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Highlights 
 
• Smartphone-based PPG measurements of SDNN and rMSSD effectively differentiate AMI patients from healthy controls, with 

SDNN ≤21.35 ms showing high sensitivity (87.6%) for detection.   

• Reduced HRV indices (SDNN and rMSSD) correlate with clinical severity markers, including lower LVEF, higher Killip class, and 

multivessel CAD.   

• Short-term HRV assessment via smartphone PPG offers a noninvasive, accessible tool for early AMI screening and risk 

stratification.   

• SDNN outperforms rMSSD in diagnostic accuracy (AUC 0.832 vs. 0.738), supporting its utility in digital health monitoring for 

cardiovascular disease. 
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       A B S T R A C T 

Background: Heart rate variability (HRV) correlates with localized myocardial ischemia and 

predicts adverse cardiovascular outcomes after acute myocardial infarction (AMI), including 

sudden cardiac death, non-sudden cardiac death, and noncardiac death. 

Photoplethysmography (PPG) measurements demonstrate good agreement with ECG for time-

domain HRV indices. In this study, HRV was measured via smartphone PPG, focusing on 

standard deviation of all normal RR (NN) intervals (SDNN) and root mean square of successive 

differences (rMSSD)—parameters recognized for their low error and recommended for clinical 

use. 

Methods: This cross-sectional case-control study was conducted at a tertiary hospital in 

Vietnam. HRV indices (SDNN and rMSSD) were measured for 2 minutes using a camera-based 

PPG smartphone application. Clinical data were collected at admission. Linear and logistic 

regression analyses assessed associations between HRV, AMI status, and clinical severity. 

Receiver operating characteristic (ROC) curve analysis evaluated diagnostic performance. 

Results: A total of 101 patients with AMI and 121 age- and sex-matched healthy controls were 

included. The AMI group exhibited significantly lower HRV indices, with a mean SDNN of 20.63 

±10.16 ms and rMSSD of 23.67±12.38 ms, compared with 33.99±11.72 ms (SDNN) and 35.9 

±16.21 ms (rMSSD) in the control group (P <0.001 for both). An SDNN cutoff of ≤21.35 ms 

yielded an area under the curve of 0.832, with a sensitivity of 87.6% and specificity of 62.4% for 

identifying AMI. Lower HRV was also significantly associated with higher clinical severity 

indicators, including reduced left ventricular ejection fraction, Killip class II-IV, regional wall 

motion abnormalities, and multivessel coronary artery disease. 

Conclusions:  The use of camera-based HRV smartphone applications to measure short-term 

SDNN and rMSSD may serve as a novel digital health tool to improve the detection of coronary 

artery disease, particularly AMI, given its simplicity and noninvasive nature. 
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Introduction 
 

eart rate variability (HRV) has emerged 

as a key metric for assessing variability 

in intervals between successive 

heartbeats. Influenced by neurohumoral 

factors, HRV reflects shifts in autonomic nervous 

system balance. Extensive research demonstrates 

the potential of HRV indices to support clinical 

decision-making in predicting cardiovascular 

events and their diagnostic value in cardiovascular 

disease.1 

Under normal conditions, the autonomic 

nervous system, including both vagal and 

sympathetic components, regulates cardiac 

activity. While cardiovascular events such as 

arrhythmias, cardiac death, and sudden death were 

historically attributed primarily to increased 

sympathetic activity, recent evidence indicates 

these events correlate more strongly with 

diminished vagal protective function.2 

HRV can be assessed using multiple 

methodologies, including time-domain, frequency-

domain, and nonlinear measures. These 

approaches consistently demonstrate significantly 

reduced values in patients with acute myocardial 

infarction (AMI).3,4 Comparative studies show 

nearly identical results between HRV signals 

obtained from earlobe photoplethysmography 

(PPG) recordings and conventional 3-lead ECG, 

confirming PPG as a reliable method for acquiring 

signals for HRV analysis.5 

The time-domain indices standard deviation of 

all normal RR (NN) intervals (SDNN) and root 

mean square of successive differences (rMSSD), 

measured via camera-based HRV smartphone 

applications, were significantly reduced in AMI 

patients. This reduction likely reflects autonomic 

imbalance characterized by diminished vagal tone 

and heightened sympathetic activity. Rather than 

serve as direct diagnostic markers, these changes 

represent physiological manifestations of 

dysautonomia. Compared with traditional ECG-

based methods, smartphone PPG technology—a 

light-based HRV assessment approach—offers a 

more accessible, convenient, and user-friendly 

alternative for evaluating autonomic function in 

clinical and remote settings.6,7 

Based on this principle, smartphone-based 

HRV applications show promise for AMI detection 

and patient monitoring. Validation studies 

demonstrate a strong correlation between 

application-derived HRV indices and those 

obtained from conventional ECG.8 We, therefore, 

conducted the present study with two primary 

objectives: to compare time-domain HRV 

parameters (SDNN and rMSSD) between AMI 

patients and healthy controls, establishing optimal 

cutoff values for AMI detection, and to assess the 

relationship between reduced HRV and clinical 

severity markers in AMI patients. 

 

Methods 

 

Study Design and Setting 

 

We conducted a cross-sectional case-control 

study at Hue Central Hospital in Hue City, Vietnam, 

from September 2022 through September 2023. 

This study adheres to the Strengthening the 

Reporting of Observational Studies in 

Epidemiology (STROBE) guidelines for cross-

sectional research. 

 

Study Population 

 

The study population consisted of 101 

consecutive patients with AMI who underwent 

coronary intervention at Hue Central Hospital 

between September 2022 and March 2023, along 

with 121 age- and sex-matched healthy controls. 

AMI diagnosis was confirmed according to the 

Fourth Universal Definition of Myocardial Infarction 

and European Society of Cardiology (ESC) 

guidelines.6 Patient inclusion required age ≥18 

years, sinus rhythm, and provision of signed 

informed consent. Exclusion criteria comprised 

refusal to participate, use of HRV-affecting 

medications (β-blockers, α-blockers, angiotensin-

converting enzyme inhibitors, angiotensin II 

receptor blockers, non-dihydropyridine calcium 

channel blockers [verapamil or diltiazem], digitalis 

glycosides, class I-C antiarrhythmics, or 

fibrinolytics), significant arrhythmias beyond sinus 

tachycardia/bradycardia or occasional premature 

beats, and prior coronary intervention before HRV 

measurement.  

Control participants were asymptomatic 

H 
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volunteers without cardiovascular disease, as 

confirmed by 12-lead ECG and high-sensitivity 

troponin T testing, and they were not taking any 

medications known to influence autonomic 

function. 

 

Variables 

 

The study analyzed three categories of 

variables: (1) demographic characteristics (age and 

sex); (2) clinical indicators (heart rate, systolic 

blood pressure [SBP], diastolic blood pressure 

[DBP], and body mass index [BMI]); and (3) 

severity-related paraclinical parameters, including 

left ventricular ejection fraction (LVEF), Killip 

classification, regional wall motion abnormalities, 

and multivessel coronary artery disease (CAD). 

HRV was assessed using time-domain indices 

measured via a camera-based HRV smartphone 

application: 

• SDNN: Standard deviation of all normal R-

R intervals during 2-minute recording (ms) 

• rMSSD: root mean square of successive 

differences between consecutive normal R-R 

intervals during 2-minute recording (ms) 

 

Data Measurement 

 

HRV is a noninvasive marker that reflects 

autonomic nervous system activity in regulating 

cardiac function. Among the various methods of 

HRV assessment, time-domain and frequency-

domain analyses are the most widely applied.9 

Time-domain analysis evaluates fluctuations in 

the duration between successive normal 

heartbeats (NN intervals), typically obtained from 

continuous ECG recordings such as 24-hour Holter 

monitoring. Commonly used time-domain indices 

include SDNN, which reflects overall HRV and 

long-term circadian influences; standard deviation 

of the average NN intervals for all 5-minute 

segments (SDANN), which captures low-frequency 

(LF) variations; and rMSSD, which measures short-

term HRV and is considered a reliable indicator of 

vagal tone. While the percentage of NN intervals 

differing by more than 50 ms (pNN50) is also used 

to assess short-term variation, rMSSD is more 

stable and preferred in clinical settings. 

Frequency-domain analysis, on the other hand, 

provides insights into the distribution of power 

across specific frequency bands. High-frequency 

(HF;0.15–0.40 Hz) components reflect 

parasympathetic activity, while LF (0.04–0.15 Hz) 

components are primarily associated with 

sympathetic modulation. The LF/HF ratio is often 

used to estimate the sympathovagal balance. Very-

low-frequency and ultra-low-frequency 

components are less well understood and are not 

routinely interpreted in clinical practice. 

Overall, SDNN is regarded as a representative 

indicator of global HRV, influenced by intrinsic and 

external factors, while rMSSD and pNN50 serve as 

reliable measures of short-term parasympathetic 

modulation. These HRV indices are clinically 

relevant and have been associated with prognostic 

outcomes in cardiovascular diseases, particularly 

AMI.10,11 

In this study, HRV was assessed using PPG via 

a camera-based HRV smartphone application. We 

selected SDNN and rMSSD as the primary time-

domain indices, as these parameters are less 

prone to measurement error and are commonly 

recommended in clinical and research settings.7 

PPG was acquired using the Camera Heart 

Rate Variability smartphone application (A.S.M.A. 

B.V., Netherlands). Given the limitations of 

smartphone cameras, additional methods are 

necessary to accurately compute HRV from the 

video stream. The camera-based HRV smartphone 

application performs RR interval extraction, data 

alignment, and feature computation. The app uses 

a peak identification algorithm to find peak-to-peak 

intervals from the upsampled PPG data. It relies on 

a slope inversion method for peak detection and 

corrects for artifacts using specific criteria. Initially, 

consecutive RR intervals are discarded if they 

deviate by more than 75% from the preceding 

interval. Outliers are subsequently removed by 

retaining RR intervals within 25% of the first quartile 

and 25% beyond the third quartile. This strategy 

prevents excessive correction and addresses 

issues related to removing consecutive RR 

intervals that differ by more than 25%, particularly 

in individuals with high beat-to-beat variability. 

Ultimately, data from the initial 1 to 2 minutes are 

discarded if the PPG signal is disturbed by 

excessive noise from participant movement or 
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other unidentified factors. The application 

incorporates algorithms to assess measurement 

accuracy, categorizing each recording into 3 levels: 

optimal, good, and poor. Only results categorized 

as optimal were included in the study.8,12 

For optimal signal quality and minimal motion 

artifacts, measurements were performed under 

low-light conditions with participants in a resting, 

supine position. 

HRV was recorded using the camera-based 

HRV smartphone application via fingertip PPG on 

the rear camera. Each resting measurement lasted 

2 minutes with the application’s default settings; the 

resulting data were automatically stored for 

analysis (Figure 1). 

A total of 101 patients with AMI were enrolled in 

the patient group. Each participant was monitored 

systematically, and data were recorded using a 

standardized template. Before percutaneous 

coronary intervention, the diagnosis of AMI was 

confirmed, and HRV was measured at least twice 

using the camera-based HRV smartphone 

application. The recording with the highest signal 

quality, categorized as optimal by the application’s 

internal algorithm, was selected for analysis. 

All patients underwent relevant laboratory 

testing, including 12-lead ECG, echocardiography, 

and high-sensitivity troponin T measurement. 

Indications for imaging and percutaneous coronary 

intervention were determined according to 

standard diagnostic protocols. Overall clinical 

severity was quantified using the Thrombolysis in 

Myocardial Infarction (TIMI) risk score, while heart 

failure severity was graded using the Killip 

classification. Medical history and comorbidities 

were also recorded. Based on the TIMI risk score, 

patients with scores of 0 to 2 were classified as low 

risk, while those with scores ≥3 were classified as 

medium- to high-risk. Multivessel CAD was defined 

as luminal stenosis of at least 70% in two or more 

major coronary arteries or in one coronary artery in 

addition to stenosis ≥50% in the left main trunk. 13 

The control group comprised 121 healthy 

individuals who underwent HRV measurement 

using the same camera-based HRV smartphone 

application under standardized conditions (Figure 

2). 

Sampling Method 

 

Participants were selected through convenience 

sampling of eligible patients admitted to the 

cardiology department during the study period. 

 

Statistical Analysis  
 

Statistical analyses were performed using 

SPSS software (version 20.0; IBM Corp.). The 

normality of continuous variables was evaluated 

with the Shapiro-Wilk test. Continuous variables 

are presented as mean ± SD, and categorical 

variables are presented as n (%). Group 

comparisons were performed using an 

independent t-test for continuous variables and the 

χ² test for categorical variables. 

Receiver operating characteristic (ROC) curves 

were generated to assess the diagnostic 

performance of HRV indices, and the area under 

the curve (AUC) was calculated. The DeLong test 

was used to compare the AUCs of SDNN and 

rMSSD.  

To evaluate the association between AMI and 

HRV indices (SDNN and rMSSD), we utilized a 

multivariable linear regression model adjusted for 

heart rate, SBP, DBP, and BMI. Binary logistic 

regression was performed to assess the 

relationship between reduced HRV and indicators 

of clinical severity (e.g., reduced LVEF, Killip class 

II-IV, TIMI score ≥3, regional wall motion 

abnormalities, and multivessel CAD. Both crude 

and adjusted odds ratios (ORs and aORs, 

respectively) with their 95% CIs were reported. 

Multivariable models were adjusted for age, sex, 

heart rate, SBP, DBP, BMI, smoking status, 

diabetes, hypertension, and dyslipidemia. 

For all analyses, a 2-tailed P-value <0.05 was 

considered statistically significant. 

 
Figure 1. Measurement interface and heart rate variability 

(HRV) results from the camera HRV app. 
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Figure 2. Flowchart of sample collection and group allocation. 

AMI: acute myocardial infarction 

 

Results 

 

The baseline characteristics and HRV 

parameters for the AMI and control groups are 

compared in (Table 1). The two groups did not differ 

significantly in age (70.86±9.97 vs. 69.24±7.55 

years; P=0.170) or proportion of male participants 

(68.3% vs. 62.8%; P=0.400). The AMI group had a 

significantly higher BMI than the control group 

(21.68±2.52 vs. 20.94±1.68 kg/m²; P=0.010). 

Resting heart rate was also significantly higher in 

the AMI group (81.23±17.64 vs. 72.88±9.55 bpm; 

P<0.001). Both systolic blood pressure (SBP) and 

diastolic blood pressure (DBP) were significantly 

higher in the AMI group than in the control group 

(SBP:134.70±26.68 vs. 120.18±11.56 mm Hg; 

DBP:77.87±12.91 vs. 72.84±6.75 mm Hg; 

P<0.001). 

Regarding time-domain HRV indices, the AMI 

group had significantly lower values for both SDNN 

and rMSSD between normal heartbeats compared 

with the control group (SDNN:20.63±10.16 vs. 

33.99±11.72 ms; P<0.001; rMSSD: 23.67±12.38 

vs. 35.96±16.21 ms; P<0.001). 

The results of the multivariable linear regression 

analysis are presented in (Table 2). After 

adjustments for heart rate, SBP, DBP, and BMI, 

AMI was independently associated with 

significantly lower time-domain HRV. 

Specifically, AMI predicted reduced SDNN 

(β=0.445; P<0.001) and rMSSD (β=0.302; 

P<0.001). Heart rate was inversely associated with 

both HRV indices, whereas blood pressure and 

BMI were not significant predictors in the model. 

The diagnostic performance of SDNN and 

rMSSD was evaluated using ROC analysis (Figure 

3). The AUC for SDNN was 0.832 (95% CI, 0.779 

to 0.884). Using a cutoff of 21.35 ms, the sensitivity 

for detecting AMI was 87.6%, and the specificity 

was 62.4%, with a Youden index of 0.50. In 

comparison, rMSSD had an AUC of 0.738 (95% CI, 

0.674 to 0.802); a cutoff of 24.35 ms yielded a 

sensitivity of 71.9%, a specificity of 67.3%, and a 

Youden index of 0.39 (Table 3). The diagnostic 

performance of SDNN was significantly higher than 

that of rMSSD (P=0.008, the DeLong test) (Figure 

3). 

Subgroup analyses were conducted to examine 

the association between reduced HRV (defined as 

SDNN≤21.35 ms or rMSSD≤24.35 ms) and 

individual indicators of clinical severity (Table 4). In 

multivariable logistic regression models adjusted 

for age, sex, heart rate, SBP, DBP, BMI, smoking 

status, diabetes, hypertension, and dyslipidemia, 

SDNN≤21.35 ms was independently associated 

with higher odds of the following: 

• Killip class II-IV (aOR, 52.35; 95% CI, 2.04 to 

1341.37) 

• TIMI score ≥3 (aOR, 4.14; 95% CI, 1.29 to 13.35) 

• LVEF <50% (aOR, 3.19; 95% CI, 1.17 to 8.69) 

• Regional wall motion abnormalities (aOR, 3.22; 

95% CI, 1.17 to 8.89) 

Although elevated odds of multivessel CAD 

were observed (aOR, 2.64), the association was 

not statistically significant, as the confidence 

interval crossed unity (95% CI, 0.94 to 7.49).  

Similarly, rMSSD ≤24.35 ms was independently 

associated with higher odds of the following: 

• Killip class II-IV (aOR, 9.12; 95% CI, 1.30 to 

64.02) 

• TIMI score≥3 (aOR, 9.44; 95% CI, 2.72 to 32.83) 

• Regional wall motion abnormalities (aOR, 2.69; 

95% CI, 1.01 to 7.21) 

• Multivessel CAD (aOR, 3.09; 95% CI, 1.14 to 

8.38) 

The association between reduced rMSSD and 

LVEF<50% was not statistically significant (aOR, 

2.30; 95% CI, 0.95 to 6.56). 
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Figure 3. Receiver operating characteristic (ROC) curves for SDNN and rMSSD in the detection of acute myocardial infarction. 

ROC: receiver operating characteristic, SDNN: Standard deviation of all normal RR (NN) intervals, rMSSD: root mean square of 

successive differences  

P-values were assessed using the DeLong test.

Table 1. Baseline clinical and heart rate variability characteristics of patients with AMI and the control group 

Characteristics 
AMI 

(n = 101) 

Control Group 

(n = 121) 
P 

Age (y) (mean ± SD) 70.86 ± 9,97 69.24 ± 7,55 0.170 

Male gender (%) 68.30 62.80 0.400 

BMI (kg/m2) (mean ± SD) 21.68 ± 2.52 20.94 ± 1.68 0.010 

HR (bpm) (mean ± SD) 81.23 ± 17.64 72.88 ± 9.55 <0.001 

SBP (mm Hg) (mean ± SD) 134.70 ± 26.68 120.18 ± 11.56 <0.001 

DBP (mm Hg) (mean ± SD) 77.87 ± 12,91 72.84 ± 6,75 <0.001 

SDNN (ms) (mean ± SD) 20.63 ± 10,16 33.99 ± 11,72 <0.001 

rMSSD (ms) (mean ± SD) 23.67 ± 12.38 35.96 ± 16.21 <0.001 

AMI: acute myocardial infarction, HR: heart rate, BMI: body mass index, SBP: systolic blood pressure, DBP: diastolic blood 

pressure, rMSSD: root mean square of successive differences, SDNN: standard deviation of all normal RR (NN) intervals 

 

Table 2. Multivariable linear regression analysis of the association between AMI and time-domain heart rate variability indicesa 

Dependent Variables Predictor B (Unstd.) Std. Error β (Standardized) t P 

SDNN  38.181 9.806 – 3.894 <0.001 

 AMI group 11.480 1.581 0.445 7.260 <0.001 

 HR –0.258 0.051 –0.289 –5.026 <0.001 

 SBP –0.001 0.046 –0.001 –0.018 0.986 

 DBP 0.069 0.093 0.055 0.741 0.459 

 BMI –0.084 0.340 –0.014 –0.248 0.804 

rMSSD  52.367 13.049 – 4.013 <0.001 

 AMI group 9.559 2.104 0.302 4.543 <0.001 

 HR –0.314 0.068 –0.286 –4.591 <0.001 

 SBP 0.035 0.062 0.047 0.563 0.574 
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Dependent Variables Predictor B (Unstd.) Std. Error β (Standardized) t P 

 DBP –0.145 0.123 –0.094 –1.173 0.242 

 BMI 0.155 0.452 0.021 0.343 0.732 

AMI: acute myocardial infarction, HR: heart rate, BMI: body mass index, SBP: systolic blood pressure, DBP: diastolic blood 

pressure, rMSSD: root mean square of successive differences, SDNN: standard deviation of all normal RR (NN) intervals  
a Model adjusted for heart rate, systolic blood pressure, diastolic blood pressure, and body mass index.  

 

 

Table 3. Sensitivity, specificity, and predictive value of the ROC area of SDNN and rMSSD to assess the presence of acute 

myocardial infarction 

Variables/ 

Cutoff 
Se Sp PPV NPV 

AUC 

(95% CI) 
P 

OR 

(95% CI) 

SDNN  

≤ 21.35 ms 
87.60% 62.38% 80.80% 73.61% 

0.832 

(0.779–0.884) 
<0.001 

11.72  

(5.97–22.99) 

rMSSD  

≤ 24.35 ms 
71.90% 67.33% 66.67% 72.50% 

0.738  

(0.673–0.803) 
<0.001 

5.27  

(2.97–9.37) 

rMSSD: root mean square of successive differences, SDNN: standard deviation of all normal RR (NN) intervals, AUC: area under 

the ROC curve, NPV: negative predictive value, PPV: positive predictive value, Se: sensitivity, Sp: specificity  

 

 

Table 4. Multivariable logistic regression analysis of clinical severity indicators associated with reduced HRV (SDNN ≤21.35 ms; 

rMSSD ≤24.35 ms) 

Clinical Severity 

Indicators 
Crude OR (SDNN±≤21.35) aOR† (SDNN±≤21.35) Crude OR (rMSSD±≤24.35) aOR† (rMSSD±≤24.35) 

Killip II–IV 
14.70  

(1.89–111.10) 

52.35  

(2.04–1341.37) 

5.15 

 (1.12–23.8) 

9.12  

(1.30–64.02) 

TIMI ≥3 5.00 (1.87–13.4) 4.14 (1.29-13.35) 7.06 (2.58–19.29) 9.44 (2.72–32.83) 

LVEF <50% 3.52 (1.50–8.26) 3.19 (1.17–8.69) 2.86 (1.20–6.82) 2.30 (0.95-6.56)* 

RWMA 3.98 (1.65–9.62) 3.22 (1.17–8.89) 3.38 (1.37–8.33) 2.69 (1.01–7.21) 

Multivessel CAD 2.65 (1.16–6.10) 2.64 (0.94-7.49)* 3.45 (1.45–8.20) 3.09 (1.14–8.38) 

† aOR: odds ratio from multivariable logistic regression adjusted for age, sex, systolic and diastolic blood pressure, body mass 

index, heart rate, smoking, diabetes, hypertension, dyslipidemia 

* Not significant (P<0.05) 

SDNN: standard deviation of all normal-to-normal RR intervals, rMSSD: root mean square of successive differences, aOR: adjusted 

odds ratio, LVEF: left ventricular ejection fraction, RWMA: regional wall motion abnormality, CAD: coronary artery disease 

 

Discussion 

 

The present study revealed significantly lower 

HRV indices, particularly SDNN and rMSSD 

measured via smartphone PPG, in AMI patients 

compared with healthy controls (P<0.001). 

Threshold values of ≤21.35 ms (SDNN; 

AUC=0.832) and ≤24.35 ms (rMSSD; AUC=0.738) 

demonstrated strong AMI association. These 

reduced HRV parameters correlated significantly 

with clinical severity markers, including depressed 

LVEF, elevated Killip class, regional wall motion 

abnormalities, and multivessel CAD. 

HRV correlates with localized myocardial 

ischemia and predicts adverse cardiovascular 

outcomes post-AMI, including sudden cardiac 

death, cardiac arrest, non-sudden cardiac 

mortality, and noncardiac death.14 HRV also 

demonstrates predictive value for cardiovascular 

risk in healthy populations. A meta-analysis of 

individuals without cardiovascular disease found 

reduced HRV associated with a 40% increased risk 

of first cardiovascular events, incorporating studies 

with measurement durations ranging from 10-

second ECG segments to 24-hour recordings.7 

Reduced HRV indices reflect autonomic 

imbalance marked by sympathetic overactivity and 

vagal withdrawal. Post-AMI, this dysregulation 

intensifies due to myocardial injury, inflammation, 

and neural remodeling. Kleiger et al. 6 

demonstrated that patients with SDNN <50 ms had 

significantly elevated 1-year post-AMI mortality, 

establishing HRV as both a physiological marker 

and prognostic indicator of arrhythmic risk. 
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Recent meta-analyses, including a 2020 study 

by Fang et al.15 encompassing more than 20 

cardiovascular disease cohorts, confirm that 

reduced HRV predicts elevated risks of both all-

cause mortality and cardiovascular events. These 

findings underscore the role of autonomic 

dysfunction beyond acute postinfarction phases to 

chronic disease progression. 

While 24-hour ECG monitoring remains the gold 

standard, current evidence validates short-term 

PPG recordings. PPG demonstrates strong 

concordance with ECG for time-domain HRV 

indices (SDNN and rMSSD) during resting 

conditions, 16 establishing its utility for clinical and 

mobile health applications.16,17 The study by Plews 

et al.7 (2017) further corroborates the reliability of 

modern PPG wearables for HRV measurement. 

Our study specifically selected SDNN and rMSSD 

due to their established low error rates and clinical 

applicability in short-term PPG analysis. 

The AMI group demonstrated significantly lower 

SDNN and rMSSD values than the controls (Table 

2). Multivariable analysis revealed AMI status as an 

independent determinant of both HRV indices 

(SDNN and rMSSD) after adjustment for heart rate, 

blood pressure (SBP and DBP), and BMI (all Ps 

>0.05 for these covariates). This finding suggests 

that autonomic depression (reflected by reduced 

HRV) primarily results from the infarct itself rather 

than hemodynamic or anthropometric factors. 

These results are concordant with previous post-MI 

studies where SDNN predicted mortality 

independent of heart rate and blood pressure 

adjustments.15 Pivatelli et al.18 reported 

comparable findings, with significantly reduced 

SDNN (39.71±18.7 ms vs. 29.95±13.6 ms; P= 0.02) 

and rMSSD (32.38±18.1 ms vs. 22.99±11.9 ms; 

P=0.03) in patients with CAD compared with 

controls. Two main pathophysiological 

mechanisms may explain the observed HRV 

reductions. The cardiac sympathetic reflex theory 

suggests that myocardial necrosis alters ventricular 

geometry, causing mechanical distortion of sensory 

endings that abnormally increases sympathetic 

afferent firing. The sinus node dysfunction 

hypothesis proposes that severely reduced HRV 

reflects diminished nodal responsiveness to 

autonomic signals, diminishing its ability to adjust 

heart rhythm appropriately.19,20  

Our findings demonstrate that short-term SDNN 

and rMSSD measurements obtained via PPG in a 

camera-based HRV smartphone application show 

promise for detecting AMI, exhibiting relatively high 

sensitivity and moderate specificity. SDNN showed 

good discriminatory capacity (AUC≥0.80), while 

rMSSD demonstrated fair performance 

(AUC=0.738). These results align with a study by 

Goldenberg et al.21 (2019) showing HRV 

maintained a sensitivity below 71% and a negative 

predictive value of 97% for CAD detection, albeit 

with a specificity of less than 60%. Such 

characteristics suggest potential utility as a 

noninvasive supplementary tool for excluding 

localized myocardial ischemia. Notably, our study 

employed a short-term (1-hour) HRV assessment 

rather than the conventional 24-hour standard. 

Brinza et al.22 (2022) further investigated this 

approach by assessing SDNN and rMSSD values 

acquired from PPG-based wrist-worn devices in 

ST-segment elevation MI patients. Their results 

demonstrated that 5-minute HRV measurements 

during revascularization predicted major adverse 

cardiac events, supporting the clinical utility of brief 

HRV assessment in acute coronary syndromes 

beyond conventional 24-hour ECG monitoring. 

These findings highlight the potential incorporation 

of HRV parameters into contemporary risk 

stratification protocols. 

Our results indicate that SDNN may be more 

effective than rMSSD for AMI detection, concordant 

with prior studies establishing SDNN’s diagnostic 

and prognostic value in CAD. Pop-Busui et al. 7 

(2022) found SDNN superior to rMSSD for 

cardiovascular autonomic neuropathy classification 

(optimal cutoffs: SDNN<17.13 ms vs. 

rMSSD<24.94 ms), demonstrating SDNN’s 

stronger discriminatory performance (AUC=0.73; 

sensitivity=63.3%; specificity=77%).  Notably, 

combining both parameters provided no 

incremental predictive value beyond SDNN alone.  

In our study, reduced SDNN and rMSSD values 

obtained through short-term PPG correlated with 

clinical severity markers (Killip class II-IV, TIMI 

score≥3, and regional wall motion abnormalities). 

While associations between SDNN and multivessel 

CAD and between rMSSD and LVEF <50% lost 

statistical significance after adjustment, the ORs 

maintained consistent directional trends. These 
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observations chime with 24-hour Holter monitoring 

studies by Kleiger et al. 4 and Casolo et al.14 

demonstrating significant associations between 

reduced SDNN and both LV dysfunction and Killip 

classification during AMI. Abdelnabi et al.23 (2022) 

similarly reported reduced 5-minute ECG-derived 

SDNN and rMSSD values correlating with LVEF, 

multivessel CAD, and SYNTAX scores after 

adjusting for age and diabetes mellitus history. 

Our findings suggest that HRV, beyond its 

established prognostic value, may serve as an 

early screening tool for AMI. Given its statistical 

superiority over rMSSD between normal 

heartbeats, a short-term measurement of SDNN 

via smartphone-based PPG may provide a 

noninvasive and accessible method for timely AMI 

identification and triage. 

These results highlight the potential clinical 

value of using short-term, smartphone-based HRV 

analysis, particularly SDNN, as a tool for early 

detection and risk assessment in patients with 

suspected AMI. 

The present study has several limitations. First, 

the single-center design may limit the 

generalizability of our findings to other patient 

populations or clinical settings. Second, the study 

cohort consisted predominantly of older male 

adults, which may affect the interpretation of HRV 

results and their applicability to younger or more 

gender-balanced populations. Third, frequency-

domain HRV indices were not analyzed because 

the 2-minute PPG recordings were too short to 

ensure reliable results, as these measures typically 

require longer measurement periods. Fourth, 

although multivariable adjustment was performed, 

residual confounding from unmeasured factors 

may persist. These factors include psychological 

stress, circadian variations, and inconsistent timing 

of HRV measurements, which were based on 

hospital admission rather than symptom onset. 

Fifth, the subgroup analyses were post hoc and 

should be considered exploratory. Finally, the use 

of a smartphone-based PPG application, while 

practical and accessible, is susceptible to signal 

variability from factors such as patient movement 

or changes in ambient lighting, which could affect 

measurement reliability. 

 

Conclusion 
 

Our study demonstrates that short-term 

measurement of SDNN using a camera-based 

PPG smartphone application can serve as a novel 

digital health tool to aid in the detection of CAD, 

particularly AMI. This approach is simple, 

accessible, and noninvasive, aligning with the 

growing trend toward portable digital health 

monitoring and personalized risk assessment. 

Accordingly, HRV evaluation via smartphone 

technology may offer clinically valuable insights to 

support early detection and facilitate ongoing 

health monitoring. 
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