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Abstract  
Background and Objective: Driver drowsiness is one of the major reasons of severe accidents worldwide. In this 

study, an electroencephalography (EEG) measurement-based approach has been proposed to detect driver drowsiness. 

Materials and Methods: The driving tests were conducted in a driving simulator to collect brain data in the alert and 

drowsy states. Nineteen healthy men participated in these tests. The EEG signals were recorded from the central, parie-

tal, and occipital regions of the brain. 12 features of EEG signal were extracted; then through neighborhood component 

analysis (NCA), a feature selection method, 6 features including mean, standard deviation (SD), kurtosis, energy, entro-

py, and power of alpha band in 11-15 Hz, where alpha spindles occur, were selected. For the drowsiness stages assess-

ment, the Observer Rating of Drowsiness (ORD) was applied. Four classifiers including k-nearest neighbor (KNN), 

support vector machine (SVM), classification tree, and Naive Bayes were employed to classify data. 

Results: The classification trees detected drowsiness in the early stage with 88.55%. The classification results showed 

that if only single-channel P4 was used for detecting drowsiness, the better performance could be achieved in compari-

son to using data of all channels (C3, C4, P3, P4, O1, O2) together. The best performances were 93.13% which were 

obtained by the classification tree based on data of single-channel P4. 

Conclusion: This study suggested that the driver drowsiness was detectable based on single-channel P4 in the early stage. 
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Introduction
1
 

Driver drowsiness is a cause of fatal accidents 

worldwide. A drowsy driver has a low-level con-

sciousness and cognition about the environment 

and drivers ability for making the right decision 

significantly decreases. Recent researches show 

that drowsy driving is as hazardous as drunk driv-

ing (1). 

Researchers detect driver drowsiness based on 

analyzing three different categories of sensors 

including vehicle dynamics, facial features of 

drivers, and physiological signals. Physiological 

signals are independent of driving skills and envi-
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ronmental conditions, including weather condi-

tions and vehicle and road characteristics. There-

fore, they are more reliable than other above-

mentioned drowsiness detection methods (2). 

Noori and Mikaeili detected driver drowsiness 

using fusion of electroencephalography (EEG), 

electrooculography (EOG), and driving quality 

signals (3). The most promising method for driver 

drowsiness detection in comparison with other 

physiological methods is the EEG signal. Re-

searchers state that EEG signals are the most ac-

curate and reliable indicators of sleep (2-4). Mardi 

et al. applied two-tailed t-test method on some cha-

otic features of the EEG signal including Higuchi's 

and Petrosian's fractal dimension and logarithm of 

energy of signal to detect driver drowsiness (5). 

The EEG signal has specific spectral domains 
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in some actions which can be classified in four 

important bands. Delta (0.5 to 4 Hz), theta  

(4-8 Hz), alpha (8-13 Hz), and beta (12-30 Hz) are 

four frequency bands of EEG signals. Alpha 

waves originate from the parietal and occipital 

regions of the brain in the relaxed state and closed 

eyes (6). On the other hand, the frontal area pro-

duces beta waves related to thinking and making a 

decision (7). Studies show that in the drowsiness 

state rather than alertness, the rate of emitting al-

pha waves increases (8). 

The EEG signal has a non-stationary nature 

and considering both frequency and time domain 

features simultaneously is very important for per-

forming reliable analysis. One of the most power-

ful methods in time-frequency analysis is the 

wavelet transform. Wavelet theory has been used 

for decades to process biomedical signals for ap-

plications including feature extraction, compres-

sion, and noise reduction (9). Wavelet analysis 

divides EEG data into frequency bands and can 

extract the overall features of non-stationary EEG 

(10-12). The features which are extracted from 

wavelet sub-bands have been highly recommend-

ed for classifying EEG data and yield precise re-

sults (9, 13-15). Subasi using discrete wavelet 

transform (DWT) decomposed EEG signals into 

the frequency sub-bands. Then the sub-band fea-

tures were used as input to a classifier (13). The 

wavelet functions were used by Gandhi et al. to 

compute features such as energy, entropy, and 

standard deviation (SD) at the sub-bands in order 

to classify EEG data (9). By using different win-

dow sizes, the wavelet method can remove intrin-

sic noise from EEG signal and identify events in it 

(16). The DWT that includes high and low-pass 

filters is largely employed in analyzing EEG sig-

nals (17). Several studies used wavelet features 

for classification of EEG signals (18-20). 

For driver drowsiness detection, various types 

of classifiers including k-nearest neighbor (KNN), 

support vector machine (SVM), decision tree, and 

Naive Bayas were used to classify the features of 

EEG data into two categories of “alert” and 

“drowsy”, and their results were compared together. 

This study has several significant contribu-

tions. Firstly, driver drowsiness cannot be reliably 

determined based on the elapsed time. As a result, 

the Observer Rating of Drowsiness (ORD) is re-

placed by the time in this study. In addition, a 

dominant pattern of variations in the EEG data 

during transition from alertness to extreme drows-

iness is detected. A predominantly ascending-

descending pattern was observed, ascending ini-

tially from alertness to early stage of drowsiness 

(ORD = 2.5) and descending again to extreme 

drowsiness. Furthermore, an EEG-related binor-

mal function is elicited based on the ORD to pre-

dict drowsiness. Besides, our study shows that 

with five EEG features of single-channel P4, it is 

possible to detect drowsiness with 93% accuracy 

and using single channel EEG is more suitable for 

real-world applications. 

Materials and Methods 

Evaluating the drowsiness level: Driver 
drowsiness stage can be evaluated by expert  
observers. In the ORD method, three expert ob-
servers evaluated drowsiness level of subjects by 
assessing their driving behavior and facial signs 
(21). They scored drowsiness level from 1 to  
5 that indicate alertness and severe drowsiness, 
respectively. In this paper, EEG signal was ana-
lyzed based on ORD, the drowsiness score, in-
stead of time. It is possible for the driver to be 
drowsy while driving in the beginning but not to 
be drowsy at the end; therefore, time is not a good 
way to assess drowsiness patterns. 

The driver exhibits little fatigue behavior at the 

ORD levels of 1 and 2, but at the ORD level of 

2.5, at the early stage of drowsiness, some fatigue 

behaviors are evident. 

The EEG-related features exhibit a rise during 

alertness to extreme drowsiness, followed by a 

fall. In the transition from alertness to the early 

stage of drowsiness state, the driver's EEG in-

creases in magnitude and frequency as he or she 

tries to stay awake. It indicates that when the 

driver is alert, driving is an easy and habitual task 

for him or her, but in the moderate drowsiness 

state, control of vehicle and driving task becomes 

more complicated and harder for the driver. At 

this level, the driver fights against sleep but after 

this, the driver is starting to capitulate to falling 

asleep, given that in the very drowsy and extreme-

ly drowsy states, the EEG magnitude and fre-

quency-related features decrease. 

A binormal function can be used to estimate the 

statistical features of the stochastic EEG signal: 
 

f(ORD) =  a1e−(ORD−b1)2
+ a2e−(ORD−b2)2

+ c, 

(1) 

 

where a1, b1, a2, b2, and c are function parame-

ters. 
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In the ORD range of 1 to 5, figure 1 shows a 

typical EEG binormal function. 

 

 
Figure 1. Binormal function of an electroencephalog-

raphy (EEG) magnitude-related feature with respect to 

the Observer Rating of Drowsiness (ORD) 

 

Driving simulator: The driving simulator is 

Nasir Semi 003 that its dynamic model has 14 

degrees of freedom. The vehicle dynamic data 

were recorded by sample rate of 30 Hz. The driver 

interacts with the driving simulator by the steering 

wheel, shift sticks, and pedals. Figure 2 shows the 

driving simulator and capturing data tools. 

 

 
Figure 2. Subjects driving in the driving simulator (22)  

 

Subjects drove at the minimum and maximum 

allowed speeds of 80 km/h and 100 km/h on the 

road with 67 kilometers. Figure 3 shows the driv-

ing path. When the driver became drowsy, the 

vehicle would exit the road due to its quasi-

circular shape. The drivers should take care to 

avoid sharp turns, and there were no other vehi-

cles or pedestrians on the road. 

Participants: Nineteen healthy male subjects 

with a valid driving license participated in the 

drowsiness tests. 

 
a b 

Figure 3. (a) Driving scene from a third-person point 

of view; (b) 67-km closed-loop driving path (22)  

 

They aged between 26 and 50 years, with an 

average of 32 ± 8 years and their body mass index 

(BMI) was between 20 and 30 kg/m
2
. All subjects 

had no sleep disorder and they were not addicted 

to cigarette, drug, and drinks. The test protocols 

were completely described to all participants be-

fore the tests. Data about their lifestyle, sleep, and 

health were collected in a self-report question-

naire. Subjects were asked to sleep at their usual 

sleep time in the night before the test and not 

drink tea or coffee during the test. Participants 

who did not have sufficient capability to robust 

against drowsiness during given time were identi-

fied by taking Maintenance of Wakefulness Test 

(MWT). The MWT tests were conducted a couple 

of days before the driving tests. During the MWT, 

the subjects were asked to stay alert for  

40 minutes (23). Three times falling asleep in the 

first sleep stage or once in the other sleep stages 

would be considered for the test to be stopped. 

According to the result of the MWT tests, two 

subjects were eliminated from the driving tests 

due to their abnormal behavior. Thus, driving tests 

were conducted with 17 subjects. The test proto-

cols were approved by the Ethics Committee of 

the Cognitive Science and Technologies Council 

(Grant No. 1307). Protocols were according to the 

Declaration of Helsinki.  

Signal processing: The EEG data were col-

lected from 6 channels: C3, C4, P3, P4, O1, and 

O2 channels and Cz as reference channel. The 

EEG data had low signal-to-noise ratio. The 

Grubbs' outlier test checked EEG data for outliers. 

After removing outliers, a 4
th
-order zero-lag But-

terworth band-pass filter (at 0.1-31 Hz) was used 

to remove out-of-band noise resulting and the 

power line interferences; the frequency of the 

power line interferences was 50 Hz. Furthermore, 

other physiological signals such as electrocardiog-

raphy (ECG), electromyography (EMG), and 
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EOG made artifact on EEG signal. Independent 

component analysis (ICA) is an efficient method 

for removing artifacts from EEG signal (24). 

After normalization, the DWT was applied for 

decomposing the EEG signals. DWT is an ex-

tremely effective time-frequency method for ana-

lyzing non-stationary EEG signals. The wavelet 

transform exploits a multiresolution signal de-

composition approach. The DWT creates a series 

of approximation components using a set of high-

pass filters (mother wavelet) and low-pass filters 

(mirror version). The coefficients of these filters 

are the DWT basis functions. In the DWT, the 

family of wavelets are: 
 

𝛹𝑗,𝑘(𝑡) = 2−
𝑗
2𝛹(2−𝑗𝑡 − 𝑘), (2) 

 

where k is sampling rate and j is resolution.  

The scaling coefficients 𝐴𝑥(𝑗, 𝑘) (approxima-

tions) and the wavelet coefficients 𝐷𝑥(𝑗, 𝑘) (de-

tails) of the signal x can be derived based on fol-

lowing equations:  
 

𝐴𝑥(𝑗 + 1, 𝑘) = ∑ ℎ(𝑛 − 2𝑘)𝐴𝑥(𝑗, 𝑛)

𝑛

 (3) 

𝐷𝑥(𝑗 + 1, 𝑘) = ∑ 𝑔(𝑛 − 2𝑘)𝐷𝑥(𝑗, 𝑛)𝑛 , (4) 
 

where h(n) and g(n) can be viewed as the  

coefficients of low-pass and high-pass filters,  

respectively. Figure 4 shows the process of de-

composition of EEG signal by using discrete 

wavelet analysis. 

 

 

 

 

 

 

 
Figure 4. Decomposition of electroencephalography 

(EEG) signal by using discreet wavelet analysis 

 

In this study, the fourth order Daubechies 

wavelet family was used for obtaining the DWT 

coefficients. The window size was set to 30 se-

conds. By feature extraction of EEG signal, de-

tecting driver’s drowsiness in the early stages is 

possible. In figure 5, the block diagram for our 

proposed method and its steps are indicated.  

Feature selection: In this study, neighborhood 

component analysis (NCA) was used to reach the 

highest classification accuracy through feature 

selection. 

 

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. The block diagram for the proposed method 

and its steps 

 

The training set “T” is as follows: (25)  
 

𝑇 = {(𝑥𝑖 , 𝑠𝑡𝑎𝑡𝑒𝑖), 𝑖 = 1,2, … 𝑛 }, (5) 

 

where 𝑥𝑖 is vector of features and 𝑠𝑡𝑎𝑡𝑒𝑖 can 

be “alert” or “drowsy”. The features are: mean, 

SD, shape factor, root mean square (RMS), range, 

kurtosis, energy, entropy, and power spectrum for 

each frequency band (delta, theta, alpha, beta). 

There is accuracy for classification (25): 
 

𝐴(𝑤) = ∑ ∑
 𝑒𝑥𝑝 (

−𝐹
𝛼

)

(∑ 𝑒𝑥𝑝 (
−𝐹
𝛽

)𝑚
𝑗=1 )

𝑥𝑖𝑗

𝑘

𝑗=1 𝑗≠𝑖

𝑛

𝑖=1

, (6) 

 

where 𝐹(𝑤) = ∑ 𝑤𝑘
2|𝑥𝑖𝑘 − 𝑥𝑗𝑘|𝑚

𝑘=1  and 𝑤 de-

note the weight of the feature, and 
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𝑥𝑖𝑗 = {
1, 𝑖𝑓 𝑥𝑖 = 𝑥𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

In this method, features with high weights are 

selected to classify data, and features with low 

weights are ignored.  

 

 

 
Figure 6. The log-power spectra of delta, theta, alpha, 

and beta frequency bands for all independent compo-

nent analysis (ICA) components in (a) alert state, (b) 

drowsy state 

Results 

In this study, 19 healthy subjects participated 

in the VR-based highway-driving experiments. 

The data of C3, C4, P3, P4, O1, and O2 EEG 

channels of subjects were used for driver drowsi-

ness detection. The ICA algorithm regardless of 

scalpel location obtains independent sources from 

EEG signals. ICA is used to find a linear mapping 

matrix A for matrix S (𝑆 = [𝑠1, 𝑠2, … , 𝑠𝑁]) such 

that X = AS. The log-power spectra of delta, the-

ta, alpha, and beta frequency bands for all ICA 

components in alert and drowsy states are calcu-

lated and indicated in figure 6. 

Feature extraction: There are bursts of activity 

known as alpha spindles that occur at frequencies 

between 11 and 15 Hz, taking 0.5 to 1.5 seconds. 

An alpha spindle in the EEG could be used to as-

sess the fatigue and awareness level of drivers (12). 

An EEG alpha spindle is indicated in figure 7. 

 

 
Figure 7. An electroencephalography (EEG) alpha 

spindle (26) 

 

For driver drowsiness detection, a feature that 

drastically changes during transition from wake to 

the early stage of drowsiness is desired. In figure 8, 

the variations of the features during transition from 

alertness to drowsiness state are shown. In table 1, 

the parameters of binormal functions to estimate 

the features of the EEG signal are indicated. 

 
Table 1. The parameters of binormal functions used to estimate the statisti-

cal features of the electroencephalography (EEG) signal 

Feature 𝐚𝟏 𝐛𝟏 𝐚𝟐 𝐛𝟐 𝐜 

Mean 0.468 1.222 0.854 -0.402 -0.110 

Energy 0.444 -0.297 -34.888 -3.651 0.194 

Entropy 0.866 -0.382 0.468 1.242 -0.111 

Kurtosis 0.781 -0.372 0.280 0.935 -0.077 

RMS 0.628 -0.378 0.250 1.056 0.064 

Shape factor 0.658 -0.144 0.165 1.130 0.058 

SD 0.464 1.187 0.784 -0.421 -0.093 

Power of delta 0.473 1.631 0.601 -0.048 -0.049 

Power of theta 0.520 -0.331 0.281 1.603 -0.045 

Power of alpha 0.398 1.630 0.880 -0.274 -0.036 

Power of beta 0.468 1.221 0.854 -0.402 -0.111 

 0.638 -0.299 0.428 1.585 -0.058 
SD: Standard deviation; RMS: Root mean square 

a 

b 
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Figure 8. The variation of statistical features during transition from alertness to drowsiness state including 

(a) mean, (b) standard deviation (SD), (c) shape factor, (d) kurtosis, (e) energy, (f) root mean square (RMS), 

(g) entropy, power spectral of (h) delta, (i) theta, (j) alpha, (k) beta bands, and power spectral of alpha bands 

(11-15 Hz) where alpha spindles occur 

 

In this study, NCA method was used for fea-

ture selection and the threshold of weights of fea-

tures was considered equal to 1.5, given that six 

features including mean, SD, kurtosis, energy, 

entropy, and power of alpha band in 11-15 Hz 

(alpha spindle) were selected. In table 2, the 

weights of the features are indicated. 
Classification: The extracted features includ-

ing mean, SD, kurtosis, energy, and entropy are 
served as the inputs to the KNN, SVM, classifica-
tion trees, and Naive Bayes classifiers. 70%, 15%, 
and 15% of the data for each subject were used as 
training, testing, and validation data, respectively. 
The potential of single channel P4 for driver 
drowsiness detection is proved (26, 27). In addi-
tion, as shown in figure 6, most alpha waves emit 
from channel P4, given that two methods were 
proposed to detect drowsiness. In the first method, 
driver drowsiness was detected based on data of 
C3, C4, P3, P4, O1, and O2 channels. In the se-
cond method, only data of single channel P4 was 
used for drowsiness detection and the results were 
compared together. In table 3, the classification 
results of all channels for each subject are indicat-
ed. In table 4, the classification result of single-
channel P4 for each subject is shown. 

Discussion  

In this study, EEG features were analyzed and 

classified to detect driver drowsiness in the early 

stage of drowsiness. The driver drowsiness  

detection can be beneficial only if detected in the 

early stage such as the ORD level of 2.5, when 

there is an enough time to prevent extreme 

drowsiness and its consequences such as fatal 

crashes. 6 features including mean, SD, kurtosis, 

energy, entropy, and power of alpha band in  

11-15 Hz drastically changed in the early stage 

of drowsiness in comparison to their amounts in 

the alertness state. These features are fed into the 

several types of classifiers. Among these classi-

fiers, classification tree has the highest perfor-

mance of 93% by using a single-channel P4 data 

and 88% by using data of all channels (C3, C4, 

P3, P4, O1, O2). 

Several features made this study unique, and it 

hardly can be compared with other studies, such 

as analyzing data based on ORD. However, we 

compared it with some studies in field of drowsi-

ness detection. In table 5, the results of this study 

were compared to some strong and reliable studies 

in the field of drowsiness detection. 

As shown in table 5, this study achieved high 

performance in detecting early drowsiness,  

especially the result of using single-channel P4 is 

entirely desirable. 

The main application of this article is to detect 

driver drowsiness based on single-channel P4. 

 
Table 2. The features and their computed weights 

Features and their weights  

SD 1.75 Entropy 1.59 Power of theta 1.37 

Shape factor 1.05 Mean 1.91 Power of alpha (8-15 Hz) 1.42 

RMS 1.39 Energy 1.60 Power of beta band 1.29 

Kurtosis 1.76 Power of delta 0.90 Power of alpha 11-15 Hz (spindle) 1.79 
SD: Standard deviation; RMS: Root mean square 

k l 
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Table 3. Accuracy of classifiers based on C3, C4, P3, P4, 

O1, O2 data for each subject 

Feature KNN SVM Classification tree Naive Bayes 

S1 79.90 78.20 88.40 85.00 

S3 83.77 80.68 89.06 91.37 

S4 82.86 87.68 90.29 83.75 

S5 80.02 73.84 80.15 76.49 

S6 96.33 58.56 100.11 96.33 

S7 95.33 88.68 96.81 87.93 

S8 79.34 66.59 73.66 49.58 

S9 75.92 56.83 74.14 56.60 

S10 86.71 65.61 87.57 82.60 

S11 73.66 74.09 82.59 79.90 

S12 97.36 81.91 97.36 96.59 

S13 89.53 89.16 91.32 99.74 

S14 98.88 99.38 99.48 98.25 

S15 98.28 98.53 97.49 97.24 

S16 91.18 77.28 77.28 85.00 

S18 98.57 97.97 97.59 97.69 

S19 79.90 80.86 82.06 81.62 

Ave 87.50 79.76 88.55 85.04 
KNN: K-nearest neighbor; SVM: Support vector machine 

 

Using data of a single-channel is very prefera-

ble, because of reducing cost, increasing of speed 

of computation, and being less intrusive for driv-

ers. In addition, a drowsiness detection method 

based on a single-channel is more practical in real 

world, because placing several electrodes needs a 

technical knowledge about channel location and it 

is a time-consuming process.  

Conclusion 

In this study, the EEG signals were used for 
driver drowsiness detection. The EEG data were 

collected from C3, C4, P3, P4, O1, and O2 chan-
nels, and the drowsiness level was measured by 
the ORD method. 6 features including mean, SD, 
kurtosis, energy, entropy, and power of alpha 
band in 11-15 Hz (alpha spindle) were extracted. 
The result showed that the classification tree had 
88.55% and 93.13% accuracy with using data of 
all channels (C3, C4, P3, P4, O1, O2) and the  
single-channel P4, respectively. These results 
show that single-channel P4 has the highest poten-
tial to detect drowsiness. Using the data of a sin-
gle-channel is incredibly preferable in the real-
world application.  

 
Table 4. Accuracy of classifiers based on single-channel 

P4 data for each subject 

Feature KNN SVM Classification tree Naive Bayes 

S1 91.81 92.43 97.95 91.51 

S3 92.74 95.83 89.64 90.79 

S4 85.60 93.44 93.44 93.44 

S5 80.88 54.23 87.67 63.87 

S6 98.96 98.94 98.97 98.45 

S7 90.67 97.48 97.22 90.67 

S8 91.71 93.92 93.92 91.71 

S9 93.50 42.50 85.00 68.00 

S10 76.45 95.32 83.12 53.59 

S11 83.30 91.87 96.91 84.15 

S12 76.56 76.51 86.85 76.52 

S13 97.36 55.62 97.22 78.82 

S14 97.85 79.34 98.45 97.44 

S15 98.33 99.92 98.11 98.98 

S16 98.85 99.85 97.64 98.59 

S18 98.25 92.73 83.46 74.18 

S19 98.04 99.65 97.70 99.28 

Ave 91.23 85.86 93.13 85.29 
KNN: K-nearest neighbor; SVM: Support vector machine 
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Table 5. Some studies in the field of drowsiness detection 

References Method Classification accuracy (%) 

(27) Linear regression model 86.20 

84.60 

(28) LDA, KNN, and SVM 87.50 

(29) Neural networks 87.40 

(30) CCNN 86.08 

(31) Clustered group SVM, SVM, and RBFNN 88.70 

84.30 

This study KNN, classification trees, Naive Bayes, SVM  88.55 

93.13 
LDA: Linear discriminant analysis; KNN: K-nearest neighbor; SVM: Support vector machine;  
CCNN: Channel-wise convolutional neural network; RBFNN: Radial basis function neural network 

 
In-ear EEG device is a wireless device that can 

be used for future studies to collect data of  
P4 channel, because P4 is located fairly near the 
ear. In addition, there are other EEG wireless de-
vices which can be used in future to detect driver 
drowsiness based on single-channel P4. 
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