
Copyright © 2022 Tehran University of Medical Sciences.  
This work is licensed under a Creative Commons Attribution -NonCommercial 4.0 International 
license (https://creativecommons.org/licenses/by-nc/4.0/). Noncommercial uses of the work 
are permitted, provided the original work is properly cited.  
DOI: https://doi.org/10.18502/fbt.v9i4.10423 

 

 

Frontiers in Biomedical Technologies Vol. 9, No. 4 (Autumn 2022) 297-306 

 

 

 

 

 

Differential Diagnosis among Alzheimer's Disease, Mild Cognitive Impairment, 

and Normal Subjects Using Resting-State fMRI Data Extracted from Multi-

Subject Dictionary Learning Atlas: A Deep Learning-Based Study 

Farzad Alizadeh 1,2, Hassan Homayoun 1, Seyed Amir Hossein Batouli 3, Maryam Noroozian 4, Forough Sodaie 1,2, Hanieh Mobarak 

Salari 1, Anahita Fathi Kazerooini 5, Hamidreza Saligheh Rad 1,2*    

1 Quantitative MR Imaging and Spectroscopy Group, Research Center for Molecular and Cellular Imaging, Tehran University of 

Medical Sciences, Tehran, Iran 

2 Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, 

Iran 

3 Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical 

Sciences, Tehran, Iran 

4 Cognitive Neurology and Neuropsychiatry Division, Department of Psychiatry, Tehran University of Medical Sciences, Tehran, Iran 

5 Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 

*Corresponding Author: Hamidreza Saligheh Rad 
Email: hamid.saligheh@gmail.com 

Received: 25 October 2021 / Accepted: 25 December 2021  

Abstract 

Purpose: A powerful imaging method for evaluating brain patches is resting-state functional Magnetic Resonance 

(rs-fMRI) Imaging, in which the subject is at rest. Artificial Neural Networks (ANN) are one of the several Alzheimer's 

Disease (AD) analysis and diagnosis methods used in this study. We investigate ANNs' ability to diagnose AD using 

rs-fMRI data. 

Materials and Methods: The acquisition of functional and structural magnetic resonance imaging was applied for 

15 AD, 17 mild cognitive impairment, and ten normal healthy participants. Time series of blood oxygen level-

dependent were extracted from the multi-subject dictionary learning brain atlas after pre-processing. This study 

develops a one-dimensional Convolutional Neural Network (CNN) using extracted signals of the functional atlas 

for differential diagnosis of AD. 

Results: Applying the proposed method to rs-fMRI signals for classifying three classes of Alzheimer’s patients 

resulted in overall accuracy, F1-score, and precision of 0.685, 0.663, and 0.681, respectively. Using 39 regions 

in the brain and proposing a quite simple network than most of the available deep learning-based methods are the 

main advantages of this model.  

Conclusion: rs-fMRI signal recognition based on a functional atlas with the application of a deep neural network 

has a pattern recognition capability that can make a differential diagnosis with an acceptable level of accuracy 

and precision. Therefore, deep neural networks can be considered as a tool for the early diagnosis of AD. 

Keywords: Alzheimer’s Disease; Resting-State Functional Magnetic Resonance Imaging; Blood-Oxygen-Level-

Dependent Signal; Artificial Neural Network; Deep Learning. 
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1. Introduction  

Alzheimer's Disease (AD) is a very burdensome disease, 

the burden of which is increasing more dramatically than 

any other disease in recent years. The number of people 

with AD is expected to be more than 70 million worldwide 

[1]. Since there is no single straightforward test for AD 

detection, various approaches and methods should be 

applied to help make a diagnosis. These approaches include 

obtaining a medical and family history, psychiatric history, 

and history of cognitive and behavioral changes, blood 

tests, and brain imaging [2]. Despite the various approaches, 

there are still caveats to distinguishing between these 

diagnoses. 

Neuroimaging techniques such as Electroencephalogram 

(EEG) [3], Single Photon Emission Computed Tomography 

(SPECT) [4], Positron Emission Tomography (PET) [5], 

Magnetoencephalography (MEG) [6], structural Magnetic 

Resonance Imaging (sMRI) [7], and Functional Magnetic 

Resonance Imaging (fMRI) [8] can be applied to diagnose 

AD. These techniques enable detailed examination of 

pathophysiologic and neurodegenerative processes in 

AD [9]. MRI is a non-invasive method and provides high 

spatial resolution. So, it is widely used in diagnosing AD. 

Brain functions and hemodynamic response investigations 

have proved helpful in diagnosing neurodegenerative 

disorders [10]. Resting-State Functional Magnetic 

Resonance Imaging (rs-fMRI) has been under investigation 

in several different approaches in AD. The amplitude of 

low-frequency fluctuation [11], the fractional amplitude 

of low-frequency fluctuations [12], regional homogeneity 

[13], independent component analysis [14], and functional 

connectivity [15] are some of the important approaches 

which can be used in the healthy or diseased brain. 

Various artificial intelligence-based techniques are 

available for classification tasks. The Support Vector 

Machine  (SVM) in the machine learning method is the 

most popularly applied to AD research [16]. Deep Learning 

(DL) is a subset of artificial intelligence, and it was born 

with the emergence of powerful graphics processing units 

[17]. Several DL architectures such as Convolutional Neural 

Networks (CNN), Recurrent Neural Networks (RNN), 

Autoencoders (AE), and Deep Belief Network (DBN) 

can classify a variety of disorders [18]. Studies using DL 

to classify AD have used a range of data, including sMRI, 

rs-fMRI, Diffusion Tensor Images (DTI), PET data, and 

genomics data [19]. 

Many algorithms based on the structural or functional 

brain changes can detect AD or Mild Cognitive Impairment 

(MCI). They vary from simple volumetric measures or a 

complex mathematical description of the shape difference 

in Regions of Interest (ROIs) [20] to voxel-level analysis 

and modeling [21]. Several pieces of review research have 

explored the ability of DL which applied rs-fMRI to 

classify neurological disorders [22, 23, 24]. In [25], a 

combination of rs-fMRI and score of mini-mental 

examination for 331 participants was employed to build 

an ensemble of algorithms for AD classification. The 

significance of this research is the selection of an 

appropriate brain atlas that provides results nearly two 

times superior to the chance level while using a simple 

artificial neural network. 

2. Materials and Methods  

2.1 . Participants 

Fifteen diagnosed AD subjects, seventeen diagnosed 

MCI subjects, and ten Normal Control (NC) subjects 

participated in this study. They were 52 to 90 years of age 

in each group. All subjects were screened and excluded 

if they had dementia with Lewy bodies, Pick, and 

Vascular dementia. Moreover, those with diabetes, cancer, 

hypertension, severe Anemia, Parkinson's, and other severe 

chronic medical disorders were excluded. Moreover, 

subjects with intellectual disability, a history of substance 

abuse, or severe head trauma were excluded. Written 

informed consent was obtained. Table 1 presents the 

demographics of our dataset. An expert cognitive 

neurologist diagnosed the participants as AD, MCI, or 

NC based on the mini-mental state exam and structured 

clinical interview of the national institute of neurological 

and communicative disorders and Alzheimer’s disease 

and related disorders association criteria. Participants had 

acquired in Roozbeh hospital (Tehran) and their imaging 

data in the national brain-mapping laboratory (Tehran) 

from 2018 to 2021. Tehran university of medical sciences 

gave the ethical code of IR.TUMS.MEDICINE.REC.1399.675 

for this research. 

Table 1. dataset demographic: Age-Gender distribution of 

participants in this study 

Diagnosis Male/Female Age (Standard deviation) 

AD 5/10 78.86 (7.72) 

MCI 3/14 71.31 (7.79) 

NC 5/5 67.60 (4.56) 
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2.2 . Structural Image Acquisition 

All the participants were scanned with a Siemens 

MAGNETOM Prisma 3.0 Tesla scanner. The following 

parameters were applied during a Magnetization Prepared 

Rapid Gradient Echo (MPRAGE) sequence: Repetition 

Time (TR)/ Echo time (TE)/ Inversion Time (TI) = 1840/ 

3.55/ 800 milliseconds, flip angle = 7°, the Field Of View 

(FOV) = 220 × 220 millimeters, slices per slab = 176, 

echo spacing = 8.4 milliseconds, voxel size = 0.9 × 0.9 × 0.9 

millimeters, multi-slice mode = sequential, bandwidth = 

190 Hertz per pixel. 

2.3 . Functional Image Acquisition 

The following parameters were applied during the 

resting-state image acquisitions, which were collected with 

single-shot full k-space Echo-Planar Imaging (EPI) with 

TR = 3000 milliseconds, TE = 30 milliseconds, slice 

thickness = 3 millimeters, voxel size = 2.8×2.8×3.0 

millimeters, number of slices = 45. All subjects were 

supine during the acquisition process and instructed to 

keep their eyes open, stare at the fixation cross, and not 

think of a specific matter. 

2.4 . Pre-Processing 

Image pre-processing was carried out with the Oxford 

FMRIB Software Library (FSL) version 5.0 [26]. Firstly, 

intra-cranial regions of MPRAGE MRI scans were 

extracted with the FSL Brain Extraction Tool (BET). 

Figure 1 shows the output of BET for a given case. The 

FSL Linear Registration Tool (FLIRT) was performed an 

affine registration with a standard parameter configuration.  

The first volume of the rs-fMRI data of the same 

subject co-registered to anatomical image counterpart 

through the boundary-based registration algorithm. 

Finally, the full 3D registrations with MNI152 standard 

space were applied. In Figure 2, sagittal, coronal, and 

axial views of a sample of each class are shown.  

Three rotational and three translational estimation 

measures were calculated. Moreover, the estimation of 

absolute and the relative head motion was calculated. 

These estimations are presented in Figure 3. As the head 

motion has a substantial effect on functional brain studies 

[27], we have checked subjects head motion after correction 

by FSL MCFLIRT, and since there was no subject with 

absolute head motion more than 3 millimeters or relative  

head motion more than 1.5 millimeters in any of the 

x, y or z-direction, no one excluded. 

 

Figure 1. Intra-cranial regions of MPRAGE MRI scan 

of a 71 years old male AD patient extracted with the 

BET 
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Figure 2. Three views of the three samples, each of 

them belonging to a specific class in our dataset (AD, 

MCI, or NC) 

 

Figure 3. Head motion correction estimation: a) mean 

displacement (millimeters). b) mean rotation (radians) 

c) mean translation (millimeters) 
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2.5 . Brain Regions of Interest 

This study examines Multi-Subject Dictionary Learning 

(MSDL) atlas to segment the brain's spontaneous activity. 

This atlas segments the brain into 39 parcels. The 

parcellation is based on learning simultaneously latent 

spatial maps and the corresponding brain activity time 

series of 20 healthy subjects scanned twice in a resting-

state [28]. Figure 4 provides the segmented ROIs in cut 

coordination of (2, -1, 20) within the MSDL atlas. 

2.6 . Signal Augmentation 

In the case of small data sets such as medical images, 

the overfitting problem is expected. This issue can be 

resolved by increasing the sample size. We divided our 

Blood Oxygen Level Dependent (BOLD) time series 

into shorter time series utilizing the sliding window 

technique. In this scenario, a time series with a length 

of 100 breaks down into 10 time series with 30. 

2.7 . Deep Neural Network 

High-performance computers lead to the emergence 

of models with multiple levels of abstraction and millions 

of compute nodes, which allows for characterization with 

a high degree of accuracy [29]. These models are collectively 

called DL methodologies [30]. CNN [31], AE [32], and 

DBNs [33] are the most common DL models for brain 

image studies. DL is used for brain image analysis in 

several applications, including neurodegenerative disease 

diagnosis such as AD [34]. 

The deeper an Artificial Neural Network (ANN) is, 

the more abstract features are achievable. Nevertheless, 

when the available data is limited, deepening the network 

does not guarantee better performance. Thus, the suitable 

number of hidden layers determination is crucial. There 

is an input layer and three sequential hidden layers in our 

one-Dimensional Convolution Neural network (1D 

CNN); each consists of a convolutional layer followed by 

rectified linear unit activation. The output layer 

corresponds to the number of classes (Table 2).  

2.8 . Reproducibility 

The training process is initialized with random weights 

so that the results may be different for a given model 

on the same dataset. In order to gain a reliable accuracy 

measure, we repeated the train-test procedure ten times, 

and the result of this calculation plus their average are 

presented in the result section. 

2.9 . Validation Scheme 

The validation data set has an essential role in the 

validation of ANNs' performance. So, it should be selected 

appropriately. The most reliable selection of validation 

data set in the case of rare medical data is one-case-leave-

out validation. It means the training process is not included 

any of the test data. Some previous studies had achieved 

a false high amount of accuracy because they had ignored 

this vital selection. Cross-validation is the most common 

technique to compensate lack of labeled data. We repeated 

the train-test process 42 times. 

 

Figure 4. The MSDL atlas was applied to segment the 

spontaneous brain activity in this study 

Table 2. Details of the 1D CNN architecture are presented in the present paper 

Layer Feature map Stride Kernel Size 

Input Layer Input 39   

idden Layers 

Convolution 8 1 3 

Rectified Linear Unit 8 1 3 

Convolution 16 1 3 

Rectified Linear Unit 15 1 3 

Convolution 32 1 3 

Rectified Linear Unit 32 1 3 

Global Average Pooling 32   

Output Layer Softmax 3   
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3. Results  

In this section, the obtained results are presented based 

on the validation scheme discussed in the previous section. 

Ten-repeated calculated accuracy and its average are 

reported in Figure 5.  

In order to evaluate the effectiveness of the proposed 

model, different evaluation indicators were applied. It 

includes the accuracy, F1-score, precision, specificity, and 

sensitivity. These metrics are elicited from the confusion 

matrix, which is represented in Table 3.  

These measures are calculated based on Equations 

1 to 5 [35]. In the case of AD versus MCI, True 

Positive (TP) and True Negative (TN) are the numbers 

of cases that are correctly identified as MCI and AD, 

respectively. False Positive (FP) and False Negative 

(FN) are the numbers of subjects that are incorrectly 

identified as MCI and AD, respectively. In the case of 

AD versus NC, TP and TN are the numbers of cases that 

are correctly identified as NC and AD, respectively. FP 

and FN are the numbers of subjects that are incorrectly 

identified as NC and AD, respectively. In the case of 

MCI versus NC, TP and TN are the numbers of cases 

that are correctly identified as NC and MCI, 

respectively. FP and FN are the numbers of subjects that 

are incorrectly identified as NC and MCI, 

respectively. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (4) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5) 

The macro, micro, and weighted averaging of F1-score 

and precision calculation result are provided in Table 4. 

Specificity and sensitivity criteria are calculated in 

a binary scheme, and they are presented in Table 5.  

4. Discussion 

AD is a degenerative disease in various symptoms 

and stages, from invisible brain changes to changes that 

affect memory and ultimately physical impairment. Several 

different approaches and methods are employed to diagnose 

AD because there is no one simple test to do that.  

On the one hand, the radio frequency nature of MRI 

makes it intrinsically non-invasive; and on the other hand, 

it provides images with higher spatial resolution than 

other modalities such as PET, SPECT, and EEG. So, it 

could be the best option among all imaging modalities 

to diagnose neurodegenerative diseases like AD. 

It seems that employing additional data such as age, 

sex, and apolipoprotein E information to the rs-fMRI 

can elevate the results; in [36], they applied these data 

 

Figure 5. Results: accuracy scores of 10 repetitions and 

its average 

Table 3. Confusion matrix of employed 1D CNN model 

Confusion Matrix 
Predicted Labels 

AD MCI NC 

True Labels 

AD 12 1 2 

MCI 6 11 0 

NC 2 3 5 

 

Table 4. F1-score and precision calculated in macro, 

micro, and weighted averaging scheme 

 F1_score Precision 

Macro Averaging 0.654 0.683 

Micro Averaging 0.667 0.667 

Weighted Averaging 0.663 0.681 

 

Table 5. Results for specificity and sensitivity 

 Specificity Sensitivity 

AD V.s MCI 0.923 0.647 

AD V.s NC 0.857 0.714 

MCI V.s NC 1 0.625 
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beside rs-fMRI and achieved sensitivity and specificity 

of 94% and 96% utilizing an AE network, respectively.  

Employing a single slice of the 3D or 4D data as its 

original label would be unreliable. In other words, for 

example, a single slice of structural data of an AD patient 

should not be considered as an AD-labeled image. Some 

studies ignore this and achieve high accuracy with the 

abovementioned 2D images when shuffled for train/test 

procedures. Although sliced structural data may contain 

spatial information, in the case of rs-fMRI data, slicing 

means ignoring the time dimension since they are inherently 

time series. The high accuracies of 96.86%, 97.92%, 

97.63%, 91.85%, and 97.5% that have been acquired 

in [37], [38], [39], [40], and [41] indicate that the training 

data includes images of adjacent slices of the test set. 

One of the main characteristics of the DL methodology 

is the elimination of feature selection steps, which is 

common in ML. Accuracy of 86% in [42] is attained when 

they extracted the features with information gain and 

ReliefF methods. In [43], the rs-fMRI connectivity matrix 

was constructed, using the optimal features extracted from 

the graph measures resulted in an accuracy of 88.4% 

for the 3-group classification. Also, the binary classification 

of AD vs. others, MCI vs. others, and NC vs. others resulted 

in 97.5%, 72.0%, and 87.3%, respectively. In [8], 

discriminant correlation analysis and sequential feature 

collection methods were used for feature selection, and 

an accuracy of 67% was obtained. Multi‐voxel pattern 

analysis (MVPA) is a statistical method applied for AD 

classification. In [44], the accuracy of 81.9% was achieved 

through the MVPA method. Table 6 illustrates the methods 

and results of studies on AD diagnosis.  

MR imaging can be used to detect brain AD-caused 

alterations in the diseased brain with structural or functional 

images. Since the BOLD signals reflect the cerebral 

metabolic rate of oxygen consumption, it could take a 

role as a searchlight to find brain regions' metabolic rate 

alterations. Some studies suggest that high accuracy is 

achievable when sMRI data is used in a DL network 

[45, 46, 47]. Results of this research and others’ [48, 49] 

proved that using resting-state imaging has also achieved 

significant outcomes. The accuracy metric of similar studies 

in which structural or functional MRI data were used in 

a Deep Learning (DL) method for AD classification is 

presented in Table 7. 

Our proposed model's Accuracy to the Chance Level 

ratio (ACC/CL) is more than other mentioned studies where 

rs-fMRI data is applied. The accuracy to the chance level 

ratio of other studies based on rs-fMRI and sMRI is 

demonstrated in Figure 6. The confusion matrix showed 

that the model could not accurately diagnose MCI Vs. 

AD since it predicted 6 MCI cases as AD among all 

17 MCIs. 

There were forty-two cases in three classes of the 

disease in our study, which is the smallest sample size 

compared to others. It should be considered that the other 

studies brought to this comparison which employed rs-

fMRI, are two-classes classification problems, but in our 

case, it is a three-classes problem with an accuracy chance 

 

Figure 6. The accuracy to the chance level ratio for similar studies 
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level of 0.33. We calculate each previous study's ACC/CL 

to compare a two-class problem with a three-class problem. 

It is represented in the last column of Table 7. 

Using 39 regions in the brain and providing a simple 

network architecture are the main advantages of the proposed 

method. Moreover, the dictionary learning-based brain 

Table 6. Other studies’ input, methods and results 

Ref. Input Data Sample size Method Results 

[36] 
age, sex, genes, and 

apolipoprotein E + rs-fMRI 

MCI: 91 

NC: 79 
Feature extraction & AE 

Accuracy: not reported 

Sensitivity: 94% 

Specificity: 96% 

[37] rs-fMRI (2D slices) 
AD: 28 

NC: 15 
2D CNN AD vs NC accuracy :96.86% 

[42] 
numerical and categorical data 

of MRI, PET, genetic data 

CN:617, 

MCI:886, 

Dementia: 348 

2D CNN 

Accuracy: 86% 

Sensitivity: 87% 

Specificity: 97% 

[38] rs-fMRI (2D slices) 

AD: 25 

EMCI: 25 

LMCI: 25 

MCI: 13 

NC: 25 

2D CNN 

Multi-class:97.92% 

AD vs others: 94.97% 

EMCI vs others: 91.8% 

LMCI vs others: 90.50% 

NC vs others: 91.73% 

SMC vs others: 100% 

[43] Rs-fMRI connectivity matrix 

AD: 45 

MCI: 89 

NC: 34 

ML (Network 

based statistics) 

Multi-class: 88.4 %. 

AD vs others: 97.5% 

MCI vs others: 72.0% 

NC vs others: 87.3% 

[39] rs-fMRI (2D slices) 

AD: 29 

EMCI: 46 

LMCI: 39 

NC: 55 

SMC: 25 

2D CNN 

6-group acc:  97.63% 

AD vs others: 94.97% 

EMCI vs others: 95.64% 

LMCI vs others: 95.89% 

NC vs others: 98.34% 

SMC vs others: 94.55% 

[40] MRI (2D slices) 

AD: 300 

MCI: 300 

NC: 300 

2D CNN 

3-group accuracy: 91.85% 

AD vs MCI: 93.89% 

MCI vs NC: 91.67% 

AD vs NC: 98.33 % 

Average Sen: 96.26% 

Average Specificity:92.96% 

[41] 

MRI (2D slices) 

& 

rs-fMRI (2D slices) 

rs-fMRI: 

AD: 52 

MCI: 131 

NC:  92 

MRI: 

AD: 211 

MCI: 774 

NC: 91 

2D CNN Multi-class accuracy: 97.5% 

[8] 
Combination of rs-fMRI and 

sMRI 

AD: 34 

MCI-C: 25 

MCI-NC: 69 

NC: 49 

ML (SVM) 3-group acc: Acc: 67% 

[42] 
frequency distribution‐based 

index of FC in default mode 

network 

AD: 26 

MCI: 19 

NC: 20 

MVPA 

AD vs MCI in ADNI data set 

accuracy: 81.9% 

AD vs MCI for their data set 

accuracy: 43.1%. 
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atlas is proved to be considered a standard map in functional 

brain studies. 

5. Conclusion 

We proposed a 1D CNN model for AD classification, 

which is fed by rs-fMRI BOLD signals. Results proved 

that it could be helpful for the early detection of this 

burdensome disorder. We have used a functional atlas to 

extract the desired data. In addition, there is no need for 

feature extraction and feature selection in our proposed 

model, which are essential in machine learning-based 

classification methods. The performance of our proposed 

1D CNN is much more than the chance level; this means 

that the employed CNN model is learnable with BOLD 

signals of AD.  

Extracting the desired signals from other brain regions 

may lead to getting the premier results. So, other atlases 

should be examined. Having a small sample of data was 

the main limitation of this study. The algorithm would 

achieve superior results by further externally validating 

data from various institutions on a large scale. 
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