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Abstract 
Background: The purpose of the current study was to reduce the risk of human bias 

in assessing embryos by automatically annotating embryonic development based on 

their morphological changes at specified time-points with convolutional neural net-

work (CNN) and artificial intelligence (AI). 

Methods: Time-lapse videos of embryo development were manually annotated by 

the embryologist and extracted for use as a supervised dataset, where the data were 

split into 14 unique classifications based on morphological differences. A compila-

tion of homogeneous pre-trained CNN models obtained via TensorFlow Hub was 

tested with various hyperparameters on a controlled environment using transfer 

learning to create a new model. Subsequently, the performances of the AI models in 

correctly annotating embryo morphologies within the 14 designated classifications 

were compared with a collection of AI models with different built-in configurations 

so as to derive a model with the highest accuracy. 

Results: Eventually, an AI model with a specific configuration and an accuracy 

score of 67.68% was obtained, capable of predicting the embryo developmental 

stages (t1, t2, t3, t4, t5, t6, t7, t8, t9+, tCompaction, tM, tSB, tB, tEB).  

Conclusion: Currently, the technology and research of artificial intelligence and ma-

chine learning in the medical field have significantly and continuingly progressed in 

an effort to develop computer-assisted technology which could potentially increase 

the efficiency and accuracy of medical personnel’s performance. Nonetheless, build-

ing AI models with larger data is required to properly increase AI model reliability.     
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Introduction 
o reduce and minimize human errors during 

IVF, developing an automated system to as-

sist embryologists in the laboratory has be- 
 

come eminent. Conventional embryo grading or 

annotation of embryo morphokinetics is conduct- 
 

 

 

 

 
ed through manual observation of the embryo cul-

ture by an embryologist which is energy- and 

time-consuming (1). Machine learning (ML) 

could potentially serve as a solution, especially 

with the recent advancement in neural networks 
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and publicly available learning resources. In vitro 

fertilization as one of the effective treatments for 

infertility has become a trending subject for artifi-

cial intelligence (AI) and ML experiments. Effi-

ciency of cell annotation and separating cells 

based on morphokinetic differences reduce the 

challenge of subjective assessment of embryo 

cells. Research in AI and ML in medical field had 

been established by a number of researchers who 

attempted the application of neural network sys-

tem for binary image classification such as eu-

ploid prediction (2-4) and livebirth prediction (5-

7), and for multiclass classification such as classi-

fication of embryo development stage (8-11) and 

embryo grading (12-14).  

Typically, an embryo culture is maintained for 5 

days from the fertilization stage up to the blasto-

cyst stage. Through the time-lapse technology, the 

entire embryo development process could be rec-

orded and compressed into a time-lapse video 

which becomes the main reference for observa-

tion. The embryologists normally require 5 min to 

observe and annotate a single embryo develop-

ment cycle (15). Automation of the classification 

process would therefore accelerate the embryo 

annotation procedure and reduce the subjectivity 

of individual embryologist assessment. In this 

study, utilization of convolutional neural network 

(CNN) as part of deep learning algorithm was ini-

tiated to construct an AI model capable of classi-

fying embryo developmental stages based on an-

notated datasets from expert embryologists. Ac-

cording to VerMilyea et al., an artificial model is 

24.7% more accurate than the embryologists in 

meticulously assessing embryo morphology on 

day 5 and predicting clinical pregnancy (13).  

The embryo developmental stages are distin-

guished by specific events in the process of ferti-

lization, cleavage, morula formation up until the 

blastulation. Embryo morphokinetics refers to the 

time-associated transformation of the embryo as 

the cells go through cell division or cell splitting.  

 

Upon intracytoplasmic sperm injection (ICSI), a 

procedure of injecting a selected sperm cell direct-

ly into an ooplasm (16), the embryo culture/mor-

phokinetics begins (denoted as time zero) and is 

maintained for 5 to 6 days until the critical blasto-

cyst stage is reached. 

 

Methods 
This study utilized images of embryos that were 

cultured in MIRI® time-lapse incubators (37C, 

5% CO2, and 5% O2), a closed incubator system 

that permits the record-keeping of uninterrupted 

time-lapse videos (Single data center: Morula IVF 

Jakarta Clinic, Jakarta, Indonesia). Images were 

captured in a sequence of time, then merged and 

compiled to create a time-lapse video of the em-

bryo morphokinetics. The time-lapse incubator 

can accommodate multiple embryos at a time 

while maintaining a sterile environment for the 

embryo growth. Time-lapse technology has elicit-

ed an increase in the probability of clinical preg-

nancy and embryo implantation in IVF (17). The 

annotated time-lapse video was used as a dataset 

in this prospective study with 163 embryo cycles 

which consisted of the selected time-points: t1, t2, 

t3, t4, t5, t6, t7, t8, t9+, tcompaction, tM, tSB, tB, 

and tEB. While maintaining the integrity of the 

dataset, imbalanced dataset could not be avoided.  

Instantaneous cell split between two time-points 

periodically occur resulting in rapid morphologi-

cal changes; hence, the dataset of embryos in t3, 

t5, t6 and t7 are smaller in quantity (18). Table 1 

summarizes the dataset used in this study which 

amounts to 15.831 embryo images at different 

developmental stages. 

Convolutional neural network is a feed-forward 

neural network (FFNN) which uses a mathemati-

cal linear equation between matrices called the 

convolution (19). A basic CNN would require 

convolutional, pooling, and fully-connected layers 

to represent its characteristics (20). A supervised 

dataset is fed into the CNN with input images that  
 

 

Table 1. Embryo dataset 
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Image no. 3189 1388 348 1540 323 378 445 - - - - - - - 

Image no. - - - - - - - 1575 1197 1135 1668 754 930 961 
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have been grouped based on the header or pre-

classified classes as part of the original images. 

The last layer would consist of a 11 dimensional 

node with multiple depths; depth in this context 

depicts the possible number of classifications and 

simplification was done through a nonlinear func-

tion (21).  

To produce a CNN model, TensorFlow and 

Keras library were implemented since both are 

open-source libraries created by Google and com-

munity developers. TensorFlow employs graphics 
 

processing unit (GPU) as one of the computation- 
 

al devices to accelerate data clustering and train-

ing process (22). To represent a TensorFlow for 

model algorithms, dataflow graphs utilize layers 

as mathematical matrix operators and each type of 

layer produces a different mathematical output 

(23). TensorFlow is designed to provide an effi-

cient memory and computation, a stable numerical 

system, and maintain an idiom to differentiate its 

ecosystem (24). Alternatively, Keras is particular-

ly built for easy and efficient experimentation be-

sides faster results in research (25). Keras itself is 

a high-level application programming interface 

(API) which can serve neural network purposes. 

TensorFlow and Keras have published multiple 

open-source pre-trained models on TensorFlow 

Hub that could be used for transfer learning using 

a newly introduced dataset. The transfer learning 

allows leveraging feature representations from 

pre-trained models with pre-defined layers and 

altering the end point of the model into a desired 

classification. Each individual pre-trained model 

is unique; for instance, inception_v3 has 313 lay-

ers, ResNet has 566 layers while efficientnet_b6 

has 669 layers (22). In transfer learning, a pre-

trained model with all its layers is considered as a 

singular layer (one entity) which allows users to 

use either sequential or functional API. Figure 1 

shows the architectural differences between func-

tional and sequential API. Functional API pro-

vides flexibility in creating multiple parallel lay-

ers, while sequential API exhibits linear layers. To 

achieve a robust AI model, this study combined  
 

pre-trained model selection, data augmentation, 

and hyperparameter selection. Pre-trained model 

selection was conducted through trials of multiple 

different model architectures trained for 100 

learning steps or epochs. Data augmentation con-

sisted of random image rotation and image flip in 

the dataset, and hyperparameter selection com-

prised testing multiple optimizers and learning 

rates. Configuration selection was performed in a 

shorter training time (30 learning steps or epochs) 

compared to the final model built (200 learning 

steps or epochs). 

Sequential API 

input_1: input layer 

conv2d_1: conv2D 

dense_1: dense 

dense_2: dense 

Functional API 

Input_1: input layer 

Conv2d_1: conv2D Conv2d_2: conv2D 

Max_pooling2d_1: maxpooling2D Max_pooling2d_2: maxpooling2D 

Flatten_1: flatten Flatten_2: flatten 

Concatenate_1: concatenate 

Dense_1: dense 

Dense_2: dense 

Figure 1. The comparison of functional and sequential API 
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Ethical committee approval: This study was ap-

proved by the local research ethics committee in 

the Faculty of Medicine, Universitas Indonesia, 

Jakarta (number: KET-351/UN2.F1/ETIK/PPM. 

00.02/2020). 

 

Results 
In this study, multiple model architectures with 

different hyperparameters were compared with/ 

without data augmentation to identify the most 

suitable architecture which best achieves the func-

tions of embryonic cell detection and annotation. 

Retrospective IVF patient data on successful em-

bryo development up to the expanded blastocyst 

were obtained for this study. The dataset consisted 

of image records of the embryonic cells after 

sperm injection, at the T1 to T9 stage, compac-

tion, morula, and blastocyst stage. Figure 2 shows 

the sequence of the embryonic development and 

different morphokinetic parameters captured us-

ing the time-lapse incubator camera. These imag-

es had undergone the pre-processing steps of 

cropping, thresholding, erosion, and dilation prior 

to extraction from the original time-lapse videos. 

Six pre-trained models were used in this study 

with multiple parameters to identify which model 

has the highest accuracy. Sequential API was used 

for the comparison because of its capability to 

gain access to TensorFlow Hub and linear model  

 

layer computation. The pre-trained model yielded 

an x amount of output which was then narrowed 

to a specific classification using a dense layer. 

The dense layer serves to limit the outputs to the 

desired classification. The pre-trained model se-

lection was conducted using the following param-

eters: 100 epochs, Adam optimizer, and 5E-03 

learning rate without data augmentation. Table 2 

shows the output accuracy of the different pre-

trained models with similar parameters. Pre-train-

ed models with the highest accuracy would subse-

quently be used for hyperparameter selection and 

final model training. 

Evidently, some architectures performed better 

than the others. Each pre-trained model has a dif-

ferent layer approach which influences its perfor-

mance. The purpose of the layers is to update the 

model's weight for each node; more layers pre-

sumably yield a better performance. In this study, 

efficientnet_b6 architecture performance was 

proven to be superior and it utilized more layers 

than the other models and thus was used for the 

hyperparameter selection. The trial for hyperpa-

rameter selection was conducted over 30 epochs 

to expedite the initial probability results that 

would become a benchmark for downstream train-

ing steps.  

Optimizer, learning rate, and data augmentation 

were factors that were tested using commonly 

used hyperparameters and similar configuration 

attempts. The optimizers were derived from the 

Keras library. The learning rate used a sequence 

order of number selection. The data augmentation 

was conducted to potentially increase the model 

performance by using two randomly selected set-

tings. Learning rate determines the model capabil-

ity to adapt with training progress. A small value 

of learning rate indicates a slow training progress 

while a high learning rate value would result in 

different loss functions. The calculation for each 

learning rate differs for each optimizer, since each 

uses a different set of mathematical approaches to  
 

Table 2. Performances of pre-trained models 
 

No Model 
Accuracy  

(%) 

1 Inception_v3 40-50 

2 Efficientnet_b3 50-60 

3 Mobilenet_v1_100_224 35-45 

4 Mobilenet_v3_large_075_224 55-60 

5 Efficientnet_b6 55-60 

6 Resnet_v2_152 55-60 

 

 

Figure 2. Embryonic development events 
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comply with their individual goals. The combina-

tion of learning rate and optimizer yielded better 

test results as shown in table 3.  

Implementing random rotation and random flip 

on the embryo image dataset did not provide any 

improvement in the model accuracy. In fact, it 

generated a slightly lower accuracy compared to 

the original dateset, 58.40% and 59.86%, respec-

tively. The data augmentation process produced 

32 different versions of an individual image with 

the same dimension. Random zoom data augmen-

tation or partial image entry was excluded and 

considered unnecessary because the original input 

dataset had no incomplete frames and all embryo 

images were confined in one frame. The images 

were gathered from a single data center which 

generates equal light intensity of images, hence 

random augmentation of light intensity was ex-

cluded. Additionally, all images collected for the 

study were clear images without any distortions, 

thus random distortion of image or noise augmen- 

 

tation was excluded. Nonetheless, model training 

using the original image dataset is assumed to 

produce better outcomes than using the altered 

images.  

Consequently, the model was trained using the 

efficientnet_b6 architecture for 200 epochs to fi-

nalize the training sequence. Training for 200 

epochs was determined to expectedly improve the 

model performance. In general, 200 epochs were 

deemed sufficient for the training and that a high-

er epoch value would not contribute to a signifi-

cant difference.  

Table 4 shows the results of a 200 epoch model 

training without data augmentation. Models with 

the Adam AMSGrad optimizer and the learning 

rate of 1E-03 yielded the highest performance 

compared to other hyperparameter selection mod-

els. 

 
Discussion 

In this study, Keras and TensorFlow were used  

 

Table 3. Learning rate comparison 
 

No Optimizer Learning rate 
The highest training accuracy 

(%) 

1 Adamax 5E-03 58.78 

2 Adadelta 5E-02 41.69 

3 RMSprop 1E-03 57.91 

4 Nadam 5E-03 58.49 

5 Adagrad 5E-02 57.61 

6 Adam 5E-03 60.83 

7 FTRL 5E-02 58.49 

8 Adam-AMSGrad 1E-03 61.42 

9 SGD 1E-02 58.88 

 

 

Table 4. Model finalization 
 

No Optimizer Learning rate 
Test Validation 

Accuracy 

(%) 
Loss 

Accuracy 

(%) 
Loss 

1 Adamax 5E-03 67.58 1.40 55.76 1.67 

2 Adadelta 5E-02 57.52 1.63 53.42 1.72 

3 RMSprop 1E-03 67.29 1.41 57.03 1.68 

4 Nadam 5E-03 66.99 1.46 56.05 1.75 

5 Adagrad 5E-02 65.92 1.43 56.35 1.66 

6 Adam 5E-03 65.63 1.50 55.96 1.75 

7 FTRL 5E-02 65.92 1.41 57.03 1.62 

8 Adam AMSGrad 1E-03 67.68 1.40 57.71 1.65 

9 SGD 1E-02 66.24 1.43 55.47 1.66 
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to perform transfer learning and the performances 

of several pre-trained models with various config-

urations were compared. Furthermore, hyperpa-

rameter selection was attempted to identify mod-

els with the most optimized performance. Pre-

trained models with the efficientnet_b6 architec-

ture yielded the highest accuracy compared to 

other pre-trained model architectures. Ultimately, 

the hyperparameters were compared with different 

configurations and the model with the optimizer 

Adam AMSGrad and 1E-03 learning rate was de-

termined to produce the highest accuracy of 

67.68% without the use of data augmentation. 

Each pre-trained model architecture exhibited 

unique layers, even for similar models with dif-

ferent iterations. The complex 660 layers of the 

efficientnet_b6 architecture in this study over-

powered the performances of other models. The 

differences in the model architectures and input 

data size therefore had an effect on the model per-

formances. Previous studies on embryo develop-

ment classification (8-11) utilized the early stages 

of embryo development up to t4, t4+, t5, t4+, re-

spectively. The novelty of the current study was 

the added time-points in the morphokinetic pa-

rameters, summing up to 14 kinetic stage classifi-

cations (up to the expanded blastocyst stage), dis-

cernable by the AI model.   

 

Conclusion 
The advanced technology such as CNN is capa-

ble for image classification to support and im-

prove the decision-making process of medical 

personnel. Such technology would provide em-

bryologists with a benchmark to annotate embryos 

at t1 up to tEB, instead of relying solely on manu-

al observation. Moreover, the AI model construct-

ed in this study could significantly be improved 

through training with a larger dataset as data is a 

crucial factor that determines a model’s perfor-

mance in the field of machine learning and artifi-

cial intelligence. 
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