ECG 5-ch EEG, 1-c ECG 97.2% 

[163] EEG, EOG 18-ch EEG, 4-ch EOG 
correlation coefficient/ RMSE 

0.85/0.09 

[164] EEG, EOG 6-ch EEG, 4-ch EOG 99.1% 

[165] EEG, EOG, and contextual information 30-ch EEG, 4-ch EOG 93% 

[166] EEG, EOG 19-ch EEG,4-ch EOG 
--- 

(ANOVA) 

[167] EEG, EOG 2-ch EEG, 4-ch EOG 98% 

[32] EEG, EOG 30-ch EEG, 4-ch EOG 97.37% 

[168] EEG, EOG 14-h EEG, 4-ch EOG 94.37% 

[169] EEG, EOG 12-ch EEG, 7-ch EOG 
correlation coefficient / RMSE 

0.8 /0.07 

[170] EEG, EOG 16-ch EEG, 2-ch EOG 
--- 

(t-test) 

[171] EEG, respiration 8-ch EEG, 1-ch respiration 98.6% 

[172] EEG, ECG, EOG 3-ch EEG, 1-ch EOG, 1-ch ECG 97% 

[173] EEG, EOG, ECG, fNIRS 
64-ch EEG, 2-ch EOG, 2-ch ECG, 

1-ch fNIRS 
75.9% 

[174] EEG, EOG, ECG 33-ch EEG/EOG, 2-ch ECG 84.6% 

[151] EEG, Gyroscope 4-ch EEG, 1-ch gyroscope 92% 

[155] EEG, EOG, EMG, EDA 
4-ch EEG/EOG/EMG, 

4-ch EDA 

Precision, Sensitivity, Specificity 

88%, 89%, 96% 
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Although EOG has been quite popular to accompany 

EEG signals for better drowsiness detection, if they are 

recorded by separate electrodes attached to the eyes’ region, 

they can disturb the driver and therefore are inappropriate 

for practical uses. Nonetheless, this signal is also extractable 

from EEG signals, and we can get help from the derived 

eye-related features that can discriminate between alert 

and drowsy states. On the other hand, ECG features 

such as HR and HRV have the potential for being recorded 

non-obtrusively. They can either be achieved through 

wrist bands or by some EEG headsets such as Muse 2 

and Muse S, which provide PPG signals. Motion data 

recorded by gyroscope and accelerometer have also shown 

great potential for drowsiness detection, whether used 

alone [175, 176] or in combination with EEG signals [151, 

161]. Fortunately, these motion signals are provided in 

Muse and EMOTIV Headsets. 

4. Conclusion 

Based on the survey of the previous studies, it can be 

said that there is a tendency to reduce the cumbersomeness 

of EEG-based detection systems. Earlier studies were 

mainly intended to investigate the feasibility of EEG-based 

drowsiness detection using clinical EEG devices. In contrast, 

a significant number of recent studies have used consumer-

grade EEG headsets. Wireless headsets increase the 

applicability of EEG-based systems and have shown 

comparable efficiency in comparison to clinical devices.  

A possible solution to improve EEG-based detection 

accuracy is integrating EEG data with other easily accessible 

physiological signals such as ECG, EOG, PPG, EMG, 

and EDR. Luckily, some of these signals can be recorded 

with the sensors embedded in the commercial EEG headsets. 

Spectral EEG features, the most frequently used features 

in EEG-based drowsiness detection studies, provide better 

interpretability and impose a less computational burden. 

Among the examined classifiers, shallow models, especially 

SVM, outnumbered other types of classifiers and showed 

acceptable detection accuracy. Most studies have approached 

drowsiness detection as a binary classification problem, 

i.e., discriminating two classes of drowsy and wakeful. 

However, the transition from wakefulness to drowsiness 

is a gradual process that can be divided into several levels.  

Detection of these levels necessitates a multi-level 

classification, which allows drowsiness detection in mild 

or earlier stages. To achieve this, we must have distinct 

definitions for each level to tailor the labeling methods 

accordingly.  

In summary, using less intrusive EEG headsets, along 

with the use of features and classifiers, which reduce 

computational complexity, promises practical implementation 

of driver drowsiness detection systems. 
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