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Abstract 

Background: Several approaches have been proposed to optimize the construction of an 

artificial intelligence-based model for assessing ploidy status. These encompass the in-

vestigation of algorithms, refining image segmentation techniques, and discerning essen-

tial patterns throughout embryonic development. The purpose of the current study was to 

evaluate the effectiveness of using U-NET architecture for embryo segmentation and 

time-lapse embryo image sequence extraction, three and ten hr before biopsy to improve 

model accuracy for prediction of embryonic ploidy status. 

Methods: A total of 1.020 time-lapse videos of blastocysts with known ploidy status 

were used to construct a convolutional neural network (CNN)-based model for ploidy 

detection. Sequential images of each blastocyst were extracted from the time-lapse vide-

os over a period of three and ten hr prior to the biopsy, generating 31.642 and 99.324 

blastocyst images, respectively. U-NET architecture was applied for blastocyst image 

segmentation before its implementation in CNN-based model development.   

Results: The accuracy of ploidy prediction model without applying the U-NET segment-

ed sequential embryo images was 0.59 and 0.63 over a period of three and ten hr before 

biopsy, respectively. Improved model accuracy of 0.61 and 0.66 was achieved, respec-

tively with the implementation of U-NET architecture for embryo segmentation on the 

current model. Extracting blastocyst images over a 10 hr period yields higher accuracy 

compared to a three-hr extraction period prior to biopsy.  

Conclusion: Combined implementation of U-NET architecture for blastocyst image 

segmentation and the sequential compilation of ten hr of time-lapse blastocyst images 

could yield a CNN-based model with improved accuracy in predicting ploidy status.  
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Introduction 

emarkable efforts have been put forward to 

discover prominent non-invasive molecular 

biomarkers for determination of embryo  
 

 

ploidy status. Non-invasive assessments of em-

bryo ploidy status are desirable to replace the 

need for performing embryo biopsy as a standard 
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sample collection procedure for chromosomal 

analysis in preimplantation genetic testing for an-

euploidy (PGT-A). Current attempts at non-inva-

sive preimplantation genetic testing for aneu-

ploidy (niPGT-A) through biomarkers identified 

in spent embryo culture media have garnered the 

attention of several IVF experts (1-3). Corres-

pondence in outcomes between the two methods 

(PGT-A and niPGT-A) has improved over time 

but its implementation for routine PGT testing in 

IVF remains under further investigation. Concur-

rently, embryo morphokinetic parameters (4-8), 

specific metabolomics (9), proteomics (10), and 

artificial intelligence-based image analysis (11-

14) have exhibited clinical values that could po-

tentially define embryo ploidy without invasive 

interventions. Among the aforementioned ap-

proaches, developing an AI-based model, which 

could predict IVF outcomes, is at the top of the 

list as the most imminent niPGT-A approach.   

Widespread utilization of embryo images to de-

velop AI-based prediction models has been ob-

served and even commercialized products are cur-

rently available (15). In the broad sense of AI, 

blastocyst images may contain essential infor-

mation that could not be comprehended by the 

naked human eye. Through embryo image pro-

cessing, the availability of such information, 

which may encompass intelligence on embryo 

viability (13, 16) or ploidy status classification 

(17, 18), is explored. Different types of inputs 

(trained images) have been utilized in the current 

literature to develop AI models that predict specif-

ic outcomes. Huang et al. (17) have developed an 

AI platform using 10 hr of blastocyst expansion 

images (generating±30 sequential images consec-

utively) extracted from a time-lapse video with 

the output being embryo ranking for further use. 

A 2019 study conducted by Tran et al. (19) used 

raw time-lapse videos (approximately 112 hr of 

culture) as an input to train a deep learning system 

that can predict implantation potential. However, 

other research groups have utilized static images 

captured by a standard light optical microscope 

(13, 16) or a combination of static images from a 

light optical microscope and captured time-lapse 

images to generalize the applicability of the model 

considering that time-lapse incubator is not wide-

ly adopted worldwide (20). In addition to the di-

verse inputs, there are also variations in the meth-

ods used for AI development (1, 11-13). Both ma-

chine learning (ML) and deep learning (DL) algo-

rithms were used for image processing. While 

image processing in ML sometimes uses addition-

al algorithms such as genetic algorithm (20), a 

sub-class of DL, convolutional neural network 

(CNN) is the prominent algorithm that can per-

form a complex task.  

The purpose of the current study was to con-

struct a deep learning-based model for ploidy sta-

tus prediction of human blastocysts by utilizing 

U-NET segmentation as well as three-and ten-hr 

sequential time-lapse embryo images before the 

commencement of blastocyst biopsy. This strate-

gy was performed to confirm whether the two dif-

ferent culture periods contain any useful infor-

mation that could boost the accuracy of the CNN 

model, considering embryo development is highly 

dynamic, particularly when approaching the im-

plantation process.  

 

Methods 
Patient population, data collection, and pre-pro-

cessing images: This was a single-center cohort 

study. A total of 425 couples who underwent 

PGT-A were identified in the private online data-

base of Morula IVF Jakarta Clinic, Jakarta, Indo-

nesia between January 2021 and October 2022. 

This study protocol was reviewed and approved 

by the Ethical Committee of Universitas Indone-

sia with approval number of KET-74/UN2.F1/ 

ETIK/PPM.00.02/2022.  

The indications of studied subjects were recur-

rent IVF failure following the transfer of top-

quality embryo(s), having a history of recurrent 

miscarriages, and advanced maternal age. These 

align with the clinic's policy regarding the rec-

ommendation of PGT-A for infertile couples. In-

fertile couples undergoing PGT-A were excluded 

from the analysis if their PGT-A sample failed to 

pass quality control, required re-biopsy, or yielded 

undetermined results. Ovarian stimulation and 

embryo culture procedures were conducted as pre-

viously described (21). Briefly, the embryo was 

cultured using a time-lapse incubator (Miri TL; 

Esco Medical, Denmark) immediately following 

ICSI or IMSI procedure, under a culture condition 

of 37C, 6% CO2, and 5% O2. Throughout the 

study period, either G-TL (Vitrolife, Sweden) or 

SAGE (Origio, Denmark) was utilized. Blastocyst 

quality was measured according to the Gardner 

Grading System by measuring the quality of inner 

cell mass (ICM), trophectoderm, and the expan-

sion of the blastocyst cavity. Top-quality blasto-

cysts were defined as grades based on blastocoel 

cavity expansion and AA, AB, and BA according 
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to the quality of ICM and trophectoderm (22). On 

day 4 of embryo culture, three pulses of laser 

(OCTAX Laser ShotTM) were shot at the zona pel-

lucida to facilitate herniation of trophectoderm 

cells. Biopsy procedures were conducted on either 

day 5 or day 6 depending on the blastocyst expan-

sion. Up to 2-5 trophectoderm cells were collected 

using a specific pipette (blastomere aspiration pi-

pette; COOK, Ireland). After washing the biop-

sied embryonic cells in PBS medium supplement-

ed with 1% polyvinylpyrrolidone (Origio, Den-

mark), samples were then loaded into a 0.2 ml 

PCR tube (Gen-Follower, China) and sent to the 

genomic laboratory for ploidy analysis.  

Altogether, 1.020 blastocysts were biopsied for 

PGT-A. Next-generation sequencing (MiSeq Se-

quencing System; Illumina, USA) was utilized for 

determining the ploidy status, serving as the 

ground truth of the dataset. VeriSeq PGS kit was 

used following the VariSeq PGS Library Prep 

reference guide (15052877 v04). The PGT-A pro-

cedure was conducted following a detailed proce-

dure as previously reported (23). Ploidy analysis 

was performed using Blue-Fuse software (Illumi-

na, USA), which generated three types of out-

comes: euploid (a mixture of euploid and <30% 

aneuploid cells), aneuploid (mosaicism with more 

than 80% aneuploid cells), and mosaic (a mixture 

of euploid and 30-80% aneuploid cells, with low-

level mosaicism defined as 30-50% aneuploid 

cells while the remaining cells were categorized 

as high-level mosaicism) (24, 25).   

Recorded time-lapse videos of 1.020 blastocysts 

with known ploidy status were retrieved from 

time-lapse incubators. This study only utilized 

blastocyst images captured from the TL videos as 

input for the CNN-based model. The image ex-

traction process involved a combined effort, align-

ing raw tabular data with time-lapse video files 

utilizing Python scripting based on their metadata 

information. Sequential blastocyst images for spe-

cific three- and ten-hr periods preceding the biop-

sy procedure were extracted and summarized in 

table 1. The decision to extract blastocyst images 

10 hr prior to biopsy was based on prior findings, 

which emphasized the increased importance of 

data related to blastocyst formation compared to 

earlier pre-implantation stages (26, 27). 

Additionally, an attempt was made to explore 

whether blastocyst expansion patterns observed 3 

hr prior to biopsy could be sufficient and effec-

tively utilized in developing a predictive model.  

Extracted images with an obscured focus of the 

blastocysts and those with embryos misaligned 

from the capture of the TL’s internal camera were 

excluded. The AI environment was established on 

a Windows operating system, using an Intel CPU 

and NVIDIA GPU. Python was the programming 

language for script management and the Tensor-

Flow library was utilized for CNN classification 

(28) and to build a U-NET image segmentation 

model. Tabular data was handled using Pandas 

and NumPy libraries, and partial data preparation 

was conducted in Microsoft Excel. Image aug-

mentation was performed using the OpenCV li-

brary, as depicted in figure 1.  
 

U-NET image segmentation: A fully convolutional  

 

Table 1. Image dataset utilized in developing CNN prediction 

models 
 

Known ploidy status TL video 

Total images  

extracted 

Three hr Ten hr 

Euploid blastocysts 181 5.659 17.772 

Aneuploid blastocysts 390 12.094 37.915 

Mosaic blastocysts 449 13.889 43.637 
 

Note: from 181 TL videos of euploid blastocysts, 5.659 images were 
captured within 3 hr prior to biopsy and 17.772 images obtained 

within 10 hr before biopsy. For the 390 TL videos of aneuploid 

blastocysts, a total of 12.094 images were taken 3 hr preceding the 

biopsy, which increased to 37.915 images within the 10-hr time-

frame prior to biopsy. Similarly, in the case of 449 TL videos of 

mosaic blastocysts, the total number of images extracted was higher 
within 10 hr (43.637 images) compared to the 3-hr timeframe before 

the biopsy 
 

Figure 1.  Architecture diagram of environment used for de-

veloping the model 
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neural network architecture, U-NET, was used for 

blastocyst image segmentation in the present 

study as it could easily be updated and trained 

using a limited dataset. The architecture was in-

spired by Ronneberger et al. (29), consisting of an 

encoder and a decoder. However, a few modifica-

tions were made to the original structure to tailor 

it to the unique demands of our image dataset. 

The encoder area processes the input images to 

learn and identify structures of the whole blasto-

cyst through convolution, dropout, and max pool-

ing methods. Briefly, each pixel on the raw imag-

es was assigned to the groups that belong to a 

specific part within the image. The decoding area 

mapped the position of blastocysts through convo-

lution, up-sampling, and skip connections.  Spe-

cifically, the positions were determined by con-

catenating or joining the encoder parts with the 

decoder part in an end-to-end fashion.  

Conceptually, the U-NET model is built using 

convolution, max pooling, dropout, up-sampling,  
 

and concatenate layers with each layer comple-

menting the encoder and decoder part. U-NET 

model is named after its architectural shape (Fig-

ure 2). The convolution layer serves as an encoder 

function responsible for image feature extraction, 

through which a filter is applied to create a feature 

map of the input image. The size of the filter and 

feature map can be specified based on the follow-

ing sequence of layers. The max pooling layer is 

responsible for selecting the maximum value from 

the prominent feature map for every pool or 

group, thereby enhancing the sharpness of fea-

tures. On the other hand, the dropout layer tempo-

rarily reduces the number of features within a 

node, mitigating the risk of overfitting or underfit-

ting the model. The application of the dropout 

layer will result in slight changes during each iter-

ation of model training. Up-sampling layer adjusts 

the layer dimension to an appropriate node size. 

However, up-sampling cannot recover any lost 

information during the process. Lastly, to com-

bine and merge two different nodes into one sin-

gle node, a concatenate layer is utilized. To visu-

alize, the concatenate layer acts as a bridge that 

combines two different nodes into one. Eventual-

ly, targeted blastocysts could be masked as an 

output for CNN model training (Figure 3).  
 

Training and validation of the CNN-based model: 

Our research utilized supervised learning through-

out the model-building process to avoid any mis-

fits of wrong segmentation or the possibility of 

data cluster misplacements and to reduce the like   

lihood of a systematic error. The non-segmented 

and segmented images, captured at three- and ten-

hr intervals, respectively were tested individually 

with 80-20 data split to overview the capability of 

the deep learning approach in predicting ploidy 

status based on morphological uniqueness and dif-

ferentiating features of the embryos, which will be 

elaborated with a pre-trained CNN model. The 

ratio was determined to minimize the risk of over-

estimating measurement error (30).   

The CNN training environment was set to a si-

milar condition with its pre-trained model as the 

differentiator between each training sequence. The 

three pre-trained CNN models include ResNet 

(31), InceptionV3 (32), and EfficientNet (33) 

which are appropriately selected due to their wide 

applications in the deep learning field (34-36). 

Each pre-trained model holds various combina-

tions of so-called nodes or layers, and certain lay-

ers are designed with features that facilitate effi-

cient model construction. For instance, batch nor-

malization standardizes input layers with a math-

ematical approach based on the activation condi-

tion. Moreover, each pre-trained model was built 

uniquely and hence possessed different input con-

ditions or image sizes. Despite the relatively small 

size of an embryo, significant physical infor- 
 

mation is encapsulated within its image state. Im-

age size or pixels thus indicate meaningful details  
 

Figure 2. Illustration of U-NET architecture applied in the 

current study 

Figure 3. Blastocyst’s image extracted from TL video, A) raw 

image, B) image masking from U-NET model, C) segmented 

blastocysts image utilizing U-Net model 
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that correspond to high-performance computation-

al resources. 

Furthermore, the model performance is influ-

enced by a combination of image size and feature 

extraction methods or the pre-trained model selec-

tions. Higher image size and layers, however, do 

not guarantee a more robust model performance. 

On the contrary, processing larger images with 

more pixels would require a greater amount of 

computing power compared to processing smaller 

images (37). Table 2 shows several pre-trained 

models with their special input conditions.  
 

Matrix evaluation: Matrix evaluation has become 

an important part of the model training algorithm 

as it impacts the model performance in conducting 

certain prediction tasks. CNN could automatically 

learn from its previous training iteration and cali-

brate its layers to an appropriate condition. How-

ever, such automation is not dynamic enough to 

be refined because the natural process of CNN is 

somewhat hidden and challenging to disclose. 

Consolidation of several matrix evaluations, there-

fore, becomes the standard for an AI-based classi-

fier or predictor. 

Our approach to obtaining the most robust AI-

based model is through the adoption of two matrix 

evaluations, namely Accuracy and Loss. Individu-

al pre-trained models were assessed based on the 

accuracy and loss matrix. Accuracy represents the 

ratio of true positive and true negative values to 

the total number of classification cases, signifying 

the initial overall performance of the model. Ac-

curacy has been defined as a standard evaluation 

metric due to its simplicity and ability to encom-

pass all classification outcomes whether true or 

false predictions. Loss matrix calculates the con-

fidence level of a model in creating a prediction. 

A low loss matrix indicates a model with a high 

confidence value in performing the classification 

and vice versa. Specifically, the loss function 

plays a crucial role in evaluating whether a model 

requires an update in its capability to predict the 

targeted outcomes.  

 

Results 

Extraction of sequential TL blastocyst images 

over a period of three and ten hr prior to the biop-

sy procedure yielded around 31 and 97 unique 

images per TL video, respectively. From a pool of 

181 euploid blastocysts TL videos, 5,659 images 

were captured within the 3 hr preceding biopsy, 

and 17,772 images were obtained within a 10-hr 

period before biopsy. Of 390 aneuploid blasto-

cysts TL videos, a total of 12,094 images were 

gathered from the 3-hr period prior to the biopsy, 

which increased to 37,915 images within the 10-

hr timeframe preceding biopsy. Among 449 TL 

videos of mosaic blastocysts, the total number of 

extracted images within the 3 and 10-hr window 

was 13.889 and 43,637 images, respectively (Ta-

ble 1). Slight disparities between the sequence of 

embryo images have culminated in a more com-

plex model assignment for classification. Conse-

quently, using multiple time point images leads to 

a more accurate result compared to a single time 

point image classification.  

In the current study, every pre-trained model em-

ployed possessed distinct layers, each character-

ized by its unique features as depicted in table 2. 

The image input sizes for EfficientNetB6, Res-

Net50V2, and InceptionV3 were 528, 224, and 

299, respectively.  

A comparison of the two-time image extraction 

and classification pathway between U-NET seg-

mented and non-segmented embryo images is il-

lustrated in table 3. Integration of U-NET image 

segmentation significantly boosted model accura-

cy in both time points. With ResNet50V2 algo-

rithm, accuracy elevated from 0.59 to 0.61, while 

with the InceptionV3 algorithm, it surged from 

0.63 to 0.66. The highest accuracy of 0.66 was 

attained when employing the ten-hr image series 

alongside U-NET image segmentation for model 

prediction development using the InceptionV3 

algorithm. Interestingly, our model exhibited a 

unique trend of slightly higher accuracy when em-

ploying non-segmented InceptionV3 and Effi-

cientNetB6 algorithms with three hr of data.  
 

Discussion 

Key findings: This study presented a subset of 

deep learning algorithms known as convolutional  
 

Table 2. The pre-trained model input layer utilized for 

prediction model development 
 

Model 
(Batch normalization/ 

total layer)-% 

Input 

image size 

EfficientNetB6 (134/752) 17.82%  528 

ResNet50V2 (49/192) 25.52% 224 

InceptionV3 (94/313) 30.03% 299 
 

Note: The unique layers or nodes of each pre-trained model pos-

sess distinct characteristics, and each layer harbors attributes es-

sential for constructing models efficiently. The batch normaliza-
tion layer, which optimizes the output classification process, en-

sures that each model maintains a unique image input size.  
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neural network (CNN) to predict blastocyst ploidy 

status. The utilization of U-NET architecture for  
 

image segmentation resulted in a model with 

higher accuracy compared to using raw images 

without U-NET segmentation. U-NET image seg-

mentation was proposed to enhance the capability 

of model classification. U-NET segmentation en-

ables an automated process of isolating embryos 

from the culture dish and any unnecessary image 

information, allowing the prediction model to fo-

cus on prominent embryo images. The present 

study also serves to strengthen image recognition-

based artificial intelligence in the field of IVF. In 

this study, an AI-based image classification was 

conducted through a deep learning procedure.  

This study demonstrated two case study compar-

isons using datasets of different durations: three 

hr and ten hr. Increased model accuracy was ob-

served when sequential images from a ten-hr em-

bryo culture period (prior to biopsy) were extract-

ed. From an AI perspective, these results proved 

that a higher amount of training data indeed coin-

cides with improved model performance. In addi-

tion, dynamic development of blastocyst, particu-

larly during the expansion phase, may contain 

meaningful information, thus leading to enhanced 

performance of the AI model as previously sug-

gested (17). Our model demonstrated a trend of 

slightly better accuracy when utilizing non-seg-

mented InceptionV3 and EfficientNetB6 models 

with three hr of datasets. However, it is challeng-

ing to explicitly elucidate this trend due to the uti-

lization of deep learning methodology, frequently 

referred to as a "black box" in research.  

Artificial neural network (ANN) nodes, mimick-

ing how the human brain works, have the ability 

to effectively learn specific patterns in the given 

image. As the ANN nodes are organized hierar-

chically, each node calculates the weighted sum 

of the given input by applying a specific activa-

tion function to the sum component, which acts as 

a receiver of weighted input. As a result, ANN 

can produce the final model that can differentiate 

the targeted outcome (38). Multilayer perceptron 

(MLP) is the most common type of ANN archi-

tecture and is also a popular foundation of CNN 

architecture. In general, each neural layer in MLP 

comprises an input layer, one or several hidden 

layers, and an output layer. CNN is similar to 

MLP with regard to using calculated weights in 

each node and receiving several different inputs as 

a sum to classify the outcome. Nonetheless, CNN 

contains multiple MLPs with a high number of 

neural layers and nodes. In addition, CNN algo-

rithm employs convolution mathematical opera-

tions which become an essential part of computa-

tion in CNN architecture. Briefly, CNN architec-

ture comprises several extraction phases and fully 

connected layers that can map specific patterns to 

classify the outcomes (39). While CNN demon-

strates remarkable ability in image classification, 

the main limitation of CNN is its fully automated 

differentiation process, which cannot be under-

stood by human logic. This characteristic is often 

Table 3. Comparison of model predictions with and without U-Net image segmentation using three-and ten-hr image series prior to 

biopsy 
 

Model 
Accuracy Loss 

Without  

segmentation 

With  

U-NET segmentation 

Without  

segmentation 

With  

U-NET segmentation 

Image series of three hr     

EfficientNetB6 0.6055 0.5634 0.8456 0.9276 

ResNet50V2 0.5927 0.6181 1.3509 1.265 

InceptionV3 0.5823 0.5751 0.9820 0.8924 

Image series of ten hr     

EfficientNetB6 0.6152 0.6484 1.2727 1.314 

ResNet50V2 0.6435 0.6562 1.3974 1.3026 

InceptionV3 0.6357 0.6699 1.456 1.4022 

Note: in both the three-hr and ten-hr image series, incorporating U-NET image segmentation enhanced model accuracy. For the ResNet50V2 algorithm, 

accuracy improved from 0.59 to 0.61, while for the InceptionV3 algorithm, it increased from 0.63 to 0.66. The highest accuracy of 0.66 was achieved 

when utilizing the ten-hr image series with U-NET image segmentation applied for model prediction development. 
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referred to as a "black box". Hence, many IVF 

experts have argued if the classification is trust-

worthy. 
 

Comparison with previous studies: Notably, sever-

al studies that utilize embryo images for ploidy 

prediction are reported in the current literature. A 

2020 study conducted by Chavez-Badiola et al. 

(11) is known to be the first that used static imag-

es for ploidy status classification. A total of 751 

embryo images with known ploidy status were 

used to construct a ploidy prediction algorithm 

called the ERICA model through deep learning 

neural network. The model attained an accuracy 

of 0.70 in model validation and testing. In 2021, 

two studies reported the use of raw time-lapse 

videos as input for ploidy prediction model devel-

opment. Lee et al. (12) utilized sequential images 

of embryos captured from time-lapse video and 

used a deep learning model, Inflated 3D ConvNet 

(I3D) which obtained high accuracy of 0.74. In 

contrast, Huang et al. (40) chose to combine the 

time-lapse embryo videos with the clinical charac-

teristics of the studied participant into the model 

and achieved an accuracy of 0.8. An interesting 

study conducted by Huang et al. (17) showed that 

the average time of blastocyst expansion could be 

a better predictor for blastocyst ploidy classifica-

tion. Using U-NET architecture for semantic seg-

mentation, an AI-based approach called AI-

qSEA1.0 expansion assay was implemented to 

rank the quality of blastocysts for clinical use. The 

researchers then retrospectively analyzed the out-

comes of the respective cycles and observed that 

euploid blastocysts that resulted in live births had 

a higher expansion rate than those of euploid blas-

tocysts that did not result in live births (p=0.007). 

As AI-based studies varied highly in terms of the 

inputs, algorithms or classifiers used, and out-

comes, the results cannot be compared (41). Each 

constructed model is distinct, primarily due to the 

utilization of different datasets and research de-

signs. In clinical practice, it is expected that the 

availability of a non-invasive AI-based algorithm 

could serve as an alternate method for embryo 

selection in cases in which PTG-A is unafforda-

ble.  

The strength of the present study lies in the 

demonstration of U-NET implementation for blas-

tocyst segmentation which was proven to enhance 

model training for image classification with the 

deep learning method. Nonetheless, the limitation 

of this study is that the blastocyst segmentation 

does not differentiate the distinct parts of the blas-

tocyst such as the inner cell mass, trophectoderm 

area, blastocoel cavity, or zona pellucida thick-

ness. This could serve as a solution to improve 

prediction accuracy. Additionally, the accuracy of 

the obtained model is not sufficient for being used 

as a non-invasive approach for predicting blasto-

cyst ploidy status in clinical settings. Also, an im-

balance was observed in the training step results 

for both cases. This noteworthy discovery high-

lights the presence of bias in the image classifica-

tion model for predicting embryo ploidy status.  
 

Conclusion 

This study demonstrated that extracting TL blas-

tocyst images over a ten-hr period and implement-

ing image segmentation prior to utilizing embryo 

images in a CNN-based model could enhance the 

accuracy of the developed model for predicting 

ploidy status. 
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Supplementary table 1. Baseline and clinical characteristics of the participants in the present study 
 

Baseline and clinical characteristics 
Value  

(n=425) 

Female age (years) 36 (32,39) 

Infertility duration (years) 6 (3,9) 

Body mass index (kg/m2) 22.86 (20.89,25.78) 

Type of infertility [n (%)] 

 Primary 254 (59.8%) 

 Secondary 171 (40.2%) 

AMH (ng/ml) 2.38 (1.21,4.33) 

AFC 10 (7,15) 

Basal FSH (mIU/ml) 6.46 (5.6,7.94) 

Basal LH (mIU/ml) 5.39 (4.2,6.95) 

Basal Estradiol (pg/ml) 34.25 (26,47.9) 

Basal progesterone (ng/ml) 0.17 (0.09,0.27) 

Starting dose of gonadotropin used (IU) 300 (225,300) 

Stimulation duration (days) 9 (8,9) 

Total gonadotropin dose (IU) 2100 (1500,2400) 

Estradiol levels on trigger day (pg/ml) 2818 (1814,4490) 

Progesterone levels on trigger day (ng/ml) 0.67 (0.4,1.03) 

Endometrial thickness (mm) 10 (9,12) 
 

Data was presented as median (q1, q3) or proportion (n (%)) 

 


