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A B S T R A C T

The unfolded protein response (UPR) is an evolutionarily conserved adaptive pathway, 
which is activated by the stress of the endoplasmic reticulum (ER). ER stress often 
occurs due to the high protein demand in cells and protein folding errors in several 
diseases, such as different cancers and autoimmune diseases. UPR is mediated by three 
primary arms called inositol-requiring enzyme-1α (IRE1α), protein kinase RNA-like 
endoplasmic reticulum kinase (PERK), and activating transcription factor 6α (ATF6α). 
Given that homeostasis in protein synthesis is frequently deregulated in cancers, UPR 
plays a critical role in controlling survival and cell death. In addition,, resistance to ap-
optosis is mediated by the pro-survival mechanism of ER stress in cancer cells. Recent 
evidence highlighted the deregulation of UPR signaling in hematopoietic stem cells 
(HSCs) and leukemic cells, so that targeting UPR-driven pro-survival pathways may 
present new therapeutic benefits in leukemia. In this review article, we aim to provide 
an updated knowledge on the role of UPR as a novel therapeutic target in leukemia. 
We first define the different types of leukemia and their challenges with current treat-
ments, and then  explore the contribution of UPR to leukemia pathogenesis and treat-
ment. Finally, UPR targeting strategies in pre-clinical and clinical trials of patients with 
leukemia will be presented. 
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1-Leukemia
As an abnormal growth of white blood cells (WBC),  leu-
kemia is common in both children and adults. Clinically 
and pathologically, leukemia is classified into four major 
groups: acute lymphoblastic leukemia (ALL), chronic 
lymphoblastic leukemia (CLL), acute myeloid leukemia 
(AML), and chronic myeloid leukemia (CML) [1]. This 
grouping is based on the type of blood cells and includes 
both lymphoid and myeloid classes. In the lymphoid 
group, the malignancy alteration observes in the marrow 
cells which transfer to lymphocytes. In the myeloid leu-
kemia, malignancy occurs in erythrocytes, other types of 
white blood cells, and platelets [2,3]. The classification 
also indicates that the leukemia is acute or chronic in 
each category. In acute leukemia, abnormal blood cells 
or blasts which are not  well differentiated are immature 
and can circulate in all blood systems as nonfunctional 
cells. Acute leukemia progresses very quickly and must 
be treated promptly. In chronic leukemia, not all blasts 
are immature, but some may remain mature and act 
normally. Thus, the progression of chronic leukemia 
is usually slower than acute leukemia [4,5]. Although 
studying leukemia has enhanced in recent years, it is 

still the main problem in the recurrence of the disease in 
most patients. Nowadays, the treatment of leukemia and 
lymphoma has evolved significantly and usually consists 
of medicines with specific targets, which are called “tar-
geted therapies.”
 In targeted cancer therapies, agents or factors are mainly 
used to block the pathways which lead to tumor growth. 
Thus they induce cancer cell apoptosis directly or indi-
rectly stimulate the immune system to recognize and kill 
the cancer cells. For example, the  agents that prevent 
cell growth such as inhibitors of tyrosine kinase, histone 
deacetylase (HDAC), proteasomes, and/or hypermethyl-
ation are used as targeted therapy [6]. A new targeted 
therapy that has been getting significant attention and 
has been developing dramatically is the use of endoplas-
mic reticulum the ER stress pathway against cancers and 
other diseases such as inflammatory disorders [7]. ER is 
an intracellular organelle responsible for producing, pro-
cessing, and transporting lipids and proteins in eukaryot-
ic cells. The unfolded or misfolded proteins produced in 
this organelle will undergo protein degradation to keep 
cell homeostasis; however, under severe circumstances 
such as hypoxia or oxidative stress, the concentration of 
these misfolded proteins would cause autophagy or ap-
optosis. However, the first decision in cells is the survival 
of the cells [8]. In this review, we bring up the current 
knowledge of the ER stress effect in acute and chronic 
leukemia, and the mechanisms associated with cancer 
drug resistance. We also emphasize the therapeutic ap-
proaches for the use of the UPR as a novel target path-
way to improve the outcome of leukemia patients.
1-1Unfolded Protein Response (UPR)
ER as the intracellular organelle of the secretory path 
extended from the cell membrane or external nuclear 
membrane (ENM) [9,10]. The function of  protein fold-
ing and the quality control is arranged by chaperones 
and foldases proteins of ER  [11]. The molecular chap-
erones in the ER can recognize the appropriate proteins 
for folding as well as detection and mark inappropriately 
folded proteins to ruin them. Following induction stress 
(such as loading too many proteins), an intracellular 
signaling network called the unfolded protein response 
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(UPR) activates to recruit ER function [12]. The UPR 
helps cells restore homeostasis via different pathways 
such as reducing protein fusion and increasing the rate 
of protein loading to fold them or clear unfolded/mis-
folded proteins by activating chaperones/heat shock pro-
teins (HSPs) [13]. To establish homeostasis in the cell, 
UPR helps survival and cell death in various situations. 
This procedure is performed by the crosstalk between 
plasma membrane, ER, cytosol, mitochondria, and nu-
cleus through induction or inhibition of apoptosis and or 
autophagy [14,15]. ER has three sensors that are activat-
ed during stressful situations, including inositol-requir-
ing kinase/endoribonuclease 1 (IRE1), protein kinase 
activated by double-stranded RNA (PKR)-like ER kinase 
(PERK), and activating transcription factor 6 (ATF6).
Under normal situations or resting the three arms of ER, 
IRE-1α, PERK, and ATF6α, are inactive through binding 
to the ER chaperone 78-kDa glucose-regulated proteins 
(GRP78).  Under different stress stimuli, GRP78 dissoci-
ates from the three sensors and binds to the proteins with 
a higher affinity. So IRE-1α and PERK can oligomerize 
and autotransphosphoryle to set the homeostasis  [16]. 
The primary purpose of ER is to check the folding of the 
proteins and let them reach the final destination only if 
they are folded correctly. During the stressed situation in 
the cell, such as high demand for protein fusion, failure 
in the autophagy pathway, alteration in calcium and pH, 
low level of nutrients (e.g., hypoglycemia), high level of 
reactive oxygen species (ROS), inflammation, hypoxia, 
and cancers, ER stress is activated [17]. Under acute situ-
ations, UPR acts as a pro-survival mechanism to provide 
nutrients and oxygen poverty for the high demand of the 
cells [18,19]. The accumulation of misfolded/unfolded 
proteins could be also active another pathway of UPR 
to remove and degrade them called endoplasmic reticu-
lum-associated protein degradation (ERAD) [20,21]. 

2- UPR Signaling
2-1 IRE-1α—XBP1/RIDD
IRE1 has two isoforms of α and β. The arm of IRE-1α is 
the most conserved sensor of the ER which is activated by 
autophosphorylation and oligomerization during accu-

mulation of misfolded or unfolded proteins [22]. IRE-1α 
has two main domains of endoribonuclease (RNase) and 
kinase Upon activation, IRE-1α with its RNase domain 
splices the X-box binding protein 1 (XBP1) mRNA by re-
moving 26-nucleotide of the intron. The spliced form of 
XBP1 (XBP1s) acts as a transcription factor. XBP1s could 
transfer into the nucleus and control the expression of the 
genes associated with protein folding, secretion, ERAD 
system, or lipid metabolism [13]. The RNase domain of 
IRE-1α is also responsible for RNA degradation in a path-
way known as regulated IRE-1α-dependent decay (RIDD) 
[23]. The role of RIDD is to reduce a load of proteins to ER 
to help the homeostasis maintenance during cell differen-
tiation and inflammation. In severe ER stress, the RIDD 
pathway may induce apoptosis to degrade the ER-resident 
proteins and de-repress Caspase 2 [24]. 
2-2 PERK-eIF2α
PERK is a kind of transmembrane kinase and, while ac-
tivating by homodimerization and trans-autophospho-
rylation, can phosphorylate eukaryotic initiation fac-
tor-2α (eIF2α) at Ser51. This procedure prevents forming 
the 80s ribosome translation initiation complex, so the 
protein translation is attenuated globally [25]. still, some 
transcription factors such as ATF4 are activated and con-
trol some genes, such as the ones involved in ER stress 
responses, protein folding, autophagy, apoptosis and sur-
vival [26].
Indeed, ATF4 function is the different duration of stress 
; in the initiation of stress, pro-survival pathways are ac-
tivated, whereas when the stress is prolonged, the proap-
optotic signal is turned on through C homologous pro-
tein (CHOP) [27]. 
In addition, one of the other PERK pathway responsibili-
ties is to control the antioxidant pathway through nuclear 
factor erythroid-derived (NRF2) phosphorylation [28].
2-3 ATF6α
ATF6 is identified with the basic leucine zipper (bZIP) 
transcription factor and has two known isoforms of α 
and β. Following ER stress initiation, ATF6α transfers 
from the ER to the Golgi. Two Golgi peptidases, the site-
1 (S1P, also named membrane-bound transcription fac-
tor peptidase, site 1 MBTPS1) and site-2 protease (S2P), 
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sliced ATF6α. Following its cleavage, the ATF6α cytosol-
ic domain translocates to the nucleus and binds to the 
genes associated with ER stress response genes, includ-
ing protein folding and quality control of protein folding 
and up-regulation of ER-associated deprivation (ERAD) 
system. The ERAD system is activation followed by the 
accumulation of unfolded proteins to remove unfolded/
misfolded proteins from the ER [29]. Figure 1 illustrates 
the UPR signaling. In this figure, three sensors of UPR 
and their signaling pathway shows in brief. 

3- UPR involvement in cancers
One of the signaling pathways that have a vital role in 
cancer progression is the ER stress pathway that was first 
reported in 1988 [30] and is now believed by most scien-
tists. The main mediators of the UPR, such as IRE1α, un-
spliced and spliced form of XBP1, PERK and ATF6 were 
up-regulated in various cancers and autoimmune dis-

eases such as rheumatoid arthritis (RA) [31,32]. In most 
research experiments including, both in vitro and in 
vivo studies, GRP78 was introduced as the first factor in 
UPR to be activated in cancers and autoimmune diseases 
[32]. [33]. The activation of the UPR in cancers lets the 
tumor cells struggle with difficult situations, including 
hypoxia, oxidative stress, and low nutrient accessibility, 
to survive themselves [34]. Moreover, UPR activation in 
cancer cells leads to disturbance of antitumor immune 
response and chemotherapy resistance. In this situation, 
proinflammatory cytokines such as cytokines IL-6, IL-
23p19, and TNF are secreted more than usual [35]. The 
researchers are studying UPR activity in tumor cells or 
targeted therapy based on ER stress signaling [36].
The role of ER stress pathway in cancer is different in 
various situations. For example, in the early stage of hy-
poxia and stress, UPR supports tumor survival, while 
during chronic stress, this adaptive pathway culminates 

Figure.1. Unfolded Protein Response (UPR) signaling cascade during protein accumulation. Physiological or pathological stress induce three resi-
dent ER sensors; IRE1α, PERK, and ATF6. IRE1α activates and then splices the XBP1 mRNA. Spliced form of XBP1s move to the nucleus as a tran-
scription factor to induce genes associated in lipogenesis and protein degradation system (ERAD). PERK arm inhibits the general protein translation 
by phosphorylation of eIF2α which enables ATF4 activation. ATF4 then translocates to the nucleus and control the genes which are needed for ER 
homeostasis. ATF6 is activated through the S1P and S2P of Golgi by removing the luminal domain and then transferring to the nucleus to activate 
the genes associated with ER stress responses.
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in apoptosis cascade [37].  Furthermore, the crosstalk 
between UPR and autophagy in different malignancies 
is observed because the tumor cells need to re-use their 
organelles to keep their proliferation [38].  

4- Role of UPR in leukemia
4-1 ER Stress Activation in HSCs
Hematopoietic stem cells (HSCs) as immature cells can 
make all types of hematopoietic cells [39]. HSCs are 
sensitive to protein accumulation and need regulated 
protein quality control(PQC). In a steady state, HSC 
has lower protein synthesis than their progeny, and in 
the deregulation of protein synthesis, the survival and 
self-renewal capacities are changed [40].
During regulation of HSC, up-regulation of PERK oc-
curred. By activation of PERK, the downstream path-
way, peIF2α-ATF4/CHOP mediator activates to promote 
apoptosis. So the damaged cells are destroyed [41]. The 
IRE1α-XBP1 arm also switches on with its cytoprotective 
function. The ERAD pathway can maintain the proteins 
homeostasis in HSCs [42]. In the case of hypoxia in bone 
marrow, increased ER stress activity leads to clearance of 
damaged HSC in the early phase of hematopoiesis [43].
4-2 The role of the UPR in AML
AML originates from myeloid stem cells but is not ful-
ly differentiated and is recognized with immature white 
blood cells (myeloblasts) or abnormal red blood cells/
platelets named leukemia cells or blasts. The reason for 
the undifferentiated AML is due to several factors such 
as mutation in transcription factor CCAAT/enhanc-
er-binding protein alpha (C/EBPα) [44] and internal tan-
dem duplications in the FMS like tyrosine kinase 3 gene 
(FLT3-ITD) [45]. AML subtypes are based chiefly on the 
maturation status at the time of diagnosis and the simi-
larity of the cells with normal cells. Acute promyelocytic 
leukemia (APL) and promyelocytic leukemia (PML) are 
the two crucial AML subtypes. APL is a kind of AML that 
accounts for about 15% of AML cases that are created 
when translocation (15;17) is happened (namely PML-
RARα) [46]. In PML-RARα+ AML patients, retinoic acid 
receptor alpha (RARα) is attached to the promyelocytic 
leukemia (PML) on chromosome 15 [47]. The PML-

RARα new molecule acts as a transcriptional repressor 
and blocks myeloid differentiation. Wild-type of RARα 
creates heterodimers with the nuclear receptor co-repres-
sor 1 (N-CoR) family which belongs to co-repressors me-
diating transcription and releases the co-repressors such 
as all trans-retinoic acid (ATRA) in response to cognate 
agonists. The N-CoR protein is an essential molecule for 
transcriptional repression by the tumor suppressor of 
Max dimerization protein 1 [48]. If too much PML-RARα 
binds to NCoR, abnormal proteins conformation and in-
solubility of the N-CoR protein will form and induce ER 
stress in an ERAD system [49]. 
The role of UPR in AML is also defined in some studies. 
However, there is no significant correlation between UPR 
activity and genetic models [50]. For instance, the re-
searchers showed the activation form of GRP78, IRE-1α/
XBP1s and Calreticulin in 17.4 % of AML patients [51]. 
Besides, the expression of XBP1s and GRP78 in 16 out 
of 92 patients showed that the ER protein quality con-
trol, lectin and calreticulin, were increased in leukemia 
patients, too [52]. Calreticulin could bind the C/EBPα 
and block it, so it negatively affects the myeloid differ-
entiation. The overexpression of calreticulin in U937 
AML cells suppressed the translation of C/EBPα [53]. 
Disulfide isomerase protein (PDI), a thiol-disulfide ox-
idoreductase that resides in the ER lumen and interacts 
with calreticulin, can equally bind to the C/EBPα mRNA 
and form  a complex to regulate the translation of C/
EBPα [54]. 
4-3 UPR Involvement in ALL
ALL is a kind of leukemia that originating from the B-cell 
(B-ALL) and or the T-cell lineage (T-ALL). In B-ALL, the 
immature hematopoietic stem cells(HSCs) in the bone 
marrow, and blood circulation accumulates. The reason 
for ALL is due to several factors; one is for the creation 
of philadelphia chromosome(Ph). This chromosome is 
formed in chromosome 22 from a reciprocal transloca-
tion between two genes, ABL-1 from chromosome 9 and 
BCR from chromosome 22 and formed BCR-ABL gene 
on chromosome 22 [55]. The other reasons are a duo 
to other genetic alteration such as activating point mu-
tations, rearrangements in the mixed-lineage leukemia 
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gene (MLLr) [56] and deviation in main genes of B-cell 
development, such as paired box 5 (PAX5) and Ikaros 
family zinc finger protein 1(IKZF1) [57]. Mutations in the 
RAS/RAF pathway have also been identified in ~20–30 % 
of B-ALL patients correlated with poor prognosis [58,59]. 
During terminal differentiation of B-lymphocytes into 
plasma cells, the XBP1, IRE1α, and GRP78 are up-reg-
ulated in plasma cells and are essential for the terminal 
differentiation of B-lymphocytes into plasma cells [60]. 
A great number of experiments demonstrated that UPR 
mediators are primarily involved in the pathology and 
the outcome of ALL. GRP78, IRE1α and XBP1, were 
highly expressed in B-ALL patients [61]. XBP1s and 
GRP78 were also higher expressed in the Ph+ leukemia 
cell lines [62,63]. Therefore, the IRE1α suppression is 
one strategy in leukemia treatment. For example, the 
IRE1α RNase activity was inhibited by STF-083010, and 
apoptosis in B-ALL xenografts was occurred [5]. 
The increased level of UPR is also observed in T-ALL 
cells. c-Myc regulates the UPR response in T-ALL cells 
through increased the ubiquitin fusion degradation 1 
(UFD1) gene transcription. UFD1 is a component of 
the ERAD complex to eliminate of misfolded/unfolded 
proteins from the ER. By inhibiting the UFD1 gene in 
T-ALL cells, UPR is induced and promotes apoptosis via 
PERK-ATF4-CHOP signaling. These findings suggested 
c-Myc/UFD1 signaling as a novel targeted therapy in 
T-ALL [64]. 
4-4 The role of UPR in B-CLL
B-chronic lymphocytic leukemia (B-CLL) is caused by 
the accumulation of malignant B CD5+ cells and is re-
sistant to chemotherapy and apoptosis. Overexpression 
of BiP/GRP78 in B-CLL cells leads to survival of the cells 
and inhibition of GRP78 induced apoptosis through 
CHOP/GADD153 up-regulation [65]. 
4-5 The role of UPR in CML
Chronic myeloid leukemia (CML) as a common hema-
tologic malignancy is occurred in 90% of patients due 
to the creation of the Philadelphia chromosome (Ph) 
which is performed by the translocation between the 
long arms of chromosome 9 (BCR gene) and 22 (ABL 
gene) results in a shortened chromosome 22 (BCR/ABL 

gene). This fusion protein shows the increased activi-
ty of tyrosine kinase [66].  So tyrosine kinase inhibitor 
(TKI) agents is one of approach in treatment of CML 
[2,3]. The BCR-ABL in CML cells up-regulates the ex-
pression of Xbp1 and Grp78, resulting in chemother-
apy-resistant [67]. 
The PERK-eIF2α arm is also upregulated in both CML 
cell line CD34+ cells from CML patients and is asso-
ciated in cancer progression and chemotherapy re-
sistance. Imatinib (tyrosine kinase inhibitor) induces 
apoptosis and downregulates the PERK-eIF2α phos-
phorylation arm. Indeed, inactivation of PERK phos-
phorylation could affect the imatinib efficacy. Thus, the 
PERK-eIF2α phosphorylation branch may be crucial in 
therapeutically targeting  CML disease [68].

5-UPR targeting in leukemia
Given the role of ER stress in numerous cancers, two 
strategy approaches are introduced for leukemia ther-
apeutic target, first by inhibition of UPR cytoprotective 
role and second by its activation of the cytotoxic func-
tion. Targeting each of these items is vital in a different 
situation. In recent years, pharmacological agents for 
UPR targeting different cancers and leukemia is largely 
under investigation to be used in pre-clinical and clinical 
trials [69]. Several pharmacological drugs have recently 
been discovered to have anti-tumor activity by target-
ing UPR components. The creation of effective and se-
lective chemicals that target UPR components has not 
only provided information on UPR regulation in cancer 
cells. Still, it has also taken the field closer to treatment 
possibilities. Recent discoveries have made UPR a viable 
target for developing novel anticancer treatments. These 
techniques might pave the way for individualized thera-
py in the future, giving hope to millions of people living 
with cancer.
For example, GRP78 was up-regulated in B-ALL and tar-
geting it by epigallocatechin gallate(EGCG) compound 
could sensitize the cells to the anti-leukemia drug [61]. 
Other experiment targeting of IRE1α RNAse domain 
by STF-083010 reduced the proliferation rate of cells in 
pre-B ALL cells [61]. One of the reasons for resistance to 
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imatinib in CML is the activation of ATF6α, mediated by 
the protein disulfide isomerase 5 (PDIA5). It has been 
shown that using PDIA5 inhibitor causes the sensitivity 
of the cells to treatment with imatinib [70].
In CLL, the inhabitation of IRE1α, by B109 pharma-
ceutical drug, prevents cancer progression in a murine 
model [71]. Inhibition of IRE1α arm in AML by 2-hy-
droxy-1-naphthaldehyde (HNA), a pharmacological 
agent promotes apoptosis [72]. The Ph chromosome in 
AML patients cause the resistance to imatinib, and the 
inhibition of the IRE1α and ATF6α pathways increased 
the treatment response to this drug [73]. Another strat-
egy in leukemia is inducing a cytotoxic response by in-
creasing the unfolded protein load. For example, in ALL 
treatment, using agents that effects on proteasome, the 
degradation of misfolded proteins are impaired and ap-

optosis is observed [74]. The targeting of ERAD pathway 
in ALL also induces apoptosis [75]. Therefore, it seems 
important to further investigate UPR targeting by differ-
ent pharmacological agents with combination therapy 
with chemotherapy.
5-1 UPR targeting in pre-clinical and clinical trial of pa-
tients with leukemia
Targeting UPR from the initiation of ER stress pathway 
has been studied in several experiments. For example, 
using epigallocatechin gallate (EGCG), a green tea ex-
tract, GRP78 was suppressed through its ATPase activity 
in B-ALL cells results in apoptosis [76]. The preclinical 
studies mainly focused on IRE1 inhibitors, PERK inhib-
itors and other ER stress pathways like ERAD inhibitors 
(table 1). The only clinical trial study performed in AML 
and ALL patients is Bortezomib as a proteasome inhibi-

Number Compound Mechanism Type of leukemia Stage of clinical 
trial Reference

1
epigallocatechin 

gallate (EGCG),
GRP78 inhibitor In B-ALL Pre-clinical [76]

2 MKC-3946 IRE1 inhibitor AML Pre-clinical [72]

3 GSK2606414 PERK inhibitor APL Pre-clinical  [77]

4
Eeyarestatin I

(EerI)
ERAD

multiple myeloma ALL, 

CLL
Pre-clinical [78]

5 Pep42 GRP78 ALL Pre-clinical [76]

6 BMTP-78 GRP78 AML Pre-clinical  [79]

7 Bortezomib proteasome AML 
Phase I–III clinical 

trials

NCT01861314, 

NCT04173585, 

NCT01371981

8 Bortezomib Proteasome Inhibitor ALL Phase III clinical trials NCT02112916

9 STF-083010 IRE1 Multiple myeloma Pre-clinical [80]

10
Retinoic acid and 

arsenic trioxide
PERK APL, AML Pre-clinical [81]

Table 1. UPR targeting in pre-clinical and clinical trial of patients with leukemia
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tor. These approaches persuade the cells to apoptosis or 
other cell death, such as autophagy. 

Concluding remarks
Next-generation of cancer treatment is finding new tar-
geted-therapy. ER stress and UPR pathway is a known 
signaling pathway in cancers and leukemia, which is 
recently most attracted by scientists. Although targeting 
the mediators in UPR pathway has great potential in leu-
kemia, further studies are needed to select which medi-
ators are suitable in different leukemia before initiating 
clinical trials. 

Abbreviation
1- Activating transcription factor 6α (ATF6α)
2- Acute lymphoblastic leukemia (ALL)
3- Acute myeloid leukemia (AML)
4- Acute promyelocytic leukemia (APL)
5- Basic leucine zipper (bZIP)
6- B-cell acute lymphocytic leukemia (B-ALL) 
7- C homologous protein (CHOP)
8- Chronic lymphoblastic leukemia (CLL)
9-  Chronic myeloid leukemia (CML) 
10- Chronic stress (CHR)
11- Endoplasmic reticulum stress (ER) 
12- Endoplasmic reticulum-associated protein degrada-
tion (ERAD)
13-  Endoribonuclease (RNase)
14- Epigallocatechin gallate (EGCG)
15- External nuclear membrane (ENM)
16- Eukaryotic initiation factor-2α (eIF2α)
17- Glucose-regulated proteins 78-kDa (GRP78)
18- Heat shock proteins (HSPs)
19- Hematopoietic stem cells (HSCs)
20- Histone deacetylase (HDAC)
21- Inositol-requiring enzyme-1α (IRE1α) 
22- Philadelphia chromosome (Ph)Protein kinase RNA-
like endoplasmic reticulum kinase (PERK)
23- Protein disulfide isomerase 5 (PDIA5)
24- Protein quality control (PQC)
25- Reactive oxygen species (ROS) 
26- Rheumatoid arthritis (RA)

27- T-cell acute lymphocytic leukemia (T-ALL)
28- Unfolded protein response (UPR)
29- White blood cells (WBC) 
30- X-box binding protein 1 (XBP1) 
31- XBP1 spliced form (XBP1s)
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