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Abstract 

Purpose: Brain-Computer Interface (BCI) Speller systems help people with mobility impairments improve their 

cognitive and physical abilities. Steady-State Visual Evoked Potential (SSVEP) signals have been used to build high-

speed BCI speller systems. SSVEP signals are a subtype of Visual Evoked Potential (VEP), a form of co-

frequency, and the harmonics response elicited by a specific frequency stimulus. Noise and artifacts are critical issues 

for target detection in SSVEP-based BCI systems. 

Materials and Methods: Thus, it is essential to provide target detection techniques that operate well in the presence of 

noises. One solution for overcoming the noise impact is to employ approaches that automatically extract the appropriate 

features for target detection from the training data. Deep Convolutional Neural Network (DCNN) was utilized in 

this study to automatically extract features from SSVEP data in noisy conditions. Moreover, the BETA database, 

which contains SSVEP data from 70 individuals collected outside of the electromagnetic shielding room, was used. In 

this regard, a suitable DCNN structure for target stimulus frequency identification was first designed. The network 

was pre-trained with part of the data from the BETA database. Finally, at the single-subject level, this pre-trained 

network was retrained and evaluated. 

Results: The results showed that after retraining, the accuracy and Information Transfer Rate (ITR) increased (p-value 

< 0.01) for all participants. 

Conclusion:.The enhancement in accuracy and ITR are 25.72% and 43.10 bpm, respectively. 

Keywords: Brain Computer Interface Speller; Steady State Visual Evoked Potentials; Deep Convolutional Neural 

Network; Electroencephalogram. 
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1. Introduction  

Brain-Computer Interface (BCI) speller based on Steady-

State Visual Evoked Potentials (SSVEP) is a subtype of 

BCI spellers used for rehabilitation and assisting people 

with mobility impairments [1, 2]. In SSVEP-based BCI 

speller systems, a series of flickering visual stimuli at 

specific frequencies are shown to users, and the resultant 

evoked SSVEP is detected to determine the user's 

command [3-6]. 

One of the challenges in SSVEP research is to reduce 

the destructive effect of noise and artifacts. There are 

several reasons for the appearance of noise and artifacts 

in SSVEP signals (e.g., participants' movement, electrode 

displacement, poor electrode connection, blinking, eye 

movement, and Electrocardiography (ECG) and 

Electromyography  )EMG ( effect) [7]. In addition, signal 

recording environments are often contaminated by the 

effects of high-current cables, Wi-Fi, wireless signals, and 

other electrical equipment [8]. Therefore, there is a need 

for methods that provide good results in the mentioned 

environments. 

There are several methods for identifying the target 

frequency in SSVEP signals. For example, the Canonical 

Correlation Analysis (CCA) [9], the Filter Bank 

Canonical Correlation Analysis (FBCCA) [10], the 

Task-Related Component Analysis (TRCA) [11] and the 

Canonical Correlation Analysis of Task Related 

Components (CCAoTRC) [12] can be mentioned. 

These methods are traditional hand-crafted feature 

extraction methods [13]. Also, Deep Convolutional 

Neural Networks (DCNNs) are used for target detection 

in BCI-Speller systems [13, 14]. It should be noted that 

using the DCNNs has surpassed traditional hand-crafted 

feature extraction methods because the feature 

extraction process is done automatically in deep layers 

of the network [15]. Automatic feature extraction is an 

important ability in networks. Podmore et al., for 

example, introduced a DCNN called PodNet to decode 

high-class SSVEP-based BCI systems (40 targets). This 

network consists of 5 subunits called Pods which were 

designed in the same way. Details of PodNet implementation 

are provided in the Materials and Methods section. Podmore 

et al. used the benchmark database in their research. The 

results showed that the accuracy and  Information Transfer 

Rate  )ITR ( in this method are 77% and 101 bpm for a 

2-second window length [16]. Guney et al. also introduced 

a Deep Neural Network (DNN) in their research to improve 

ITR in multi-class classifications [17]. The proposed 

network structure contained convolutional, fully connected, 

Rectified Linear Unit (RELU), and drop-out layers. They 

used the benchmark and BETA databases to evaluate 

their method. The results showed that considering 0.4 

seconds of stimulation, the ITR for the benchmark and 

BETA databases was 265.23 bpm and 196.59 bpm, 

respectively. Safari et al. developed a DCNN with single-

channel Electroencephalogram  )EEG ( as input [18]. There 

are Convolution, Batch Normalization, Average Pooling, 

Drop Out, fully connected and softmax layers in the 

network structure. This study [18] showed that the average 

accuracy and ITR were 74.30% and 57.51 bpm, 

respectively. Also, channel O1 had the best performance 

among other channels. 

Despite the benefits that come along with DCNNs, the 

network's performance for detecting stimulus frequency 

decreases as noise and artifacts increase [16]. Therefore, 

DCNNs need to be improved for use in noisy data. This 

study aims to develop a deep learning-based methodology 

for identifying target frequency in SSVEP-based BCI 

spellers when the data is acquired in the real world 

(outside the laboratory condition). To accomplish this 

goal, DCNN's capability, i.e., automatic feature 

extraction has been used. The structure of PodNet [16] 

has been taken as the basic structure of this research 

and the BETA database [19] is used as the data. This 

research provides a strategy to make the PodNet 

network more resistant when data is recorded outside 

the laboratory, where it is typically contaminated by 

ambient noise. 

2. Materials and Methods 

2.1 . Database 

The BETA database containing EEG signals from 70 

participants (42 males, age: 9 to 64 years old) was used 

[19]. This database is collected outside the laboratory 

and without any electromagnetic shield. The BETA database 

contains real-world data properties due to its out-of-

laboratory recording. There are 40 stimulus frequencies 

in this database, set from 8 Hz to 15.8 Hz with a 0.2 Hz 

interval. The task is designed in 4 blocks with 40 trials 

corresponding to 40 targets in each block. The stimulation 

period is 2 seconds for the first to the fifteenth participant 

and 3 seconds for the other participants. The 3-second 

epochs were shortened to 2 seconds to equalize trial length. 
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Also, like most SSVEP studies, only ten channels of 

occipital and parietal lobes (O1, Oz, O2, POz, PO3, PO4, 

PO5, PO6, PO7, PO8) were selected for processing. 

At this stage, 9 participants with low accuracy percentages 

in SSVEP target frequency detection using the CCA 

approach were found. Because the CCA approach has a 

low noise resistance [9], the proposed method was tested 

on these 9 participants (4, 11, 17, 26, 31, 41, 55, 64, 69). 

2.2.  PodNet Structure 

The PodNet is a DCNN that extracts stimulus-related 

features embedded in EEG signals for SSVEP target 

frequency detection. This network was proposed for the 

first time by Podmore et al. [16]. Each PodNet is made 

up of some structural units termed Pods. Convolutional, 

drop-out (50%), batch normalization, Rectified Linear 

Unit, and max-pooling layers are included in these Pods. 

In this research, due to the length of the trials (2 seconds), 

this network was created in 4 separate Pods (with a few 

modifications) using the Keras library (Tensorflow 

Backend). In addition, following the last Pod, there is 

a fully connected layer with softmax operation. Figure 1 

depicts the network's detailed structure.  

2.3 . Processing Methods for Evaluation  

In the present study, the EEGNet [14], the DeepConvNet 

[20], and some traditional methods such as CCA, FBCCA, 

and TRCA were utilized to compare the results of the 

PodNet network. More details about the structure of the 

two networks and traditional methods can be found in 

the mentioned references. 

3. Results 

The PodNet was trained on 61 participants (except the 

before mentioned nine participants). 43 out of 61 participants 

were randomly selected for training, 9 participants for 

validation, and 9 for testing. The accuracy and ITR acquired 

from this training are 72.29% and 90.17 bpm for validation 

data, respectively, and 73.19% and 91.89 bpm for testing 

data. This model is then used separately in two different 

conditions for each of the 9 selected participants. The 

first condition is without model retraining (only in the test 

block) and the second condition is with model retraining. 

Two blocks were selected for training in each 

participant, one block for validation and one block for 

testing. The testing block is the same between the two 

conditions. The summary statistics of these approaches 

for the testing block are shown in Table 1. The results 

demonstrate that after retraining the PodNet, the 

accuracy and ITR on participants with low accuracy 

improved (Wilcoxon signed-rank statistical test, P-value 

= 0.0039). In Figure 2, the classification accuracy (%) 

in the first and second conditions are presented for 9 

 

Figure 1. The details of the PodNet structure 

 

Table 1. Summary Statistics of accuracy (%) and ITR (bpm) (in test block) for two methods: 1- First condition 

(without model retraining), 2- Second condition (with model retraining) 

Methods 
Evaluation 

Criteria 

Mean and 

Standard Deviation 

Median and 

Interquartile Range 
Maximum Minimum 

First condition (without model 

retraining) 

Accuracy 

ITR 
48.44 ± 25.93 

53.56 ± 41.06 

47.50 ± 43.75 

46.66 ± 69.61 

85 

117.58 

12.5 

4.61 

Second condition (with model 

retraining) 

Accuracy 

ITR 

74.16 ± 16.00 

96.67 ± 32.52 

72.50 ± 23.75 

90.60 ± 50.08 

95 

143.14 

45 

42.66 
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participants with low accuracy. According to the 

findings, the network appears to perform efficiently in 

real-world data by learning the specific features of the 

data in its deep layers.  

Podmore in [16] used common inter-subject information 

for single-subjects with low accuracy. In other words, 

the approach of Podmore et al. was Single-Subject 

Optimization, while in the present study, this approach 

has been used to reduce the noise effect.  

Figure 3 depicts the output signal's Power Spectral 

Density for all 100 filters in the convolution layer 

(Participant No. 4, Class 1 and Pod 1). After inspecting 

the diagrams, it was discovered that 26 of the 100 output 

signals contain high-frequency components in their power 

spectrum (noisy components). The finding implies that the 

network can learn to decompose noisy components in its 

convolution filter of the first layer and potentially reduce 

the impact of noise on subsequent phases. As an example, 

in Figure 4, two signals were selected from 100 output 

signals, one of which contains high-frequency components 

in its power spectrum.  

In the following, the EEGNet and The DeepConvNet 

networks were used for comparison. Following primary 

training on 61 individuals, the two networks were used 

in the first and second conditions for 9 participants with low 

accuracy. In both networks, the accuracy and ITR results 

in the second condition were significantly better than the 

first condition (Wilcoxon signed-rank statistical test, p-

value  <  0.05 for both accuracy and ITR). For comparison, 

traditional approaches (CCA, FBCCA, and TRCA) were 

also applied. Table 2 compares the performance of CCA, 

FBCCA, TRCA, EEGNet, and DeepConvNet techniques 

to that of PodNet. 

The Friedman statistical test was used to compare the 

outcomes of the PodNet (second condition) in two 

categories. The first category was a comparison with 

traditional methods (the CCA, the FBCCA, and the TRCA) 

and the second category was a comparison with DCNNs 

(the EEGNet and the DeepConvNet (in the second 

condition)). The test findings demonstrate that in both 

categories, at least two of the approaches have a significant 

difference (first category: p-value = 3.92 × 10-4, degree 

 

Figure 2. Accuracy (%) in participants with low accuracy for both conditions of with and without PodNet retraining 

 
Figure 3. the Power Spectral Density of the output signal for all 100 filters in the convolution 

layer (Participant No. 4, Class 1 and Pod 1) 
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of freedom (df) = 3 and Chi-sq = 18.24, second category: 

p-value = 0.0015, degree of freedom (df) = 2 and Chi-sq 

= 13.00). The Tukey-Kramer post-hoc test was also 

employed to identify significant differences across groups.  

The post-hoc test findings (p-values) for the two 

categories are shown in Table 3 and Table 4, respectively.  

According to Table 3 and Table 4, PodNet in the second 

condition significantly outperforms the CCA, the FBCCA, 

the TRCA, the EEGNet (in the second condition), and 

the DeepConvNet (in the second condition).  

4. Discussion 

Overcoming the noise effect is one of the challenges 

of BCI systems. In this research, the PodNet structure 

was utilized to detect the target stimulus frequency of 

SSVEP signals in the BETA database. The fundamental 

goal of this research is to increase the PodNet performance 

by reducing the effect of noise. To this end, pre-trained 

PodNet (on a substantial portion of the BETA database) 

was retrained on the part of single-subject data. The number 

of the final single-subjects is nine, and they were chosen 

based on the CCA method's accuracy. According to the 

results, PodNet performance was increased by retraining 

the network on the part of a single-subject from the BETA 

database. Retraining the pre-trained EEGNet and the 

pre-trained DeepConvNet on single-subject data enhanced 

accuracy as well. 

According to the findings, when PodNet learns proprietary 

features, the network's ability to identify stimulus frequencies 

in participants with low CCA accuracy improves. In 

other words, by retraining the network on a subset of the 

 
Figure 4. Power Spectral Density of the two output signals of the convolution filter in Pod 1 

Table 2. Summary Statistics of the accuracy (%) and ITR (bpm) (in test block) for six different methods 

Evaluation 

Criteria 
Methods 

Mean and 

Standard Deviation 

Median and 

Interquartile Range 
Maximum 

Accuracy 

The CCA method 9.72 ± 5.61 8.12 ± 7.03 20.62 

The FBCCA method 10.69 ± 6.18 10.62 ± 6.57 23.12 

The TRCA method 25.21 ± 24.24 13.75 ± 34.53 68.75 

The EEGNet (Second condition) 56.11 ± 20.00 57.50 ± 30.62 90 

The DeepConvNet (Second condition) 64.72 ± 20.02 60.00 ± 28.75 90 

The PodNet (Second condition) 74.16 ± 16.00 72.50 ± 23.75 95 

ITR 

The CCA method 2.71 ± 0.64 1.78 ± 1.23 11.76 

The FBCCA method 3.33± 0.86 3.28 ± 1.02 14.35 

The TRCA method 16.63 ± 15.56 5.57 ± 27.95 83.23 

The EEGNet (Second condition) 60.39 ± 11.15 62.76 ± 22.98 129.73 

The DeepConvNet (Second condition) 75.62± 11.17 67.10 ± 20.72 129.73 

The PodNet (Second condition) 93.95 ± 7.43 90.60 ± 15.03 143.14 

 

Table 3. The results of the post-hoc test (Comparison 

with traditional methods, Accuracy) 

Group 1 Group 2 p-value 

The PodNet 

(Second condition) 

The CCA method 0.0003*** 

The FBCCA method 0.0064** 

The TRCA method 0.0421* 

* Indicates p-value < 0.05, ** Indicates p-value < 0.01 and *** Indicates 

p-value < 0.001. 
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data (training blocks), the noise effect for other subsets of 

the same data can be reduced (validation and test blocks). 

Deep Neural Networks automate the feature extraction 

process. When the network is retrained on the portion of 

data containing the noise, it can recognize noise as a 

common component in all cases (train, validation, and test 

data). As a result, it is possible to exclude that component 

in algorithms aiming at detecting stimulus frequency. 

The effect of noise on the system is thereby  decreased, and 

this new network will be more resistant to noise and artifacts. 

Furthermore, the results reveal that the accuracy of 

the PodNet (second condition) is significantly better than 

the CCA, FBCCA, and TRCA as a traditional hand-

crafted feature extraction method (p-value < 0.05). The 

results show that PodNet, as a DCNN, performs better 

than traditional approaches in SSVEP signal processing, 

and this result is consistent with [15, 18]. 
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