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A B S T R A C T

Cancer is a genetic illness that develops for various reasons, including the activation 
of oncogenes, the failure of tumor suppressor genes, or mutagenesis induced by envi-
ronmental stimuli. This article was produced using PubMed, Nature, Science Direct, 
Springer, and Elsevier data. Oncogenes are altered forms of normal proto-oncogen-
ic genes that are important for cell proliferation, development, and regulation. The 
transformation of a gene to an oncogene is caused by chromosomal translocation or 
gene mutation due to addition, deletion, duplication, or viral infection. These onco-
genes are targeted by medications or the RNAi system to limit malignant cell devel-
opment. Various molecular biology methods for cancer detection and treatment have 
been developed, including targeting cancer stem cell pathways for cancer therapy, 
retroviral therapy, oncogene silencing, and alterations in tumor suppressor genes. 
Among all the techniques used, RNAi, zinc finger nucleases, and CRISPR have a 
greater chance of reaching a cancer-free planet.
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INTRODUCTION:

Cancer is the leading cause of death worldwide. In many 
malignancies, essential proteins have been discovered to 
impact signaling pathways controlling cell cycle progres-
sion, apoptosis, and gene transcription [1]. Identifying 
and developing effective pharmacological treatments 
for cancer remains a public health problem. Tumors are 
formed when a single cell undergoes an oncogenic trans-
formation. Some cancers develop the potential to spread 
beyond their original location. The Rous sarcoma virus 
might be used to spread solid tumors, such as sarcomas, 
from one animal to another [2]. This research was creat-
ed using PubMed, Science Direct, Springer, and Elsevier 
publications. The databases were searched using the fol-
lowing keywords: Tumor, Cancer, Oncogenes, Proto-on-
cogenes, Mutagenesis, and Viral Infections.
Oncogenes and cancer development
Oncogenes are genes that promote cancer development, 
while tumor suppressors prevent cancer formation. In-
tOGen collects data from large-scale sequencing initia-
tives to evaluate the importance of cancer genes. Infec-
tion with a virus is an uncommon source of oncogene 
activation in animals. As a consequence of mutations, 
some proto-oncogenes lose their function and become 
oncogenes [3, 4].
Viral infection
Researchers generate viral infections by introducing on-
cogenes into the host chromosomes. It is more likely to 
cause cancer when it infects a progenitor stem-like cell 
than a progeny differentiated cell. They believe the virus 
will prove a helpful tool and a viable method for identify-
ing cancer genesis. Oncology recapitulates ontology for 
viral content. Viral material may be emperor, but cellu-
lar context is essential (Fig. 1) [5, 6].
Cancer and oncogenes
Proto-oncogenes, essential regulators of biological pro-
cesses, exist in normal cells. These genes might behave 
as growth factors, cellular signal transducers, or nu-
clear transcription factors. When these oncogenes are 
produced, they stimulate cell proliferation and play a 
critical role in cancer etiology [7]. Next-generation TKis 

are designed to enhance intracranial activity and reduce 
ROS1-inherent resistance mechanisms. ROS1 is a pro-
to-oncogene that codes for a receptor tyrosine kinase 
with no known physiological function in humans. Pa-
tients may develop intrinsic or extrinsic mechanisms of 
resistance to ROS1 TKIs. Physical alterations that cause 
proto-oncogenes to activate can be divided into two cat-
egories. Point mutations and chromosomal transloca-
tions that create hybrid genes, such as the Philadelphia 
translocation, are examples of mutations that influence 
structure (BRC-ABL). Amplification of genes or chro-
mosomal translocation cause increased expression in 
human malignancies [8, 9]. Inactivated forms of 50 to 
60 carcinogenic genes have been discovered in human 
tumor genomes thus far. Oncogenes are activated by 
transcription. Gene amplification is the process of inte-
grating numerous copies of an oncogene into a cell (e.g., 
c-MYC in neuroblastoma) [10].
Oncogene types and classification
Mutations in growth factors cause cancers such as fibro-
sarcoma, glioma (brain cancer) [11], and osteosarcomas 
(bone cancer) [12]. These growth factors are thought to 
be the root cause of many cancers. Five mutations pro-
duce oncogenes or dysregulation of these chemicals 
[13]. The Epidermal Growth Factor Receptor (EGFR) is 

 

Figure.1. Viruses and cancer. When a virus infects a progenitor cell with 
stem-like characteristics rather than a progeny cell with mature pheno-
types, it is more likely to cause malignant tumors, chronic infections, and 
autoimmune disorders [5, 6].
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a protein found on the skin surface. EGFR mutations are 
most prevalent in the gastrointestinal tract, breast, and 
lung malignancies. Mutations can affect many signaling 
pathways by interacting with other cytoplasmic proteins 
[14]. Ras and other deregulated GTPases stimulate the 
MAPK pathway, causing unregulated signaling and cell 
proliferation, leading to myeloid leukemia. Overexpo-
sure to Raf-1 kinase and cyclin-dependent kinases can 
result in thyroid and ovarian cancer [15, 16].
The role of oncogenes in cancer therapy
Oncogenic malignancies are treated with drugs that in-
hibit oncogene formation or downregulate signaling on-
coproteins [17, 18]. Multiple oncogenic driver changes 
have been identified in the recent decade, each of which 
might be a potential therapeutic target [19]. Investiga-
tion of KRAS’s underlying biology in patients with non-
small cell lung cancer (NSCLC) might aid in identifying 
prospective candidates for evaluating novel targeted 
drugs and combinations [20]. The overexpression and 
activation of ABL1 in hepatocellular carcinoma (HCC) 
lead to poor patient survival [21, 22].
Cancer tumor suppressor genes
In most cancers, tumor suppressor genes (TSGs) are in-
activated, resulting in abnormal cell proliferation and 
malignancy [10, 23]. TSGs that have lost function have 
been linked to resistance to cancer treatments [24]. 
Thus, drug resistance substantially impacts the efficacy 
of anticancer drugs [25].

The function of TSGs
• Tumor suppressor genes have been shown to play es-
sential roles in the following areas:
• Hormone receptors that limit cell growth and prolif-
eration
• Enzymes that play a role in DNA repair
• Checkpoint proteins that stop the cell cycle if DNA or 
chromosomes are damaged
• Proteins that promote programmed cell death proteins 
(apoptosis)
• Proteins that control or stop cells from progressing 
through a certain cell cycle stage [26, 27]
Double agents: tumor suppressors with oncogenic 
functions
Traditional TSGs are anti-proliferative, recessive, and 
commonly inactivated or mutated in malignancies [23, 
28]. Tumor suppressor genes have various cell functions 
in vivo and play different roles in cancer etiology [29]. 
Due to haploinsufficiency, epigenetic hypermethylation, 
or interaction with numerous genetic and neoplastic 
processes, specific tumor suppressors may operate as 
“double agents,” performing opposing roles [30]. This 
indicates a higher proliferative capacity and contributes 
to cancer etiology (Table 1) [31]. Several instances of a 
TSG that does not fit the conventional classical behavior 
and has oncogenic potential have been discovered via re-
search throughout the years (Fig. 2) [31]. Most contem-
porary molecular treatments attempt to create inhibitors 

Classification Genes

Protein-Coding

Transcription factor

FOXL2[49], RUNX1[50], DNMT1[51], DNMT3A[52], ETS2[53], ETV6[54], EZH2[55], FOXO1[51], 
FOXO3[10], GLI1[56], HDAC1[57], FOXO4[10], MXI1[58], NOTCH1[59], NOTCH2[50], NOTCH3[60], 
PAX5[37], RARB[61], SKIL[62], TCF3[63], WT1[43], ZBTB16[64], NR4A3[65], NCOA4[66], KLF4[67], 

LITAF[68], YAP1[51], SALL4[69], HOPX[70], LHX4[71], FUS[72]

Kinases BCR[51], CDKN1B[31], MAP3K8[73], FLT3[74]

Protein binding RHOA[75], ECT2[76], IDH1[77], NPM1[63], PHB[78], PML[47], PTPN11[79], SPOP[80], RASSF1[81], 
ARHGEF12[82], SIRT1[83], SUZ12[84], WHSC1L1[85], WDR11[86], RB1[10], CBL[87],DMBT1[88]

Noncoding RNA
(ncRNA)

MIR106A[33], MIR107[34], MIR125B1[35], MIR146A[36], MIR150[37], MIR155[38], MIR17[33], 
MIR18A[39], MIR194-1[40], MIR194-2[41], MIR196A2[42], MIR20A[43], MIR203A[33], MIR210[44], 

MIR214[45], MIR222[43], MIR223[46], MIR24-1[47], MIR27A[48], MIR18B[39]

Table 1. List of TSGs with a potential oncogenic role (adapted from TSG2.0)
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against oncogenes to target them. Using TSGs to share 
the therapeutic load with other compounds might be 
beneficial. TSGs, on the other hand, are reported to be 
changed more frequently than oncogenes in human ma-
lignancies. The presence of two roles offers up additional 
possibilities while also complicating the approach [32].

RUNX family dual role in cancer
Runt-related transcription factor (RUNX) proteins are 
members of a family of embryonic development master 
regulators that play a role in proliferation, differentia-
tion, cell lineage specification, and even apoptosis [89]. 
RUNX proteins may be valuable biomarkers exploited 
to create cancer early detection methods. The protein 
RUNX has been found to transform TSGs into onco-
genes, causing them to negatively regulate oncogenic 
processes in patients [90]. This implies that they can ac-
tivate tumor suppressors while suppressing oncogenes, 
resulting in a positive tumorigenic activity. Research-
ers discovered decreased function in two patients with 
breast cancer in two of the three RUNX genes [91].
Tumor suppressor gene TP53
P53 plays a role in cell cycle regulation and programmed 
cell death [92]. P53 mutations cause uncontrolled cell 
growth and poor DNA repair. When p53 detects a break 
in the DNA, it can either stop the cell cycle or enable the 
DNA to self-repair [93]. This is accomplished by activat-
ing genes involved in cell cycle control and regulation. 
It is mutated in almost half of all human malignancies, 
including pancreatic ductal adenocarcinoma (PDAC) 

(58.7% mutation frequency), esophageal squamous cell 
carcinoma (93.7%), invasive breast cancer (32.7%), and 
non-small-cell lung cancer (58.7% mutation frequency) 
(66.5%). However, point or missense mutations induced 
by UV radiation, aflatoxins, smoking, or other environ-
mental factors cause the bulk of TP53 gene dysfunctions 
in sporadic malignancies. Therapeutic methods targeting 
mutant TP53 have piqued attention due to the high inci-
dence of TP53 mutation in various malignancies [94-96].
BRCA1/2 tumor suppressor gene
Breast cancer-1 (BRCA1) and breast cancer-2 (BRCA2) 
genes have been linked to familial breast cancer. BRCA1, 
a tumor suppressor gene, contains 100 kilobits of DNA 
and 21 exons. It contains a zinc-finger domain compara-
ble to those found in DNA binding proteins. BRCA2 is a 
tumor suppressor gene as well [97, 98].
Wilms’ Tumor 1 (WT1) gene 
The Wilms’ Tumor 1 (WT1) gene encodes a repressor pro-
tein that inhibits the transcription of many growth fac-
tor-inducible genes [99]. WT1 is inactive in Wilms’ tumor, 
the juvenile kidney tumors [100]. Inactivation causes a tu-
mor in the immune system [101]. The WT1 gene, overex-
pressed in Wilms’ tumors and contributes to aberrant cell 
proliferation, targets insulin-like growth factor II (IGF2) 
[102]. Several investigations in recent years have shown 
WT1 protein in the cytoplasm of several benign and ma-
lignant cancers, indicating its complex regulator activity 
in transcriptional and translational processes. Although 
WT1 cytoplasmic staining has been seen in various be-
nign and malignant cancers, it is rare [103].
Tumor suppressor genes and their application
Various techniques may be used to investigate tumor 
suppressor genes at the DNA, mRNA, and protein levels 
in normal and malignant cells. Individuals susceptible 
to retinoblastoma and other cancers might benefit from 
tests that detect heterozygosity. The growing prevalence 
of p53 mutations expands diagnostic and analytical pos-
sibilities. RNase preservation tests, single-strand struc-
tural variation, and denaturing gel electrophoresis can 
be used to study the alterations. In tumor cell line lysates 
and tissue homogenates, immunometric methods suc-
cessfully detect p53 mutations [27, 104].

Figure.2. Identification of probable circumstances with examples of 
candidate TSGs where TSGs do not exhibit conventional tumor-sup-
pressive activity [31]
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Cancer diagnosis using molecular pathology
Next-generation sequencing (NGS) helps uncover can-
cer’s actual variety and identify recurrent mutations that 
may be targeted with novel treatments. Things are not 
just categorized by morphological and descriptive meth-
ods, but by a mix of histopathological and genetic taxon-
omy [105, 106].
Treatment for cancer back then and today
Different therapeutic techniques and treatments have 
been utilized to treat cancer. The most commonly used 
methods are surgery, radiation treatment, chemother-
apy, hormone therapy, immunotherapy, adjuvant ther-
apy, targeted-growth signal inhibition, apoptosis-in-
ducing drugs, nanotechnology, RNA expression and 
profiling, and the most recent, CRISPR. Cancer cells 
may be destroyed by altering genes or turning off on-
cogenes. Oncolytic viruses may be used in combination 
with chemotherapy medicines to destroy cancer cells 
[95, 107, 108]. This review will go through a few more 
prevalent approaches later on.
Cancer treatment by targeting cancer stem cell 
pathways
Cancer stem cells (CSCs) have been regarded as prospec-
tive therapeutic targets for cancer treatment since they 
were initially discovered in leukemia in 1994. These cells 
can self-renew, differentiate, and play various cancers, 
including recurrence, metastasis, heterogeneity, multi-
drug resistance, and radiation resistance [109]. Several 
pluripotent transcription factors, including OCT4 [110], 
Sox2 [111], Nanog [112], KLF4 [113], and MYC [114], 
govern the biological activity of CSCs. Wnt [115], NF-
κB (nuclear factor- κB) [116], Notch [115], Hedgehog 
[117], JAK-STAT (Janus kinase/signal transducers and 
activators of transcription) [118], PI3K/AKT/mTOR 
(phosphoinositide 3-kinase/AKT/mammalian target of 
rapamycin) [119], TGF/SMAD [120], and PPAR (per-
oxisome proliferator-activated receptor) [121], TGF/ To 
selectively target CSCs, molecules, vaccines, antibodies, 
and CAR-T (chimeric antigen receptor T cell) cells have 
been produced. Some of these components are now be-
ing studied in clinical trials. This study outlines CSC 
classification and identification, displays main determi-

nants and processes that govern CSC growth, and con-
siders possible CSC targeted treatment [109, 112].
CAR treatment is a type of gene therapy
The FDA has authorized Kymriah™, a ground-breaking 
cancer therapy that inserts the CD19 gene ex vivo into 
the patient’s white blood cells or T cells. Chimeric anti-
gen receptors (CARs) are synthetically designed antigen 
receptors that reprogram the specificity, activity, and me-
tabolism of T cells in a single molecule. Car-T cell treat-
ment has been related to serious systemic adverse effects 
that need immediate medical attention and, in rare cir-
cumstances, results in patient death. Third-party CAR-T 
cells that can be used “off the shelf” would allow more 
rapid and less expensive treatment. [122, 123].
Interference with RNA
RNA interference (RNAi) uses small noncoding RNA 
that may bind to other mRNAs and inhibit their process-
ing of proteins. RNAi may be employed in cancer ther-
apy to inhibit the activity of cancer genes. In mammals, 
including humans, endogenous siRNAs have not been 
discovered. There are no universal pathways for deliver-
ing exogenously synthesized RNA to cells in a targeted 
manner (Fig. 3) [124]. RNAi can knock down numerous 
target genes, and there are several methods for deliver-
ing these genes to the body.
Cancer gene therapy using viral vector systems
Gene therapy is a possible therapeutic method for var-
ious illnesses (including hereditary abnormalities, cer-
tain forms of cancer, and some viral infections). The 
method remains hazardous and is being researched to 
ensure effectiveness and safety. No one delivery tech-
nique can treat all cell types [125].
Retrovirus vectors
Retroviruses (RV) are limited RNA viruses with a dip-
loid single-stranded RNA (ssRNA) genome and at least 
four genes: gag, pro, pol, and env. Replication-competent 
retroviruses cause malignant illness and some other 
pathogenic states in various animals. A novel type of ret-
roviral-vector-mediated gene transfer has been revived. 
The capacity of RV to integrate into the host cell genome 
increases the risk of insertional mutagenesis and onco-
gene activation [126, 127].
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Lentivirus vectors
Lentiviruses, a kind of RV, have a single-stranded pos-
itive-sense RNA sequence translated into DNA and in-
tegrated into the host genome, resulting in long-term 
infection. The overwhelming majority of lentiviral vec-
tors (LVVs) are produced from HIV-1 and can integrate 
into the genomes of infected cells. LVVs have been used 
to alter T cells by adding genes to generate immuni-
ty to combat cancer by injecting chimeric antigen re-
ceptors (CARs) or cloned T-cell receptors [128]. CAR 
T-cell therapies generated using lentiviral (LVV) stem 
cells are successful in individuals with B-cell neoplasia. 
The long-term safety of these treatments is even being 
researched. While LVV systems are derived from HIV, 
their dispersion over multiple plasmids and the deletion 
of many HIV proteins decrease the likelihood of gener-
ating HIV-capable virus. Developing LVVs incapable of 
reproduction in human cells is one way to solve safety 
concerns [129, 130].
Adenovirus vectors
Adenoviruses (AV) (Fig. 4) are another method for deliv-
ering target pieces for dsRNA synthesis. They offer many 
benefits over lentiviruses [124]. Adenoviruses (AV) are 
DNA viruses with a double-stranded genome of 34- to 

43kb and utilize alternative splicing to encode genes in 
sense and antisense orientations. Some genetic anomalies 
associated with AV, such as induced immunity to the AV 
capsid and low-level AV gene expression, may now help 
develop anticancer immunotherapies. Because of the com-
bination of AV immunity and the short-expression time, 
AV may be a feasible vaccine development option [131].
Adeno-Associated Virus (AAV)
Another viral vector utilized in gene therapy is the ad-
eno-associated virus (AAV) [132]. AAV was discovered 
as a contaminant in a simian adenovirus preparation for 

Figure.3. A diagram of RNAi in cells [124]

Figure.4. Mechanism of action of adenoviral particle transfection [124]
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the first time. The 4.7kb ssDNA within a non-enveloped 
viral particle contains the p5, p19, and p40 promoters 
and the rep and cap genes flanked by two 145-nucleo-
tide-long inverted terminal repeats (ITR) [133]. AVR 
has been discovered as a universal host cell receptor for 
AAV infections. As a result, AAV is a beneficial method 
for transducing a specific cell or tissue type. AAV1 has 
high transduction effectiveness in muscles, neurons, the 
heart, and the retinal pigment epithelium. Many kinds 
of cancer cells, neurons, kidneys, retinal pigment epithe-
lium, and photoreceptor cells have been demonstrated 
to be infected by AAV2. The only serotype capable of in-
fecting and delivering a therapeutic gene to the kidney 
is AAV2 [134].
Gammaretroviruses
Early gene therapy experiments utilizing gammaretrovi-
ral vectors detected the most severe cases of cell prolifer-
ation linked with vector integration. These vectors have 
potent enhancers in the long terminal repeats (LTRs), in-
creasing gene transcription and cell proliferation when 

integrated near cancer-related genes. The challenge of 
forecasting pathogenic clonal growth is highlighted by 
the late cancer start and sudden lymphoproliferation. 
The pre-leukemic clone with the LMO2 proto-oncogene 
integration site was never found in more than 2% of the 
peripheral blood lymphocytes in this patient [135, 136].
Cancer gene therapy using nonviral delivery meth-
ods
Nonviral delivery approaches, like proteins, synthetic oli-
gonucleotides, tiny chemicals, and genes have been used 
to improve tumor-selective delivery of therapeutic med-
icines [137]. Table 2 lists nonviral delivery methods such 
as liposomes and polymer-based delivery materials for 
systemic delivery, physical methods such as electropora-
tion, sonoporation, and others for locally injecting thera-
peutic molecules, and virosomes for using infectious viral 
machinery for therapeutic molecule delivery [138].
Genome editing nucleases
Genome editing is a technique that allows humans to use 
designer endonucleases to edit the target genome and 

DDS Administration Characteristic properties Clinical use for cancer

Liposomes [139] Mainly systemic 1. Delivery efficiency affected by lipid 
components

Gene and drug delivery to many cancers 
such as melanoma, glioma, etc

Polymer-based
1. Micelle [140] Mainly systemic

1. Smaller than liposome and efficient accu-

mulation in tumor

1. Drug delivery to some cancers such as 

colon, gastric, pancreas, etc.; dependent on 

the drug

2. Atelocollagen [141] 2. In vivo use only 2. -- 5. Not clinically tested

3. Gelatin [142] Mainly topical 3. Slow release of therapeutic molecules

4. Chitosan [143] Mainly systemic 4. 5. More suitable for gene

5. PEI[144] Topical and siRNA delivery

Physical
1. Electroporation[145] Topical 1. High gene expression 1. Gene transfer to melanoma

2. Sonoporation [146] 2. Less invasive than electroporation 2. Not clinically tested

3. Hydrodynamic [147] 3. Limited use for gene delivery 3. Vaccination (melanoma)

4. Gene-gun [148] 4. Gene transfer to the tissue surface 4. Tumor cell vaccine
(melanoma, sarcoma)

Virosome [149]
1. HVJ-E [150] Mainly topical

1. Fusion-mediated delivery, tumor-specific 
killing, activation of

tumor-specific immunity
1. Melanoma treatment using empty vector*

2. HBV [151] Systemic 2. Hepatocyte-specific delivery 2. Not clinically tested

Table 2. Comparison of different delivery systems
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knock out or introduce particular DNA segments within 
a cell or organism. Early gene-editing relied on an inef-
ficient homologous recombination targeting technique 
prone to off-target consequences. Zinc Finger Nucle-
ase (ZNF), Transcription activator-like effector nucle-
ase (TALEN), and clustered regularly interspaced short 
palindromic repeats (CRISPR)-associated are the three 
main types of CRISPRs used for genome editing [152, 
153].
Zinc finger proteins (ZNFs)
These are discovered as DNA-binding domains in eukar-
yotes. These are made up of 30-amino acid modules or-
ganized in the shape of an array of Cys2-His2 DNA-bind-
ing zinc fingers. These modules are utilized to create a 
nuclease domain of FokI. The modules consist of 3-6 
zinc fingers that detect nucleotide triplets. The FokI nu-
clease works only as dimers. Thus, a pair of zinc finger 
nucleases are required to target any site in the genome. 
One ZFN will identify the sequence upstream of the 
genomic area to be changed, and the other will identify 
the downstream sequence [154]. These arrays attach to 
adjacent DNA sequences in the opposite strands to cause 
a double-stranded break in the particular location. The 
fractures are subsequently repaired in various ways that 
may produce diverse alterations in the particular area, 
such as point mutations, indels, or translocations. The 
ZNFs are specially built to identify all conceivable nu-
cleotides and any particular section of DNA [155, 156].
Coupled to nucleases (TALENs)
TALENs, like ZnF-Ns, have nucleic acid- (DNA or RNA) 
binding domains on a single polypeptide chain coupled 
to an endonuclease. TALENs are proteins identified in 
Gram-negative plant pathogenic bacteria of the genus 
Xanthomonas. To aid in the infection process, Xantho-
monas secretes TALENs into plant host cells through the 
type III secretion system [157]. Ralstoniasolanacearum 
and Burkholderiarhizoxhinica, two plant pathogen-
ic Gramnegative bacteria, were subsequently found to 
possess them[158]. They have minimal structural sim-
ilarity to ZnF domains. TALENs have the potential to 
target complicated cancer genes. It cleaves the target 
gene sequence by dimerizing the TALEN’s FokI nucle-

ase cleavage domain. Because it can target any gene in 
the genome, this gene-editing method may be used to 
successfully treat cancer cell lines [155, 159].
CRISPR-CAS9 system is a potent tool for cancer ge-
nome editing
CRISPR stands for Clustered regularly interspaced palin-
dromic sequences and is a potent genome-editing tech-
nique [159]. This ground-breaking technology enables 
researchers to manipulate every gene (DNA sequence) 
in any organism’s whole genome in vitro or even directly 
in the genome. It aids in the elucidation of the function-
al structure of the genome at the systems level, as well 
as the detection of random genetic variants. The use of 
technology is critical in early cancer diagnosis [160].
CRISPR-Cas9 mechanism in cancer treatment
CRISPR-Cas9 system has been developed as an immu-
nological response against foreign bacteriophage or plas-
mid invasion. A repeat-spacer array is integrated into 
CRISPR to identify and record exogenous DNA or RNA 
fragments. Transcription and processing of the CRISPR 
precursor result in mature CRISP-derived RNA (Fig. 5) 
[161]. CRISPR-cas9 is a valuable technique for identify-
ing genes that might be used as therapeutic targets for 
cancer. Cancer cells addicted to oncogenes are more sus-
ceptible to treatments that target specific driver genes, 
such as CRISPR and other cutting-edge techniques. A 
comprehensive library of potential cancer treatment 
targets has been developed using genome-scale CRIS-
PR-CAS9 screening in 324 cancer cell lines from 30 can-
cer types [162]. CRISPR-Cas9 is more efficient against 
tumors with single-gene changes, and it is typically ad-
ministered in vitro to a specific area. Two different repair 
methods are used to repair double-stranded breaks or 
nicks in particular areas. NHEJ is a clumsy repair meth-
od that connects damaged ends, resulting in hete-roge-
neousindels (insertions and deletions). HDR is a precise 
repair method using homologous donor template DNA 
to repair DNA damage [163].
The benefits of CRISPR over traditional methods
The CRISPR target design process is simpler because it 
relies on ribonucleotide complexes rather than DNA rec-
ognition. The method is much less expensive than nu-
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cleases since it does not need separate proteins for each 
target and avoids time-consuming cloning procedures 
[164]. This method may be used to any sequence in the 
genome. It outperforms ZFNs and TALENs in terms of 
efficiency. The RNA encoding Cas protein may be di-
rectly injected to change the host genome. Compared 
to traditional techniques, it is a much quicker and sim-
pler approach [165]. It does not cause DNA methylation 
sensitivity. Therefore it may be utilized at GC-rich tar-
get sites. Using a vast number of gRNAs, multiple genes 
may be altered simultaneously.
Conclusion and future perspectives
Molecular biology has advanced faster in the last dec-
ade than ever before. Various cancer therapy methods 
are being developed and are proving to be effective. Any 
sequence in the genome, including several genes, may 
be targeted by scientists. This may be very beneficial in 
treating diseases such as cancer [166]. Vectors that are 
efficient and minimally intrusive are often regarded as 
a perfect drug delivery system (DDS). However, in the 
case of cancer, DDS with anticancer properties might be 
a viable treatment option. Multiple therapeutic routes 
may be improved by combining medicinal compounds 
with DDS with anticancer properties [167]. However, 
some new methods have a great potential to treat can-
cer, such as epigenetics [168]. Epigenetics studies dy-
namic and heritable changes to the genome that occur 
regardless of DNA sequence. It necessitates cooperative 
interactions with a variety of enzymes and other chem-
ical components. The inappropriate beginning of genet-
ic expressions and cancer may be caused by erroneous 
epigenetic changes. Because epigenetic modifiers are 
reversible and vulnerable to external influences, they 
become interesting targets in various cancer treatment 
methods. Several epi-drugs have recently been created 
and tested in clinical trials. Epi-drugs have demonstrat-
ed promising results, whether alone or in conjunction 
with chemotherapy or immunotherapy, including en-
hanced antitumor effects, drug resistance, and stimula-
tion of the host immune response [169, 170].
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