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A B S T R A C T

Breast cancer is a prevalent disease worldwide and the accurate diagnosis and prog-
nosis of breast cancer are essential for the development of effective treatment plans. 
Pathology remains the gold standard for diagnosis and prognosis but with limita-
tions such as time-consuming manual scoring and some error-prone results. Re-
cently, deep learning techniques, especially convolutional neural networks (CNN), 
have been proposed for the interpretation of immunohistochemistry (IHC) results 
in breast cancer. The objective of this systematic review is to critically assess the ex-
isting literature on computer-aided systems for the interpretation of IHC results in 
breast cancer based on deep learning algorithms.  We included studies with models 
that use novel approaches such as deep learning for quantitative measurements of 
immunohistochemically stained Ki-67, ER, PR, and HER2 images. We systematical-
ly searched PubMed, Scopus, and web of science up to September 2022. 15 studies 
(seven HER2, seven Ki67, and one ER/PR scoring studies) met our inclusion criteria. 
Various AI-based assays have been developed for different applications in breast pa-
thology, including diagnostic and prognostic applications, as well as predictive values 
and responses to treatment. These algorithms have shown promise in improving the 
accuracy of breast cancer diagnosis and prognosis. It is essential to consider the dif-
ferences in training and inter-observer variability while designing tools, and there is 
an urgent need to integrate the detection and analysis of various biomarkers at the 
same place and time to facilitate the formation of patients’ reports and treatment.
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Breast cancer is a heterogenous prevalent cancer which 
is one of the most common cancers among women 
around the world. This cancer treatment approach 
depends on its molecular characteristics (1). The 
Immunohistochemistry (IHC) diagnostic markers, such 
as estrogen receptor (ER), progesterone receptor (PR), 
Ki-67, and human epidermal growth factor receptor 
2 (HER2), are widely used to identify metastatic and 
benign tumors, to grade tumors and to determine 
the origin of cancerous tissue. (2)   Estrogen and 
progesterone are steroid hormones that play a crucial 
role in breast cancer development and pathology. They 
regulate the expression of several genes involved in 
cellular proliferation, tissue morphology, and other key 
biological processes. Consequently, breast carcinoma 
often exhibits altered expression of their receptors, in 
comparison to healthy tissue. The assessment of ER and 
PR expression is frequently employed to evaluate the 
response to hormone therapy and predict prognosis (3-6)
HER2 protein, a cell membrane biomarker, is known 
as a diagnostic factor for breast cancer. Patients 
with breast tumors that overexpress HER2 have an 
aggressive type of disease and poor prognosis. (7-
9) For cases with strongly overexpression of HER2, 
the addition of targeted treatment against HER2 is 
particularly effective at improving clinical outcome 
compared to chemotherapy alone. (10) HER-2 positive 
tumors can be more aggressive and their status 
can predict the response to targeting therapy with 
trastuzumab (Herceptin) monoclonal antibodies and 
adjuvant chemotherapy. (11) Therefore, the correct 
identification of the HER2 is critical to help patients to 
receive the appropriate therapeutic option.
The Ki-67, also called MKI67, is a nuclear protein 
associated with cell proliferation (12) Ki-67 helps 
detect proliferating cells in the colonic epithelium in 
ulcerative colitis (13) some brain tumors (14) non-
Hodgkin lymphomas (15), lung cancer (16), and breast 
lesions. (17) Immunohistochemical analysis of Ki-67 is 
a clinical marker for breast cancer tumor aggressiveness 

and proliferation. This assessment helps predict disease 
survival, and recurrence, deciding the future course of 
therapy, and response to various treatment options. 
Therefore, the scoring of Ki-67 is highly relevant for 
the diagnosis, classification, prognosis, and treatment. 
In addition, it helps predict relative responsiveness 
or resistance to chemotherapy or endocrine therapy. 
Ki-67 scoring is also valuable for estimating residual 
risk in patients on standard therapy. Moreover, it is a 
dynamic biomarker of treatment efficacy in samples 
taken before, during, and after neoadjuvant therapy, 
particularly neoadjuvant endocrine therapy. (18)
The advances in biomarker technology allow us to 
use the most appropriate treatment and procedure 
according to the subtypes of the disease. 
Digital pathology is the process of digitizing and 
computerizing tissue sample slides using a whole slide 
image (WSI) scanner and then analyzing or sharing 
the digital images using image viewer, on electronic 
devices. The patients who would benefit from genomic 
testing the most could be found by image analysis of 
hematoxylin and eosin or H&E-stained images. Several 
previous studies have utilized automated processing of 
toxin H&E-stained breast tumor slides for diagnosis, 
prognosis, and feature identification associated with 
survival. These approaches have focused on statistics 
of cell morphology (19), automated grading, mitotic 
count (20), nuclear atypia, receptor status, and 
histopathological subtyping (21) using hand-crafted 
methods or automated models.
Moreover, several factors such as staining, orientation, 
and magnification of the biological sample contribute 
to several issues such as the visual heterogeneity 
of the images, illumination variations, foreground-
background intensity overlaps, partial occlusion, and 
weak boundaries. These issues affect the morphological 
structure of the histological regions and due to them, 
more consideration during image processing and 
training is required (22).
Breast cancer subtyping using biomarker assessment, 
play a crucial role in determining an appropriate 
treatment plan.  To assess protein expression at the 
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tissue level, molecular markers with both prognostic 
and diagnostic value are used as indicators.  IHC is 
employed as the primary method for staining these 
biomarkers. A pathologist then examines the stained 
tumor tissue under a microscope and assigns a score 
based on the percentage of positively stained cell nuclei 
(23). This manual scoring process, however, can be 
time-consuming, tedious, expensive, error-prone, and 
susceptible to intra- and interobserver ambiguities that 
lead to inconsistent scores. )24( This shows that there is 
a challenge of repeatability in manual scoring.
Recently, deep learning techniques have dramatically 
advanced and have been assessed in scoring predictive 
marker such as ER, PR, HER-2, Ki-67 proliferation, and 
intrinsic subtype assessment. Among deep learning 
models, convolutional neural networks (CNN) have 
received the most attention and validation (22).This 
study aims to conduct a systematic review of computer 
vision models for the automated scoring of predictive 
markers, such as ER, PR, and HER-2, and to update the 
existing evidence for the development of future work.

Method and material:
Eligibility criteria
Eligible studies were those published which reported 
a computer vision model to indicate receptor status 
and assess the intrinsic subtype of breast cancer 
histopathological samples. We included models that use 
novel approaches such as deep learning for quantitative 
measurements of IHC stained Ki-67, ER, PR, and HER2 
images. We excluded the review papers and publications 
that were based on non-human or generated images 
with novel data generating methods such as generative 
adversarial networks (GANs) and also the publication 
that only used models for the analysis of H&E-images. 
Also Additionally, traditional models which indicated 
the score of staining pictures that only considered the 
intensity of color were excluded.

Data sources and searches 
A search was conducted across three databases 
(PubMed, Web of Science, and Scopus) to identify 

artificial intelligence models that predict the scoring 
of biomarkers based on histopathological images using 
deep learning approaches.  
We searched PubMed using the terms “Artificial 
intelligence”, “Breast Neoplasms” [MeSH term], 
“Pathology” [MeSH term], OR “Neoplasms/pathology”, 
in combination with related key terms such as 
“patholo*”, “histopatholo*, “microscop*”, “digital*”, 
“whole-slide”, “deep learning”, etc. in the title and 
abstract. Entry terms were used to search Web of 
Science and Scopus databases. All The searches were 
updated in September 2022. No language limitation 
was applied. However, all found publications were in 
English. 

Study selection and Data extraction 
The screening of the search results was conducted by 
two reviewers independently who evaluated the titles 
and abstracts of the studies. To confirm the eligibility 
of the relevant studies, two reviewers independently 
reviewed the full text articles. In case of researchers’ 
disagreements, the inclusion of studies was determined 
by consensus. PRISMA flowchart (Figure. 1) shows 
the result of the extraction process. Predefined tables 
have been used for extraction of the following items 
from included studies: author, publication date, type 
of biomarkers, staining approaches, the name of the 
model if available, sample characteristics, sample size, 
type of breast cancer, artificial intelligence, or deep 
learning algorithms. Data abstraction was conducted 
by one reviewer and checked by another to ensure 
accuracy. 

Result:
Study inclusion 
A total of 1811 articles were found through dataset 
primary searches. After removing duplicates, 1429 
unique records were screened. Of these, 1376 studies 
were excluded at the title and abstract evaluation 
phase. Finally, 53 articles were screened for full-text 
(Figure 1).  
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Among 53 potentially relevant full-text screened 
articles, 15 studies met the inclusion criteria. Exclusion 
reasons are outlined in the PRISMA flowchart (Figure 
1). The complete table of developed models is provided 
in Table 1.

Study characteristics
Among 15 included studies, seven studies evaluate 
HER2 scoring, seven studies evaluate Ki67 scoring, and 
one study evaluates ER and PR scoring. 

Estrogen receptor (ER) and progesterone receptor (PR) 
Saha et al. (25) proposed HscoreNet, a unique deep 
learning network for scoring ER and PR in breast 
IHC images. The network can be used for semantic 
segmentation, classification, and picture reconstruction 
in addition to scoring. This network is divided into 
three sections: encoder, decoder, and scoring layer. 
The encoder converts input image pixels into a lower-
dimensional representation, whereas the decoder 

reconstructs the encoder’s output by minimizing a 
cost function. The decoder produces the reconstructed 
image, which only comprises immunopositive and 
immunonegative nuclei. The final layer is a scoring 
layer, which is in charge of calculating the H-score.

Human epidermal growth factor receptor 2 (HER-2)
Khameneh et al. (26) proposed a method that combines 
deep learning and conventional machine learning 
techniques to segment, classify, and quantify IHC 
images of breast cancer. This method involves two main 
steps: segmentation and classification. Since HER2 is 
mainly related to tumors of the epithelial region, the 
authors segmented different tissue structures to identify 
epithelial regions. To achieve this, they used a superpixel-
based support vector machine (SVM) feature learning 
classifier to classify stromal and epithelial regions from 
WSIs based on color and texture features. Next, they 
applied a CNN based segmentation method (modified 
U-Net model) on the epithelial regions to segment 
membrane regions. Finally, the authors merged divided 
tiles and evaluated the overall score of each slide. The 
proposed method was compared to other approaches 
based on deep learning and handcrafted features on 127 
WSIs of breast tumor patients. The results showed that 
the proposed approach had promising performance on 
IHC stained slides.
Tewary and Mukhopadhyay (27) used several 
transfer learning architectures for HER2 scoring and 
classification, including VGG16, ResNet50, VGG19, 
NASNetMobile, and MobileNetV2, to categorize 
images into three output classes: negative, equivocal, 
and positive.. They used 2130 patches for generating 
training dataset, then tested the output model for 800 
new patches to report outcome result. They also used a 
voting scheme to generate an overall score for an image 
using the scores of its patches. These models have 
shown noteworthy accuracy and VGG19 had the most 
accuracy between them. 
Vandenberghe et al. (28) proposed two distinct 
approaches for cell classification, using both classical 
machine learning and deep learning techniques. Their 

Figure 1. PRISMA flow chart of selected studies 
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deep learning approach enabled automatic scoring of 
HER2, with an 83% concordance rate with pathologist 
scores. Diagnostic disagreements were largely 
attributed to discrepancies in HER2 expression due to 
high staining heterogeneity. They demonstrated that 
deep learning assisted diagnosis can improve clinical 
decision-making in breast cancer by identifying high-
risk cases of misdiagnosis (7).
Tewary et al. (29) have developed an automated scoring 
system for detecting HER2 from stained tissue images 
called AutoIHC-Analyzer. They have used several 
image processing approaches to extract the stained cells 
and membrane regions automatically. At last, they used 
the set of features to classify the tissue for quantitative 
scoring. The results show reliable quantification for 
automated scoring. Although, they used a complicated 
algorithm with a number of image processing steps in 
the assessment of stains followed by morphology-based 
quantification of membrane continuity and automated 
scoring using machine learning (SVM classifier).
In another study, Yue et al. (30), an artificial intelligence 
(AI)–assisted microscope was equipped with a 
conventional microscope with a cell-level classification-
based HER2 scoring algorithm and an augmented 
reality module. The consistency and accuracy of HER2 
assessment were significantly improved (p < 0.001) in 
comparison to using a conventional microscope and 

online WSI. Furthermore, results showed improved 
precision of IHC 3 + and 2 + scoring while ensuring 
the recall of fluorescent in situ hybridization (FISH)–
positive results in IHC 2 +. Also, the average acceptance 
rate of AI (LinkNet (31) with mean square error (MSE) 
loss for nucleus detection) for all pathologists was 0.90, 
demonstrating that the pathologists agreed with most 
AI scoring results. 
Her2Net (2), a deep learning-based HER2 deep 
neural network, consisted of multiple convolution 
layers, max-pooling layers, spatial pyramid pooling 
layers, deconvolution layers, up-sampling layers, and 
trapezoidal long short-term memory (TLSTM). It was 
applied for cell membrane and nucleus detection, 
segmentation, classification and HER2 scoring by 
using TLSTM and a deep learning framework. Her2Net 
achieved 96.64% precision, 96.79% recall, 96.71% 
F-score, 93.08% negative predictive value, 98.33% 
accuracy, and a 6.84% false-positive rate. The results 
showed the high accuracy and wide applicability of 
Her2Net in HER2 scoring for breast cancer assessment. 
Wang et al. (32) proposed a multitask CNN to identify 
magnification and the score of HER2 expression. In 
addition, they compare its accuracy, precision, and 
recall with another neural network like Lenet, AlexNet, 
and Vgg16. The results have shown in Table 2 and 3. 
According to the results, the proposed network is 

network Accuracy [%] Precision [%] Recall [%]

Lenet 0.871 0.878 0.871

AlexNet 0.938 0.939 0.938

Vgg16 0.915 0.916 0.915

Wang et al. [31] 0.978 0.977 0.978

Table 2. results of each network in HER2 scores.

network Accuracy [%] Precision [%] Recall [%]

Lenet 0.842 0.854 0.842

AlexNet 0.942 0.943 0.942

Vgg16 0.925 0.926 0.925

Wang et al. [31] 0.950 0.950 0.950

Table 3. results of each network in HER2 magnification. 
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lighter than the others and costs much less time than 
the other mature networks in training.

Proliferation of Ki-67
Joseph et al. (33) developed Proliferation Tumor 
Marker Network (PTM-NET). This deep learning 
model objectively annotates the tumor regions in Ki67-
labelled breast cancer digital pathology whole slide 
images using a convolution neural network.
Feng et al. (34) introduced an accurate image 
registration method and automatic identification and 
counting software of Ki-67 based on whole tissue 
sections by deep learning. This method was designed 
with unsupervised domain adaptation for counting. 
(Based on GoogLeNet Inception V1)
Swiderska-Chadaj et al. (35) presented three deep 
learning-based approaches  (CNN) to automatically 
detect and quantify Ki-67 hotspot areas utilizing the Ki-
67 labeling index in whole slide images. All processes 
were based on Deep Learning CNNs (using the AlexNet 
model) and were developed to explore the possibilities 
of combining information from several stains. 
Geread et al. (36) proposed a novel proliferation 
index (PI) calculator for Ki67 images called piNET. 
The tool is built based on deep learning, which can 
adapt to the wide variability of medical images. The 
system is trained purely on tumor cells, which reduces 
false positives from non-tumor cells. In addition, the 
concept of learning background regions through weak 
supervision is introduced and which provides the 
system with ideal and non-ideal patches that further 
reduce false positives. Also, a novel hotspot analysis 
is proposed that allows automated methods to only 
score patches from the WSI that contain “significant” 
activity. One of the significant contributions of the 
architecture’s overall robustness is that the model can 
quantify Ki67 PI for various image types (regions of 
interest (ROIs), Tissue Microarrays (TMAs), WSIs), 
scanner/ stain vendors, lab staining protocols, and the 
presence of artifacts or non-tumor cells. (36)
Cai et al. (37) presented an algorithm with three steps 
for Ki67 computation. At first, Fully convolutional 

network (FCN) LinkNet was used for tumor region 
segmentation. Second, another FCN model was used 
in segmented tumor region for generating nuclear 
heatmap and a local maximum filter was utilized to 
calculate the nuclear centers. Third, the DAB color 
space was used to distinguish between positively 
stained and negatively stained nuclei.
Negahbani et al. (38) presented a unique pipeline 
and backend for the simultaneous assessment of 
the intratumoral TILs score and estimation of Ki-67 
expression in breast cancer cells. This pipeline uses 
CNN to estimate density maps and extract features 
from an input RGB image. This pipeline consists of 
three parts; PathoNet network, post-processing, and 
Watershed algorithm. PathoNet gather features from 
input images and then predicts the pixels for being 
either immunopositive or immuninegetive for Ki67.
Fulawka et al. (39) proposed a solution computes the 
Ki-67 proliferation index using a deep learning model 
and fuzzy-set interpretations for detecting hotspots. The 
resultant region-of-interest is then utilized to segment 
relevant cells using traditional image processing 
methods. The index value is calculated by comparing 
the total surface area of immunopositive cells to the 
total surface area of relevant cells.

Discussion:
Breast cancer is one of the most common cancers 
among women worldwide, and accurate diagnosis 
and prognostic evaluation are critical for determining 
appropriate treatment strategies. Traditionally, the 
evaluation of breast cancer involves manual observation 
of stained tissue samples under a microscope by expert 
pathologists. However, this process is time-consuming, 
prone to inter- and intra-observer variability, and often 
results in inaccurate and irreproducible diagnostic 
and prognostic evaluations. In recent years, artificial 
intelligence has emerged as a promising tool for 
improving the accuracy and efficiency of breast cancer 
pathology.(40)
AI techniques can be used to analyze digital pathology 
images and extract meaningful information that can 
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assist in the diagnosis and prognosis of breast cancer. 
One of the most commonly used AI techniques in breast 
cancer pathology is machine learning, which involves 
training models on large datasets of annotated images 
to recognize patterns and make predictions. machine 
learning algorithms can be trained to identify specific 
features of breast cancer tissue, such as the presence of 
estrogen and progesterone receptor expression, which 
are important markers for determining treatment 
strategies. (41)
In addition to predicting markers for breast cancer 
diagnosis, AI techniques can also be used to predict 
patient outcomes and personalize treatment strategies. 
For example, a study by Beck et al.(42) developed a 
machine learning model to predict the risk of recurrence 
in breast cancer patients based on tumor morphology 
and other clinical data. The model achieved high 
accuracy in predicting recurrence risk on a dataset of 
over 3,000 patients.
Despite the potential benefits of AI in breast cancer 
pathology, there are also several challenges that need 
to be addressed. One of the biggest challenges is the 
lack of standardized protocols for data collection 
and analysis. Different laboratories may use different 
staining protocols and imaging systems, which can lead 
to variability in the data and make it difficult to compare 
results across studies. To address this challenge, several 
initiatives have been launched to develop standardized 
protocols for digital pathology, such as the Digital 
Pathology Association’s Image Analysis Standards 
Initiative (43).
Another challenge is the lack of diversity in the datasets 
used to train AI models. Many studies use datasets 
from a single institution or geographic region, which 
may not be representative of the broader population. 
To address this challenge, several initiatives have been 
launched to develop large-scale, diverse datasets for AI 
research, such as the Cancer Imaging Archive (44).
The generation of digital pathology data creates novel 
challenges for the histopathology community in 
managing, processing, and controlling the use of these 
data.  The legal and ethical aspects of digital pathology, 

for example, the pathologists’ interpretation of consent 
for scanned slide images in research, are unclear. Digital 
pathology is not free of ethical challenges. It may involve 
sharing sensitive personal data if it needs collaboration, 
which is subject to specific ethical and legal norms. Due 
to the black box problem, AI methods are mysterious 
and produce results that are sometimes unexplainable 
even to experts. Computational pathology mainly 
depends on scanning technology manufacturers who 
benefit from data collection. Digital data is subject to 
fusion or analytics, often without the knowledge of 
people who have consented to its collection. Fusion and 
analytics are not always subject to formal surveillance. 
Once data are in digital form, there is often confusion 
as to who should decide its reuse and which reuses are 
legitimate. (45, 46) To address these challenges, several 
studies have proposed frameworks for the ethical 
and responsible use of AI in breast cancer pathology. 
For example, a study by Gurcan et al. (47) proposed 
a framework for the validation of AI algorithms in 
digital pathology, which includes guidelines for data 
collection, annotation, and evaluation.
In addition to these challenges, there are also technical 
challenges in the use of AI in breast cancer pathology. 
The effect of the training set size and the depth of 
experience of the operator annotating the training set 
on the digital pathology mode. It could provide valuable 
information to optimize accuracy. (28)
Another technical challenge is the variability in staining 
and imaging protocols, which can lead to differences in 
the appearance of tissue samples and make it difficult 
to compare results across studies. Various staining 
criteria of different laboratories may cause discordant 
results. This discrepancy was the main reason for 
misclassifications. Overlapping of cytoplasmic staining 
with cell membrane gives rise to poor segmentation, 
which causes errors in a way that some membrane 
staining connecting two cells is ignored, which would 
directly affect the overall score in some cases. (26) To 
address this challenge, several studies have proposed 
methods for normalizing digital pathology images, 
such as the use of color normalization techniques to 
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standardize the color appearance of images .(48)
Various staining criteria of different laboratories may 
cause discordant results. This discrepancy was the 
main reason for misclassifications. A better and more 
accurate histopathology stain-color normalization may 
overcome this problem. Overlapping of cytoplasmic 
staining with cell membrane gives rise to poor 
segmentation, which causes errors in a way that some 
membrane staining connecting two cells is ignored, 
which would directly affect the overall score in some 
cases. (26)
Factors that lead to poor reproducibility of scoring 
results may include the type of biopsy, time to fixative, 
type of antibody, method of reading, and area of reading. 
between-laboratory and between-study comparability 
is essential. (34) However, more statistical analysis 
could be performed with a wider sample size and the 
increment of training data from various laboratories to 
validate the approach. Further improvement in terms 
of sample variability and broader dataset could be 
targeted in the future. (27)
Several suitable types of AI algorithms in breast 
pathology are divided into three major groups: 
diagnostic, prognostic applications, and applications 
related to predictive values and response to treatment. 
The prognostic applications include determining 
tumor morphological characteristics, such as nuclear 
shape and texture, using in survival and recurrence risk 
prediction, and various peri-tumoral elements involved 
in prognosis. (22) Different AI-based assays have been 
developed to measure the architecture of various tissue 
elements, including tumor-infiltrating lymphocytic 
(TIL) within the tumor, and their efficacy in predicting 
survival has been established. (49) As a second major 
application of AI in breast pathology, machine learning 
approaches can be used to link the expression of specific 
markers, such as cell cycle and proliferation markers, 
or the presence of specific morphological features in 
the tumor to the response to a particular treatment. 
(50) The diagnostic applications include breast 
cancer grading and intrinsic subtype detection, tumor 
microenvironment, receptor status and heterogeneity 

assessment, and metastatic tumor deposit detection 
in lymph nodes. (22) Several algorithms assess breast 
cancer grades by pattern recognition analysis using 
deep learning (21) or allowing the accurate counting of 
mitotic figures, which is one of the essential features 
of grading. (51) Image analysis techniques have been 
used for detecting histologic subtypes of breast cancer 
or classification. (21) Many AI-based assays have been 
developed to evaluate intra-tumor and inter-tumor 
heterogeneity (51), identify and quantify nonepithelial 
cells like fibroblasts, neutrophils, lymphocytes, and 
macrophages (49), and automated image-based 
identification and grading of TIL in HER2+ breast 
cancer. (50) One of the new applications of diagnostic 
pathology is quantitative measurements of IHC-
stained ER, Ki67, PR, and HER2 images (22), which is 
extensively discussed in this study.
Different medical and pathological groups at different 
locations communicate with each other to discuss and 
put in efforts to analyze the results. Differences in 
training and inter-observer variability are also factors 
that must be taken into consideration while designing 
tools. There is an urgent need to design algorithms that 
address the mentioned challenges. The nuclei texture 
properties or other characteristics could be used as 
prior information in algorithms to make the tool more 
robust. Breast cancer diagnosis includes the detection 
of ER, PR, Ki-69, and HER2 receptors in stained 
tissue. Integration of detection and analysis of these 
procedures at the same place and time would greatly 
help pathologists and doctors to form patients’ reports 
and treatments. (52)
In this line, some digital pathology companies have 
developed different image analysis platforms for tissue 
classification, biomarker analysis, IHC quantification, 
and molecular pathology. IHC biomarker detection 
and immune-oncology biomarker analysis are the 
primary categories on which these businesses focus. 
For IHC biomarker detection, the cytonuclear IHC and 
membrane IHC modules are particularly challenging. 
The cytonuclear IHC module measures IHC positivity 
cell-by-cell for single or multiple staining applications. 
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Each cell is assessed for the cytoplasmic or nuclear 
positive of every single stain, as well as the colocalization 
of several marker combinations. This module can be 
utilized for the detection of particular biomarkers such 
as ER, PR, and Ki67. Different companies, including 
3DHISTECH, Roche, Indica Labs, and Visiopharm, 
provide specific platforms for detecting ER, PR, 
and Ki67. NuclearQuant is a software application 
developed by 3DHISTECH company, which achieved 
in vitro diagnostics (IVD) approval for the analysis 
of Estrogen- and Progesterone-stained breast tissue 
samples. CellQuant is another image analysis tool of 
this company that is best suited for Ki67 slides. uPath 
is a sub-organization of Roche company that provides 
various image analysis algorithms, and detection of 
ER, PR, and Ki67 is one of its primary objectives. As 
a part of Indica Labs company, HALO provides the 
cytonuclear IHC module, which can be used to detect 
similar biomarkers. 
The membrane IHC module performs cell-by-cell 
analysis of the levels of membrane-associated IHC 
markers. This color-configurable module can be utilized 
with non-traditional chromogens in addition to DAB. 
This module also can be utilized for the detection of 
particular biomarkers such as HER2, which is provided 
by 3DHISTECH, Roche, and Indica Labs commercially. 
MembraneQuant, like NuclearQuant, is an IVD-
approved software application that has been designed 
for HER2 expression quantification in breast tissue 
samples. One of the other primary objectives of uPath 
software is HER2 detection. Same as cytonuclear IHC, 
HALO provides the membrane IHC module for HER2 
detection. Visiopharm, a privately-owned company 
founded in 2002, is one of the institutes that provides 
more than 100 special apps in the field of diagnosis 
and research for the detection of variable biomarkers, 
including both cytonuclear and membrane IHC, In 
addition to hot spot detection. 
For the immune-oncology biomarker analysis, PD-
L1 expression and CD8 positivity quantification 
are regarded as new modules in the field of digital 
pathology. The presence of CD8+ T cells in the tumor 

microenvironment is associated with response to 
immunotherapy and can inform patient treatment 
decisions. Also, the development of the combined 
positive score (CPS) for the evaluation of PD-L1 in 
solid tumors has indicated that PD-L1 expression on 
both tumor and tumor-associated immune cells is 
associated with clinical outcomes. Some companies 
such as PathAI, Nikon Cooperation, and Roche provide 
various algorithms for these marker quantification 
analyses. PathAI is currently developing machine 
learning-based models to identify and quantify CD8+ 
lymphocytes within the stroma and parenchyma 
regions of tumors from other cancers, including non-
small cell lung cancer, renal cell carcinoma, breast 
cancer, gastric cancer, head and neck squamous cell 
carcinoma, and urothelial carcinoma. Also, it provides 
PD-L1 expression analysis for this aim. Optra scan, a 
part of Nikon Cooperation, and Roche are also working 
on the PD-L1 expression analysis.
Some companies are working on other software and 
modules, including visiopharm, indica Labs, for 
automated or Add-on’s quantification, which are not 
discussed in this article and require more studies.
Further case details in the last stage of the pipeline, 
e.g., the other IHC results and patient data, could be 
included. In this way, even more information could be 
provided to the medical experts to provide a robust tool 
that can be practically used in clinical decision-making. 
(53) Future work is directed towards a more exhaustive 
analysis of the feature vectors with variations in 
examples using a much larger number of image tiles 
extracted from WSIs for training and cross-validation. 
Further work will also be carried out in developing 
and comparing different training for neural network 
modeling to improve histology slides’ automatic 
scoring. (54)

Conclusion:
In conclusion, AI techniques have revolutionized 
the field of pathology by automating the diagnosis 
and prognosis of cancer. However, the use of digital 
pathology data presents novel challenges in terms of 
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data management, ethical and legal considerations, 
and inter- and intra-observer variability. There is a need 
to address these challenges through the development 
of robust algorithms that take into account the effect of 
the size of the training set and the depth of experience 
of the operator annotating it. Various AI-based assays 
have been developed for different applications in 
breast pathology, including diagnostic and prognostic 
applications, as well as predictive values and responses 
to treatment. These algorithms have shown promise in 
improving the accuracy of breast cancer diagnosis and 
prognosis. It is essential to consider the differences in 
training and inter-observer variability while designing 
tools, and there is an urgent need to integrate the 
detection and analysis of various biomarkers at the same 
place and time to facilitate the formation of patients’ 
reports and treatment. Several digital pathology 
companies have developed different image analysis 
platforms for tissue classification, biomarker analysis, 
and molecular pathology, focusing on IHC biomarker 
detection and immune-oncology biomarker analysis. 
In order to maximize the potential of AI in pathology, 
it is crucial to continue to address the challenges and 
improve the accuracy of these algorithms.
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Topic
Digital 

patholo-
gy model

Breast 
cancer 

sub-
type

Task
Target pop-

ulation
sample 

size

c-statis-
tic/AUC
accuracy

Sensitiv-
ity* Precision F1 score AI algo-

rithms

1

HER2 
status

Khameneh et 
al. 2019 (26)

All types 1)classification 
of WSI into 
two stroma 

and epithelium 
areas using 

superpixel-based 
classification

2)Cell membrane 
staining pattern 

extraction

3) HER2 score 
assessment

Breast tumor 
patients

from Acıbadem 
hospital and 

Warwick 
competition

127 WSIs 94.82% 
segmentation 

and 87%
classification 

accuracy

99.70% 
segmentation

92.83% 
segmentation

95.80% 
segmentation

CNN 
(DenseNet, 
SegNet, M 

odified U-Net)
k-mean, SVM

2

HER2 
Patch 
based 

scoring

Tewary et al. 
2021 (27) 

All types HER2
Quantification 
and automated 
scoring using 

transfer learning 
followed by 
statistical

voting

HER2 Challenge 
dataset from 

Warwick 
University

2130 training 
patches (300 
images, 30 
cases) and

800 test 
patches (100 
images, 10 

cases)

VGG19—patch-
based scoring: 

93%

VGG19—
image-based 
scoring with 
voting: 98%

VGG19—
patch-based 

scoring: 92.3%

VGG19—
image-based 
scoring with 
voting: 98%

VGG19—patch-
based scoring: 

93%

VGG19—
image-based 
scoring with 
voting: 98.3%

VGG19—patch-
based scoring: 

92.7%

VGG19—
image-based 
scoring with 
voting: 98%

CNN (VGG16, 
VGG19, 

ResNet50, 
MobileNetV2, 

and 
NASNetMobile)

3

extraction/
scoring in 

HER2

Tewary et al. 
2020

(AutoIHC-
Analyzer)

(29)

Invasive 
breast 
cancer

Automated HER2 
cell membrane 

extraction,
quantification 

of continuity of 
cell membrane, 

scoring

Tata Medical 
Center (TMC), 
Kolkata, India

180 training 
images

90 
validations

Accuracy 93% 
Macro

accuracy 94% 
Correlation
coefficient

93.6% 94% 94% CNN (SVM 
with Gaussian 

kernel)

4

scoring of 
HER2

Vandenberghe 
et al. 2017 

(28)

Invasive 
carcinoma

Cell detection and 
classification and 

automatic
scoring of HER2

AstraZeneca 
BioBank

74 WSI
(71 slides 

were 
selected)

83 % ()

Cohen’s κ = 
0.69

Kendall’s τ = 
0.84

10-fold cross 
validation : 

78 %

- - 72.5 % CNN (ConvNet)

5

scoring of 
HER2

Wang et al. 
2018 (32) 

All types Automatic HER2 
scoring and 

magnification

Not mentioned 10 WSI 
(12000 

training 
patches, 4800 

validation 
patches, 

20000 test 
patches)

Scoring:
97.8 %

Magnification:
95.0 %

- Scoring:
97.7%

Magnification
95.0%

Scoring:
97.8%

Magnification
95.0%

CNN (LeNet, 
AlexNet, Vgg16)

Data 
preparation: 
SVM,  label 
propagation 

(LPA)

6

scoring of 
HER2

Yue et al. 2021 
(30)

Infiltrating 
duct

carcinoma

Tumor cell 
detection and 
classification, 

membrane 
delineating 

Improvement 
of the HER2 
assessment 

accuracy and 
reliability

Cases of 
postoperative

infiltrating 
duct carcinoma 
not otherwise 

specified (NOS) 
and without 
neoadjuvant 

treatment from 
the Fourth 

Hospital
of Hebei Medical 

University

50 WSI 
(25 HER2 
positive, 
25 HER2 
negative)

Cohen’s kappa:

κ = 0.86 [95% 
CI 0.84‒0.89]

- - - Fully 
convolutional 

network (FCN) 
for tumor cell 
detection and 
classification

LinkNet 
for nuclear 
detection

Table 1. Summary of included studies
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7

scoring of 
HER2

Saha et al. 2018
(Her2Net) (2)

Invasive 
breast 

carcinomas

Identification, 
segmentation and 

classification of 
cell membranes 
and nuclei from 

HER-stained 
breast cancer 

images.

online
HER2 image 

database of the 
Department 
of Computer 

Science,
University of 

Warwick, United 
Kingdom.

79 WSI 
(training: 51, 

testing: 28, 
752 images)

98.3 % 96.8 % 96.6 % 96.7 % CNN (fully 
connected 

TLSTM, SegNet,  
Bayesian 

SegNet, U-Net)

8

Scoring of 
Ki67

Joseph et al. 
2019

Proliferation 
Tumour 
Marker

Network 
(PTM-NET) 

(33)

Invasive 
ductal 

carcinoma

Identification 
of tumor region, 
Identification of 

high density
Ki67

30 Ki67-labelled 
images from the 

AstraZeneca (AZ) 
validation cohort

15 Ki67-labelled
images from 
the Vilnius 

University (VU) 
cohort

102 WSIs 
(Training: 45

Testing: 12
Validation: 

45)

Dice score:
PTM-NET: 

77 %
VGG-NET: 69 %

- - PTM-NET: 
93.5 %

VGG-NET: 
91.9 %

CNN (VGG16,  
PTM-NET)

9

Scoring of 
Ki67

Feng et al. 2020 
(34)

invasive 
ductal 

carcinoma

Automated 
quantitative 

analysis of Ki-67,
Ki-67 Automatic

Counting 
Software in breast 

IDC on WSI

IDC slides from
Department of 

Pathology of West 
China Hospital

Sichuan 
University, China

WSI
training: 677

patch no. 
11,628,208

verification:
153

Patch no. 
2,973,384

test:
187

Patch no. 
2,419,032

Sum
1017 WSI
Patch no. 
17,020,624

Accuracy: 
89.44%

Balance 
accuracy: 

90.14 %

85.05% 82.86% - CNN 
(GoogleNet)

10

Scoring of 
Ki67

Cai et al. (2021) 
(37)

invasive 
ductal 

carcinoma

Improving Ki67 
Assessment 

Concordance 
with AI-

Empowered 
Microscope

cases of Invasive 
breast cancer 

Fourth Hospital 
of Hebei Medical 

University

Training 
set: 632 

WSI from 3 
hospitals

5920 patches 
from 

mentioned 
WSIs

AI-empowered
Microscope +
experienced 
pathologist 

(ICC = 0.937)

inexperienced 
pathologists 
(ICC = 0.923)

- - 83.1 % FCN (LinkNet, 
ResNet18 as 
backbone)

11

Scoring of 
Ki67

Swiderska-
Chadaj et al. 

(2020) (35) 

invasive 
breast 
cancer

Detection of 
Ki67 Hot-Spots of 

Invasive Breast 
Cancer

Digital slides 
from the 

AIDPATH breast 
cancer database,

breast tissue 
cohorts from four 
institutions and 
pathology labs, 
Europe (Spain,

Italy and 
Lithuania)

100 whole 
slide images 

(WSIs) 
belonging 

to 50 breast 
cancer 

patients

Overall 
accuracy: 95%

Method1:96%
Method 2:95%
Method 3: 95%

Spearman’s p 
correlation of

0.92

Method1: 47%
Method 2: 

39%
Method 3: 

77%

Method1:47%
Method 2:44%
Method 3: 70%

Method1:47%
Method 2:41%
Method 3:73%

Method1: Ki67 
data (1 CNN, 

AlexNet)
Method 2: Ki67 
and H&E data 

(2 CNNs)
Method 3:  

Ki67 and H&E 
data (color 

deconvolution 
+ 1 CNN)

12

Scoring of 
Ki67

Geread et al. 
(2021)

(pi-NET) (36)

Invasive 
breast 
cancer

Fully automatic 
Ki67 Proliferation 
Index Calculator

St.Michael’s 
Hospital, Toronto, 

Canada,
Protein Atlas,
Deep Slides,

Ontario 
Veterinary 

College at the 
University of 

Guelph

55 WSI, 773 
patches 

(ROI), and 
90 TMAs

Overall 
accuracy: 

85.2%

ROIs: 87.9% 
TMAs: 85.5% 
WSI: 76.4%

- - Ki67−: 78.8%
Ki67+: 82.0%

pi-NET
other deep 

learning 
methods

(ResUNet, 
DenseUNet, 

FCN8) 
unsupervised 

method 
(IHCCH)
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Scoring of 
Ki67

Negahbani 
et al.

(2021)
(PathoNet) 

(38)

Invasive 
ductal 

carcinoma

Evaluation of 
Ki‑67
and 

tumor‑infiltrating 
lymphocytes

in breast cancer

Shiraz 
Histopathological 

Imaging Data 
Center

23 cases 
(1656 

training 
and 701 test 

image)

95.6% 86.1% 84.4% 85.2% PathoNet, 
FCRN-A, 
FCRN-B, 

Mobilenet, 
Xeption,

Modified U-Net

14

Scoring of 
Ki67

Fulawka et al. 
(2022) (39)

ductal 
carcinoma 

in situ

Assessment 
of Ki‑67 

proliferation
index with deep 
learning in DCIS

Lower Silesian 
Oncology Center, 
Wroclaw Medical 

University, 
Poland

95 WSI 83.7% 75.1% 82.4 74.1% DenseNet121

15

ER and PR 
scoring

Saha et al. 
(2020)

(HscoreNet) 
(25)

Invasive 
breast 
cancer

Automated 
scoring of ER 

and PR, semantic 
segmentation, 
classification, 

and image 
reconstruction

Tata Medical 
Centre (TMC), 

Kolkata,  Indian 
Institute of 
Technology,

Kharagpur, India

600 images 
(300

ER and 300 
PR)

359,884 
(231,851 
immune 

positive and 
128,033

Immune 
negative) 

nuclei

94.53% 95.64% 95.87% 96.49% HscoreNet

*Best sensitivity, specificity, accuracy and precision reported in this article
WSI: whole-slide image, MRF: Markov random field, IHC: Immunohistochemistry, ROI: regions of interest, TMA: tissue microarrays. CNN:  convolutional neural 

network, DCIS: ductal carcinoma in situ
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