The effect of 8 weeks endurance exercise on the content of total and phosphorylated AKT1, mTOR, P70S6K1 and 4E-BP1 in skeletal muscle FHL of rats with type 2 diabetes
Abstract
Introduction: The mTOR pathway in skeletal muscle plays a very important role in the protein synthesis process, which plays a very important role in proteins. The role of endurance exercise has not yet been studied in this important pathway in protein synthesis in people with type 2 diabetes. The purpose of the present study was to investigate the effect of 8 weeks endurance training on the content of total and phosphorylated AKT1, mTOR, P70S6K1 and 4E-BP1 in skeletal muscle FHL of rats with type 2 diabetes.
Methods: In this experimental study, 16 Sprague-Dawely male rats with average weight of 270±20 were selected and randomly divided into two groups: control (n=8) and endurance training (n=8). The training group exercised according to the training program 4 days a week for 8 weeks. While the control group had no training program. T-test and SPSS V-19 were used to analyze the data.
Results: There was not observed any significant difference in the content of total (P=0.58) and phosphorylated (P=0.33) AKT1, total (P=0.47) and phosphorylated (P=0.78) mTOR, total (P=0.24) and phosphorylated (P=0.12) P70S6K1 and total (P=0.45) and phosphorylated (P=0.48) 4E-BP1 proteins in the endurance training group compared to the control group.
Conclusion: Endurance training for 8 weeks could not increase the total and phosphorylated content proteins of the present study; therefore, it cannot lead to protein synthesis or muscle hypertrophy through mTORC1 pathway.