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Parkinson's Disease (PD) is a neurodegenerative disorder that causes movement and behavioral 
problems. Pharmacological advancements for preventing disease progression have limited 
success for many PD patients; therefore, supportive care is necessary. The advancement of 
the digital world and the revolution of computerized applications pave the way for a better 
understanding of PD and inventing technological apparatus for helping PD patients to provide 
them a more normal life. In this review, the most recent technological advancements regarding 
the rehabilitation, monitoring, and early prognosis of PD are presented. Furthermore, the 
possible neurological mechanisms responsible for the positive effects of technological-based 
interventions are discussed. 
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1. Introduction

arkinson's disease (PD) is a progressive 
neurodegenerative disorder that affects 
dopaminergic neurons of basal ganglia, 
mostly in substantia nigra. The standard 
medication for PD is levodopa (L-DO-

PA), which its carboxyl group is removed for synthe-
sizing dopamine. The absence of dopamine produces 
several disorders, including motor and cognitive dis-
abilities for PD patients. There is no definite cure for 

PD, and existing pharmacological treatments cause 
several side effects [1, 2]. As a complementary therapy 
for reducing the complications of PD and improving 
the quality of life, technological-based interventions 
and aiding devices are recommended. In this review, 
the recent advancements of technology for PD treat-
ment and management are reviewed. 
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2. Technological-Based Treatment Approaches 
for PD

Deep Brain Stimulation (DBS)

One of the invasive procedures for treating movement 
disabilities of PD patients is Deep Brain Stimulation 
(DBS), in which the Globus Pallidus (GP) or Subtha-
lamic Nucleus (STN) of the brain are stimulated exter-
nally by inserting an electrode into the brain target area 
[3]. Common stimulation strategy is monopolar impulse 
stimulation (2.5-3.5 V, 30-90 μs, 60-180 Hz) [4, 5]. The 
mechanisms behind DBS and its effects on brain activ-
ity are not well understood. However, some mechanisms 
have been proposed so far, including inhibition of neu-
ron depolarization and synaptic activity, stimulation of 
afferent axons in the subthalamic nucleus, and disrupting 
of abnormal spike patterns in brain regions [3].

Recently, technological advancements have been uti-
lized for improving the efficacy of DBS. Particular 
concentration has been focused on the design of elec-
trode and implantable pulse generators and optimizing 
electrode insertion into the targeted areas of the brain. It 
seems that the shape of the electrical field affects the out-
come of DBS. Wojtecki and Schnitzler used an electrode 
with several contact sites of interaction to simultaneous-
ly stimulate different anatomical regions with varying 
parameter sets [6]. Such a combined stimulation strategy 
resulted in greater PD symptom elimination. In addition, 
the problem of impedance change around the excitation 
site leads to variable steering of current to the targeted 
brain region. The multi-contact, constant-current DBS 
systems have been proposed, which shows consider-
able improvement for PD symptoms [7] without being 
affected by the variable impedance of surrounding tissue 
[8]. It is worth noting that constant-current stimulation 
technically provides a more accurate spread of electri-
cal field compared with a voltage-controlled device [9]. 
Since several studies showed a wider therapeutic win-
dow for stimulating the brain with a shorter pulse dura-
tion [5, 10], the newly developed pulse generators for 
DBS can generate shorter pulses. 

Another technological advancement in DBS is related 
to electrode placement procedure. While traditional 
DBS uses microelectrode recording with awake pa-
tients, recent technologies use combined imaging (CT 
plus MRI) and robotic devices with asleep patients [11]. 
Other methods such as scalp electric potential record-
ings [12] and photoacoustic and ultrasound imaging [13] 
have also been proposed. 

Transcranial Magnetic Stimulation (TMS) 

Transcranial Magnetic Stimulation (TMS) is a tech-
nique in which the brain is exposed to an alternating 
magnetic field through specialized coils. After applying 
a magnetic field, according to Maxwell’s equations, an 
electric field is induced in specific brain areas, which 
possibly affects the electrical activity of neurons. It was 
shown that TMS enhances tropomyosin-related kinase 
B (TrkB)/Brain Derived-Neurotrophic Factor (BDNF) 
signaling. The TrkB enzyme is an essential biomarker of 
brain plasticity, and its level is lower in PD patients than 
healthy individuals [14]. Repetitive TMS might affect 
the plasticity of cortical areas through the induction of 
long-term potentiation in the primary and supplementary 
motor cortex, the brain areas which show suppressed ex-
citability for PD patients [14]. Studies show that high-
frequency repeated TMS combined with aerobic exer-
cise increased BDNF-TrkB signaling, even though the 
increase was not statistically different with the sham 
group (PD patients performed exercise without the stim-
ulation with TMS). However, the cortical silent period 
was prolonged following the application of TMS [15].

It should be noted that some other studies report no 
significant effects for TMS in PD treatment. Fricke et 
al. hypothesized that stimulation of corticofugal neurons 
that connect the neocortex to the subcortical areas might 
affect the STN region. In this regard, they used TMS at 
the primary motor and dorsal premotor cortex; however, 
no significant effects were found in motor symptoms of 
PD patients [16]. To evaluate the efficacy of repetitive 
TMS for PD patients with depression, Hia-Jiato per-
formed a meta-analysis. The results showed that TMS, 
when applied to the dorsolateral prefrontal cortex, could 
only improve depression, but no effect was found for 
motor functions [17]. 

Transcranial Direct Current Stimulation (tDCS)

Transcranial Direct Current Stimulation (tDCS), i.e., 
the electrical stimulation of scalp with surface electrodes, 
combined with physical training, improves movement 
balance and gait of PD patients [18]. Fregni et al. evalu-
ated the effect of tDCS on motor function and motor-
evoked potential [19]. The obtained results showed that 
the stimulation of the primary motor cortex by an an-
odal tDCS improved motor functions significantly, while 
the cathodal stimulation did not show an improved ef-
fect. Improved movement function was correlated with 
increased motor-evoked potential amplitude and area 
[18]. Some other reported mechanisms responsible for 
observed effects of tDCS on PD patients are increased 
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cortical excitability, modification of synaptic plasticity, 
increased calcium current [20], depolarization of corti-
cal neuron’s membrane, as well as their excitation [21], 
and expression of neurotrophic factors [22].

MR-Guided Focused Ultrasound Surgery (MRgFUS)

MR-Guided Focused Ultrasound Surgery (MRgFUS) 
is a new strategy for treating PD in which several brain 
regions such as Ventral Intermediate Nucleus (VTM), 
STN, and GP are exposed to high intensity focused 
ultrasound guided by MRI [23, 24]. In case of tremor 
reduction, the thalamus is usually the target (thalamot-
omy); for dyskinesia, the GP (pallidotomy) or STN are 
suitable targets, and for akinesia, the pallidothalamic 
tract is the intended target. MRgFUS has some advan-
tages compared with DBS, including non-invasiveness 
and single procedure treatment. 

3. Aiding Devices for PD Patients

Anti-tremor devices

Most PD patients have tremors in hands or legs, which 
are observed at rest for the early phase or at voluntary 
movements for the late phase. The PD patients usually 
have trouble with heavyweight utensils where lower 
velocity arm movement is observed for heavier objects 
[25]. Some manufacturers have designed devices such 
as spoons for PD patients to cancel out tremors actively. 
Such devices ease the eating procedure for PD individu-
als. Usually, these devices consist of several motion 
sensors (for example, accelerometers) that detect hand 
tremors in real-time and send the information to a digi-
tal controller, which drives some motors to compensate 
for the spoon vibration due to hand tremors [26]. The 
tremor direction can be estimated in two or three dimen-
sions. Fraiwan et al. designed a self-stabilizing tray for 
PD patients to ease object delivery [27]. The design con-
sisted of a base tray controlled through an inertia move-
ment sensor. This controller unit transforms the posi-
tional data to related angles and some servo-motors to 
vibrate the base plate containing objects. The base plate 
vibration tried to compensate for the vibration produced 
by hand tremors. Tremors also deteriorate the ability to 
write in PD patients. In this regard, some researchers 
focused on designing devices for mitigating the effect 
of tremors on handwriting. A pen named Fleo was de-
signed that works based on the gyroscopic principle. It 
uses a copper ring rotor attached to a motor that resists 
undesirable pen vibrations caused by hand tremors [28].

Tremor reduction devices

The primary tremors in PD patients are usually ob-
served at low (4-5 Hz) or high (8-10 Hz) frequencies 
during resting state and disappear after voluntary move-
ments [29]. By the progress of PD, another type of trem-
or called action tremor appears, which manifests during 
voluntary activities [30]. Several studies have focussed 
on the design of useful devices for suppressing hand or 
leg tremors in PD patients. Some examples are a tuned 
vibration absorber based on biomechanical approaches 
[31] and the actuator for suppressing upper limb trem-
ors using a magnetorheological fluid that its viscosity is 
controlled by a magnetic field [32]. Case et al. designed 
a magnetorheological fluid-based damper parallel to 
the forearm muscles. While the tremor suppression was 
excellent, the device also damped the voluntary move-
ments [33]. Some other studies used pneumatic actua-
tors for tremor suppression; however, the size and noise 
of this kind of actuator make them unsuitable for prac-
tical applications [34]. A GyroGlove was designed for 
stabilizing hand tremors according to mechanical roles. 
There is a spinning top for GyroGlove, which detects 
angular momentum and resists against exerted forces 
by tremors [35]. Since tremors are arises due to the in-
correct signals sent to muscles, some innovations have 
focused on electrical stimulation of muscles for tremor 
suppression purposes [36, 37]. 

Auditory aiding devices

Auditory cueing devices are among the options for 
managing movement freezing and gait disorders in PD 
patients. Auditory cueing uses external temporal audi-
tory stimulus to facilitate the slow movement of PD 
patients. The mechanism behind such improvement of 
movement is not clearly understood; however, some 
hypothesis such as enhancement of internal rhythms of 
basal ganglia following the auditory stimulus has been 
proposed [38]. Research shows that increasing audi-
tory cueing enhances walking speed and stride length 
of PD patients with natural step patterns. In contrast, its 
efficacy for PD patients with freezing of gait was not 
approved [39, 40]. Functional Magnetic Resonance Im-
aging (fMRI) studies reveal that the motor and auditory 
cortex of professional musicians reorganized compared 
with non-musician individuals. Furthermore, music and 
neurotransmitter and hormone levels correlate with mu-
sic [41]. The brain circuit reorganization and hormone 
secretion due to music might be responsible for the posi-
tive effects of music on PD symptoms. 
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In addition, some PD patients show hypophonia and 
tend to speak softly. This event might occur due to the 
impairment of muscles that produce speech. A device 
called SpeechVive has been designed that uses the 
Lombard effect and helps people with hypophonia. The 
principle behind the Lombard effect is simple: the noisy 
condition forces the human to speak more loudly. In this 
regard, SpeechVive that is worn in the ear creates some 
level of noise during the speech period and in this way 
makes the individual speech loudly [42].

Physiotherapy-based innovations

Studies show that physiotherapy interventions de-
liver short-term benefits for the balanced state and 
walking speed of PD patients [43]. The physiotherapy-
induced exercise modulates the secretion level of sev-
eral neurotransmitters, including dopamine, glutamate, 
serotonin, norepinephrine, and acetylcholine [44]. In 
addition, exercise may protect individuals from neuro-
degenerative disorders by enhancing brain connectiv-
ity [44]. The automatic and voluntary movements and 
also cognition are controlled through the Medium Spiny 
Neurons (MSN), which are an essential part of the corti-
cal-striatal circuit. Dopamine D1 and D2 receptors (DA-
D1R and DA-D2R) exist in MSNs and are involved in 
the motor learning process. According to animal studies, 
exercise may facilitate DA neurotransmission through 
the increased expression of DA-D2R proteins [44, 45]. 
Studies on animal models show that following a chal-
lenging exercise, DA release increases, while due to 
down-regulation of DA transporter, extracellular DA 
also increases [45]. In addition, the exercise shows some 
level of protection against neurotoxicity in dopaminergic 
neurons [46, 47].

Moderate exercise enhances the plasticity and action of 
the central nervous system, and the monoamine system 
plays a pivotal role in this effect [48]. The main mono-
amine transmitters in the brain include catecholamines 
and 5-Hydroxytryptamine (5-HT). After exercise, the 
expression of galanin is increased in locus coeruleus; 
consequently, noradrenergic neurons hyperpolarize, 
which prevents the firing of coeruleus and leads to the 
inhibition of norepinephrine. This process reduces the 
activity of the amygdala and frontal cortex that leads to 
a protective mechanism against stress [49-51]. The syn-
thesis and secretion of 5-HT are highly dependent on ex-
ercise intensity [52].

Even though literature shows the positive effect of ex-
ercise and body activity for PD patients, most patients 
are reluctant to engage in such activities. Physiotherapy 

is a helpful therapy; however, the cost and necessity for 
an expert physiotherapist are some challenges. New 
computer-based strategies such as motion-based games 
and Virtual and Augmented Reality (VR and AR) ap-
proaches are promising options for compensating eco-
nomic burden and motivating patients to engage in phys-
iotherapy exercises [53]. 

Motion-based games, virtual and augmented real-
ity strategies for PD patient rehabilitation

Augmented Reality (AR) and Virtual Reality (VR) are 
two technological concepts that have gained increasing 
attention during the past decade. The VR paradigm sug-
gests many opportunities for the rehabilitation of dis-
abled people. VR aims to place disabled people in the 
virtual environment to encourage them to participate in 
a sport or game-based exercise [54]. In such a paradigm, 
it is possible to modify the patient’s participation accord-
ing to auditory or visual feedback. Among such reha-
bilitation systems are Interactive Rehabilitation Exercise 
systems (IREX) [55], Playstation EyeToy, and WuppDi! 
[53]. The application of VR for improving postural con-
trol in PD patients [56] and quantification of motor dys-
function in PD patients [57] has been reported. 

Because of the positive effects of music and rhythms 
for facilitating PD patient movement, music and rhythms 
are usually essential factors for designing suitable AR- 
and VR-based games [53]. The game level should be ad-
justable according to the patient’s performance [58] and 
special attention should be paid to positive feedback to 
encourage PD patients to participate in the game [59]. 

Application of art therapy for PD patients

The visuospatial functions affect several neurocogni-
tive skills such as navigation, localization, and space 
orientation [60]. PD patients usually suffer from visuo-
spatial disabilities. One proposed strategy for improving 
the visuospatial functions of PD patients is art therapy. 
Technological progress enables researchers to create a 
new concept in art therapy, i.e., digital or computerized 
art therapy, which obtains a new and more flexible per-
spective for rehabilitation [61]. The portability, versatil-
ity, and dissemination capability are among the advan-
tages of digital art therapy approaches. 

4. Application of Monitoring Systems for PD 
Patients

The most common sensors for movement assessment 
are optical motion sensors, gyroscope sensors, GPS 
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sensors, accelerometers, magneto-resistive sensors, go-
niometers, force sensors, electromagnetic tracking sys-
tems, electromyography sensors, and inertial sensors 
[62, 63]. The optical motion sensor uses color cameras 
and analyzes a sequence of captured images or videos 
to calculate the foot joint position [64]. In accelerometer 
sensors, some piezoelectric or capacitive components 
are usually used to convert the sensor mechanical mo-
tions to suitable electrical signals. Gyroscopes measure 
the angular velocity of the limb, and magneto-resistive 
sensors access the orientation of the body segment com-
pared with the vertical axis. Any change in the orienta-
tion of the magneto-resistive sensor deflects the current 
path through the sensor plate and leads to higher resis-
tance against the base current [63]. The goniometers 
measure the relative rotation between two points, while 
such rotation can be calculated using different physical 
signals. The mechanical strains, changing inductive pa-
rameters between two points, or changing optical param-
eters following the rotation are the possible strategies to 
account for motion [63]. The electromagnetic tracking 
system consists of a 3D transmitter coil, magnetic-sen-
sitive sensor, and some electronic devices for stimulat-
ing coils and capturing the produced electrical signal of 
the sensor. The sensor output is affected by its position 
and orientation against the magnetic coils [65]. In this 
way, any change of legs or feet where the sensor is at-
tached can be detected. Force sensors usually measure 
the shear and compressive forces applied to the heel or 
toes during walking. Such forces can be estimated us-
ing different properties such as piezoelectric, capacitive, 
or photoelastic [63]. Another strategy for movement as-
sessment is measuring and processing muscle activities 
using electromyography [66].

Patel et al. developed a home monitoring device us-
ing 8 accelerometers. The sensor data were sent to a 
remote site using web-based applications [67]. The ac-
quired movement data after preprocessing were used 
to extract suitable features regarding the movement 
characteristics. In the final stage, the obtained features 
were fed to a classifier for distinguishing between dif-
ferent movements disorders. Bae et al. proposed a gait 
monitoring system using intelligent shoes equipped 
with pressure/force sensors. A microprocessor gait was 
evaluated, and visual feedback about the patient ground 
reaction force was given to the subject. The patient 
ground reaction force was compared with a normal pat-
tern; therefore, a practice for gait rehabilitation could 
be performed [68, 69]. 

Almogren et al. proposed a telemonitoring system that 
incorporates several types of sensors, including voice, 

ECG, blood pressure, temperature, and accelerometer 
sensors for measuring vital signs, gait, and posture situ-
ation of PD patients [70]. The collected data were sent 
to a cloud server by a smartphone through the Internet 
or Wi-Fi. All processing steps were performed on the 
cloud side, and the results were sent back to the patient 
as feedback. The best location for gait detection sensors 
is the waist due to its proximity to the body center of 
gravity, and also, its use is more comfortable [71, 72]. 
Another problem that PD patients confront is the Freez-
ing of Gait (FOG) when a considerable reduction of for-
ward walking progression is observed. Borzi et al. de-
veloped a wearable unit to detect bradykinesia and FOG 
[73]. The device consisted of a collection of sensors, a 
microcontroller, a micro SD module, and a Bluetooth 
interface that could be employed on the waist or thigh 
of the patient. 

By fabricating high performance, high speed, and 
light-weighted microprocessor units and digital devices 
from technological advancements, it is possible to have 
a portable device capable of performing sophisticated 
real-time analysis for movement processing. Several al-
gorithms have been proposed to predict and detect FOG 
from gait analysis. These algorithms consist of statisti-
cal tests [74], neural networks [75], machine learning 
approaches [76], and classifiers such as support vector 
machines [71]. The classifiers are usually trained with 
labeled data determined by an expert [77]. 

Besides the motor symptoms of PD, technological 
advancements enable us to detect or monitor several 
non-motor and secondary symptoms. The swallow-
ing problems with PD patients are usually diagnosed 
by esophageal high-resolution manometry that uses 
pressure sensors [78]. Two other methods for swallow-
ing evaluation are the fiberoptic endoscopic evaluation 
of swallowing and the video-fluoroscopy swallowing 
study. The former consists of a flexible endoscope that 
is entered to the hypopharynx through the nose to give a 
live view of the pharynx, and the latter is an x-ray based 
tool that provides a visualization of the swallowing sys-
tem during eating. 

The clinically used approaches for diagnosing con-
stipation of PD patients are using radiopaque materials 
followed by x-ray imaging, scintigraphic colonic transit 
test that uses radioisotopes and gamma-ray imaging, ex-
ternal electromyography of anal sphincter, and anorectal 
manometry [79].

The observed sleep disorders such as sleep time are 
diagnosed by multiple sleep latency tests [79]. Rapid 
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eye movement, insomnia, and restless legs are usually 
monitored using video Polysomnography (v-PSG). For 
unusual sleep behavior disorders, v-PSG monitoring 
uses several sensors such as electrocardiogram, Elec-
troencephalogram (EEG), electromyogram, electroocu-
logram, respiratory sensors, voice recorder, and video 
monitoring devices. There are other designed devices for 
monitoring sleep quality in PD patients, such as actig-
raphy (for measuring total sleep time, number of wake 
efforts) [80].

5. Technological Advancements for Early 
Detection and Prediction of PD

The degeneration of substantia nigra dopamine gen-
erating neurons is due to the accumulation of a fam-
ily of α-synuclein proteins, known as Lewy bodies, 
inside those dopaminergic neurons. It is reported that 
α-synuclein in the cerebrospinal fluid is lower in PD pa-
tients [81]. In this regard, developing new α-synuclein-
specific antibodies for the ELISA method is promising 
for the early detection of PD [82]. The α-synuclein level 
can be estimated by examining saliva, olfactory mucosa, 
submucosa of ascending colon, heart, and peripheral 
nervous system [83]. A novel strategy for α-synuclein 
detection includes nanoparticle-based biosensors [84]. 
Since PD patients compared with healthy subjects show 
decreased Dj-1 mutation [85], decreased uric acid level 
as a neuroprotective factor [86], and decreased apolipo-
protein A-I in CSF [87], these factors can be considered 
early detection biomarkers for PD. 

Doty et al. reported that the ability of PD patients to 
distinguish smells is relatively lower compared with 
healthy matched controls [88]. Furthermore, olfactory-
evoked potentials show a delayed onset compared with 
a healthy matched group [28]. In this regard, tests for 
smell evaluation and analysis of olfactory data through 
EEG data or imaging modalities [89, 90] can be consid-
ered for early detection of PD. 

Prediction of PD using analysis of body movement has 
attracted particular interest. PD affects several attributes 
of finger and hand movement; therefore, analysis of fea-
tures such as reaction time and difficulty of performing 
movement action using machine learning approaches 
and data classification is helpful for PD detection and 
prediction purposes [91, 92]. 

Another altered movement following the PD is eye 
movement [93]. The rapid movement of eyes between 
two fixed points (or saccadic movement) is initiated by 
the caudate nucleus, part of basal ganglia [94]. PD pa-

tients confronted hypometric saccadic eye movements 
[95]. In this regard, saccadometer or eye-tracker systems 
may be considered diagnostic or prognostic tools [96].
Quantitative EEG measurement is a useful noninvasive 
tool for screening the cognitive states of PD patients 
since the power of EEG waves shows a significant cor-
relation with cognitive impairment [97]. In addition, the 
spectral content of EEG changes as PD progresses so 
that the EEG wave of PD patients is dominated by more 
low-frequency content compared with healthy subjects. 
In addition, the background rhythm of EEG data can be 
a marker for the incidence of dementia in PD patients 
[98]. Beta-band phase and gamma-band amplitude cor-
relation of PD patients and waveform shape of the beta 
band are also two other EEG-based factors that might 
help improve PD detection [99]. 

Another useful opportunity that high-performance 
digital computers provide is prediction models, con-
structed according to the extraction of useful informa-
tion from extensive data that consequently are applied 
for the development of PD risk models [100]. An early 
sign of PD is the alteration in drawing ability, especially 
in the kinematics of handwriting [101], where the reduc-
tion in writing amplitude (or micrographia), increased 
stroke duration, reduced writing velocity, and fluency 
are observed [102]. Controlled trials show that inten-
sive training could improve the writing ability of PD 
patients [103, 104]. Drawing skills are reflected in brain 
electrical activity. For example, it was shown that during 
a drawing task, the left hemisphere of artists was more 
activated compared with non-artists, while the activity 
of the frontal lobe of non-artists was dominant, possibly 
due to the learning process [105]. For both groups (art-
ists and non-artists), drawing increased alpha rhythms of 
EEG waves, which indicates the relaxation state of the 
brain during drawing [105]. In addition, the functional 
Near-Infrared Spectroscopy (fNIRS)-based studies show 
that the drawing art increases blood flow at the medial 
prefrontal cortex, which might be due to the activation of 
a reward pathway [106]. In this regard, drawing can be a 
possible tool for the early diagnosis of PD. 

The progression of PD deteriorates the vocal tracts and 
hence degrades the voice performance of patients [107]. 
Several studies have shown that the voice signal is a 
good candidate for separating PD patients from healthy 
individuals [108]. Besides the capability of voice signal 
for PD detection, voice processing using digital systems 
is a useful approach for PD progression anticipation due 
to the strong correlation between voice degradation and 
the PD stage [107]. Another marker for early prediction 
of PD is sleeping analysis, especially by analyzing Rap-
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id Eye Movements (REM) and REM behavior disorder 
[109]. The application of high-technology imaging devic-
es such as positron emission tomography [110] and MRI 
[111] is growing for detecting and early prediction of PD. 

6. Conclusion

PD management strategies can be divided into distinct 
categories: diagnosis (before movement disorders mani-
festation), treatment (after motor or cognitive disabilities 
appear), and rehabilitation for mitigating disabilities. 
Furthermore, since most patients who develop PD are 
60 years or older and may encounter other aging-related 
disabilities, monitoring their activities by technological-
based innovations may be vital for their safety. In this re-
view, state-of-the-art technological innovations for diag-
nostic, treatment, rehabilitation, and monitoring purposes 
for PD were reviewed. Most of the previous studies con-
centrated on particular aspects of PD management; how-
ever, the current research can be a comprehensive source 
regarding PD management. Furthermore, the information 
provided by this review can be considered by the neu-
rologist to propose non-pharmacological interventions 
for PD management. This review provides new insights 
to physicians and neurologists for future clinical methods 
regarding PD diagnosis and rehabilitation.
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