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Introduction: Recently, machine learning adoption has significantly increased across 
various applications, including the prediction of diseases based on a person’s clinical profile. 
Accordingly, this study develops and evaluates a supervised machine learning method to 
predict trunk muscle activity in people with chronic low back pain.

Materials and Methods: This was a secondary data analysis from a subgroup of people with 
nonspecific chronic low back pain. The correlation between labeled data and the output data 
of muscle activity level was measured through surface electromyography. The result showed a 
good correlation, suggesting the potential utility of this approach in distinguishing individuals 
with low back pain from pain-free controls.

Results: To validate the performance of the developed machine learning, the results were 
compared with the SPSS software, version 17. The model’s predictive performance was further 
assessed using various evaluation methods, including the area under the receiver operating 
characteristics curve. The study’s findings indicate that the model achieved area under the 
curve values ranging from 0.5 to 0.9 across all muscles and different tasks for people with back 
pain. In contrast, the pain-free group exhibited area under the curve values between 0.4 and 0.8.

Conclusion: The supervised machine learning approach using logistic regression may offer 
clinically meaningful predictions in defining the differences in trunk muscle activity between 
individuals with non-specific chronic low back pain and pain-free controls. While the obtained 
results demonstrate promise, further studies need to enhance the model’s performance and 
achieve a more accurate estimation of muscle activity levels.
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Introduction

ow back pain (LBP) is a major global 
health leading to ongoing symptoms, 
poor quality of life, work performance, 
and social engagement with an average 
lifetime prevalence of 30% among adults 

[1]. While most individuals with low back pain experi-
ence spontaneous improvement or respond to treatments 
within a few weeks [2], a subset of people may develop 
chronic low back pain (CLBP) and despite recovery, 
few people still experience recurring episodes of LBP 
[3]. Only 15% of LBP cases have been identified to have 
specific underlying causes [4] and in the remaining 85% 
the cause is unknown and LBP is non-specific [5].

One possible physical factor that can contribute to LBP 
is the alteration in the level of activity of trunk muscles 
during daily functions [6]. This variability changes the 
load distributions on spinal structures, leading to contin-
uation and exacerbation of pain. Trunk muscles particu-
larly back extensors, play a critical role in various spinal 
functions and postures. Previous studies indicate that 
surface electromyography can differentiate between in-
dividuals with CLBP and those without pain [7]. It helps 
to understand muscles’ functions by recording their elec-
trical activity during contractions and different tasks.

Subgrouping of people with non-specific CLBP 
(NSCLBP) based on common features provides a prom-
ising approach for tailoring personalized treatments 
[8]. Classification systems have shown that people 
with NSCLBP have different muscle activity among 
subgroups. For instance, the results of previous stud-
ies based on the O’Sullivan classification system have 
shown that those with active extension-related NSCLBP 
display higher superficial trunk muscles’ activity com-
pared to other subgroups, such as flexion-related or mul-
tidirectional back pain [7].

In the last decade, there has been a significant rise in 
the adoption of artificial intelligence (AI) specially ma-
chine learning (ML) technologies, across various appli-
cations [9-11]. ML helps in diagnosis and outcome pre-
diction [12], which is increasingly being utilized for the 
early prediction of several diseases based on the clinical 
profile of patients. It also plays a vital role in develop-
ing healthcare systems that integrate various elements 
such as science, motivation, data science, and culture to 
promote improvement. Practically, by integrating vari-
ous data sources with advanced ML algorithms to gen-
erate data-driven insights aimed at improving biomedi-
cal research, public health, and the quality of healthcare 

services, these systems can be deployed in small clin-
ics as well as major healthcare organizations [12]. The 
growing volume of data in the field of medical science 
now enables more precise and insightful analyses, lead-
ing to higher diagnosis accuracy [13], pattern detection, 
and treatment. Compared to traditional statistical meth-
ods, the predictive capabilities of ML methodologies in 
conjunction with professional insights can enhance the 
accuracy of clinical decision-making and consequently 
boost treatment outcomes. Among different ML meth-
ods, multivariate logistic regression (LR) is widely used 
to identify risk factors that predict the development of 
complications. While ML techniques have been success-
ful in classifying conditions like liver disease, heart fail-
ure [14, 15], and lung diseases [16], their application in 
low back pain research has been limited.

To the best of our knowledge, no study has examined 
ML algorithms in specific sub-groups of people with 
NSCLBP and during different dynamic tasks; therefore, 
the primary objective of the present study is to develop 
and evaluate the predictive performance of a supervised 
ML (SML) algorithm to distinguish differences be-
tween trunk muscle’s activity of a subgroup of people 
with NSLBP (active extension related LBP) and pain-
free controls before and after physiotherapy intervention 
using some clinical data as predictor gathered in some 
functional tasks.

Materials and Methods

Primary data

The raw material for this study was the previous elec-
tromyography (EMG) data of 5 trunk muscles collected 
from 120 people with and without NSCLBP before and 
after 4-week exercise (stabilization vs movement con-
trol exercises) therapy [17]. In brief, the study included a 
sub-group of people with back pain who met the follow-
ing criteria: Pain associated with lower lumbar extension 
or postures, persistent back pain for more than 3 months, 
Tampa scale of kinesiophobia scores <41, Oswestry 
disability index (ODI) <13, and STarT Back scores <4. 
Subjects excluded from the study were individuals with 
specific low back pain conditions, such as fractures, in-
fections, and spondylolisthesis, a history of previous low 
back pain with radiating pain to the legs, and individu-
als who were currently pregnant. Pain-free people were 
excluded if they had pain during the last 2 years. The 
study was approved by the Ethics Committee of Smart 
University of Medical Sciences (Code: IR.SMUMS.
REC.1402.025).

L
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The EMG activity of lumbar multifidus (LM), iliocos-
talis lumborum pars thoracis (ICL), rectus abdominis 
(RA), external oblique (EO), and internal oblique (IO) 
[7] was evaluated using channel data link EMG system 
(Biometrics) at 1 kHz and bandwidth between 20-40 Hz, 
common mode rejection ratio >96 at 60 Hz, and input 
impedance>1012 Ω.

The raw data were full-wave rectified and smoothed 
with 50 ms and surface EMG data were normalized 
with 2 submaximal voluntary isometric contractions de-
scribed elsewhere [18].

Measured tasks were standing with open and closed 
eyes, sit-to-stand, flexion relaxation ratio, and forward 
flexion. EMG activity of 10 ms of standing with eyes 
closed, 15 ms of double leg and single leg standing with 
eyes opened, and the transfer time between sit to stand 
was analyzed.

Machine learning model

The logistic regression supervised ML (LR-SML) 
model was employed to predict the EMG changes in the 
mentioned tasks. Due to its interpretability and low com-
putational cost, logistic regression is considered a suit-
able classification algorithm for high-dimensional data. 
It is a statistical method that predicts the probability of 
an outcome based on one or more predictor variables 
[19]. In supervised learning, the algorithm is trained on 
a labeled dataset where the input data and corresponding 
output are known, allowing the algorithm to learn the 
relationship between the input and output variables. In 
this study, the labeled/input data were ODI scores, pain 
scores, age, weight, height and body mass index (BMI). 
The predicted/output data were 5 trunk muscles’ activ-
ity during standing, sit-to-stand (STS), forward flexion 
(FF), and flexion relaxation ratio (FRR) functions be-
fore and after the intervention.

The correlation between labeled data (pain and ques-
tionnaire scores, age, weight, height, BMI, and out-
put data (EMG activity) was evaluated and the results 
showed a good correlation between clinical scores and 
muscle activity (primary output data).

The labeled data were used to create a training set for 
model development. During training the labeled data 
were arranged according to their priority and weight. The 
erroneous data was excluded and the ML software was 
trained until the error reached a sufficiently minimized 
state. After establishing a specific controlled matrix, an 
algorithm to determine the best estimate between inputs 

and outputs was developed. The SML was employed 
using data from 80 people with NSCLBP (stabilization 
group and movement control group) and 40 pain-free 
controls. The accuracy percentage was calculated with 
the following Equation 1 [20].

1. Accuracy = ×100Number of correct classifications
(Number of total classification

The detection performance of the model was evaluated 
using two metrics sensitivity and specificity which are 
indicative of the model’s ability to correctly reject nega-
tive false instances and avoid false positive detections 
respectively [21]. The Equations 2 and 3 of the metrics 
are as follows.

2. Sensitivity = TP
TP+FN

3. Specificity = 
TN

TN+FP

Accordingly, TP (true positive) indicates the number of 
correct predicted event values, TN (true negative) indi-
cates the number of correct predicted non-event values, 
FP (false positive) indicates incorrectly predicted event 
values, and FN (false negative) indicates numbers of in-
correct predicted non-events values.

The model’s classification performance was evalu-
ated using the F1score. This metric combines precision 
(sensitivity) and recall (ability of the model to identify 
true positives) to assess the overall classification perfor-
mance. F1score ranges between 0 and 1, with 1 repre-
senting perfect classification and 0 indicating no correct 
classification [22]. The Equation 4 is as follows.

4. F1score = 2 × Precision+Recall
Presicion×Recall

The model’s ability to predict outcomes was then eval-
uated by analyzing the area under the receiver operating 
characteristic curve (AUC-ROC). The AUC value rang-
es between 0 and 1 and serves as a measure of discrimi-
nation capability in models, where a higher AUC value 
signifies enhanced discriminatory power [23].

Statistical analysis

The normality of variable distributions was evaluated 
using the Shapiro-Wilk test. For correlation analysis, the 
Pearson correlation coefficients were used and mean 
comparisons were conducted using the student’s t-test, 
with a significance level set at P<0.05. The statistical 
analysis was performed using SPSS software, version 
17 (SPSS Inc., Chicago, IL, USA) and Excel.
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Results

Before writing the algorithm, the correlation between 
primary inputs and outputs was calculated and the results 
revealed a moderate to strong correlation between them 
(Table 1, Table S1).

Subsequently, the algorithm was written using super-
vised ML methods. In the results section, different met-
rics for verification and validation of this algorithm are 
used and discussed. Initially, a comparative analysis was 
conducted between the radial basis function network ML 
algorithm and logistic multi-regression in SPSS using la-
beled data for training and testing (Figure 1).

The results indicated a close correspondence between 
the actual data from SPSS and the predictive outputs 
generated by the algorithms. Subsequently, to evaluate 
the predictive performance of the algorithm, the receiver 
operating characteristic (ROC) curve was employed. 
This graphical representation illustrates the trade-off 
between sensitivity and specificity of a diagnostic test 
at various threshold levels, allowing assessment of the 
performance of a binary classification model without 
the need to select a specific threshold [24]. The ROC 
curve compares the diagnostic ability of a test to random 
chance, with a diagonal line indicating random guessing 
(Table 2).

The AUC is a measure employed to encapsulate the 
comprehensive diagnostic accuracy of a test within bi-
nary classification tasks. It ranges from 0 to 1, with 0 

indicating a test that is completely inaccurate and 1 sig-
nifying an entirely accurate test.

For STS and FRR assessments, the AUC ranged from 
0.4 to 0.9 across all muscles and groups, particularly 
notable in the healthy group. When comparing differ-
ent standing positions (open vs closed and one leg vs 
double leg), the AUC values ranged from 0.50 to 0.88 
in the stabilization and movement group. In contrast, the 
healthy group exhibited AUC values ranging between 
0.6 to 1, especially during one-leg standing with open 
eyes, indicating that the classifier demonstrated good 
predictive performance overall and remains under clini-
cal relevance in some other tasks (Table S2).

The average predicted trunk muscles’ activity was as-
sessed and compared with the mean activity of the actual 
primary output in the test session of the LR-SML algo-
rithm (Table 3).

The result demonstrated high sensitivity (precision) 
and accuracy in predicting muscle activity in all tasks in 
three groups and during all tasks (Table S3).

To construct the predictive algorithm, we first calcu-
lated the correlation between pain and disability scores, 
age, weight, height, BMI, and trunk muscle activity. This 
calculation revealed a moderate to strong relationship. 
Then, logistic regression supervised ML (LR-SML) was 
utilized which is simple and widely used in the medi-
cal field. In supervised ML which is the most prevalent 
for training neural networks and decision trees, dif-
ferent algorithms are used to establish a function that 
links inputs (subjective scores) to the desired outcomes 

Figure 1. Input layer (age, weight, height, BMI, NRS, ODI), hidden layer (equation of logistic multi-regression, NMF), output 
layer (predicted)

Abbreviation: BMI: Body mass index; NRS: Numeric rating scale; ODI: Oswestry disability index; NMF: Non-negative matrix 
factorization. 
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(SEMG). Concerning this, to confirm the accuracy and 
validate the model, two distinct methodologies on sta-
tistical analysis platforms were implemented. Initially, 
the algorithms within SPSS were utilized to replicate the 
entire set of operations executed by the proposed model. 
Average values and the standard deviations for the ab-
solute prediction errors and the differences were calcu-
lated. Additionally, the correlation between the predicted 
outcomes and the primary outcomes was assessed. Sub-
sequently, the correlation of the predicted values from 
SPSS with the original dataset, as well as the correla-

tion of predicted values from the LR-SML software with 
the same dataset was constructed and determined. The 
analysis revealed a strong correlation between the two 
software programs. The findings also suggest that the 
performance of LR-SML and SPSS varied among in-
dividuals with LBP, and LR-SML showed a higher er-
ror rate across most parameters, while in the pain-free 
group, there was not a significant difference between the 
two software in most tasks (Table 4; Table S4).

Table 1. Correlation between input and primary output layers (muscle activity) for supervised machine learning

Muscle Activity;
Groups Muscle Age Weight BMI Pain 

Before
ODI 

Before

Double leg open; 
Stabilization group

RA
IO
EO
ML
IC

-0.59**

-0.555**

-0.566**

-0.684**

-0.671**

-0.516**

-0.504**

-0.494**

-0.511**

-0.527**

-0.483**

-0.459**

-0.450**

-0.509**

-0.525**

-0.942**

-0.947**

-0.959**

-0.933**

-0.937**

-0.908**

-0.929**

-0.906**

-0.790**

-0.821**

Double leg open; 
Movement group

RA
IO
EO
ML
IC

-0.597**

-0.563**

-0.556**

-0.643**

-0.690**

-0.516**

-0.496**

-0.486**

-0.233
-0.324*

-0.483**

-0.439**

-0.260
-0.351*

-0.516**

-0.942**

-0.961**

-0.963**

-0.690**

-0.776**

-0.908**

-0.905**

-0.905**

-0.282
-0.422**

Double leg open;
Pain-free group

RA
IO
EO
ML
IC

-0.811**

-0.839**

-0.719**

-0.920**

-0.731**

-0.825**

-0.784**

-0.848**

-0.208
-0.156

-0.715**

-0.697**

-0.648**

-0.350*

-0.114

Transition phase open;
Stabilization group

RA
IO
EO
ML
IC

-0.565**

-0.528**

-0.539**

-0.590**

-0.623**

-0.492**

-0.483**

-0.473**

-0.457**

-0.498**

-0.441**

-0.422**

-0.415**

-0.412**

-0.471**

-0.965**

-0.968**

-0.974**

-0.965**

-0.958**

-0.893**

-0.913**

-0.891**

-0.774**

-0.813**

Transition phase open;
Movement group

RA
IO
EO
ML
IC

-0.552**

-0.544**

-0.520**

-0.554**

-0.600**

-0.483**

-0.482**

-0.459**

-0.244
-0.313*

-0.426**

-0.428**

-0.393*

-0.216
-0.293

-0.971**

-0.972**

-0.981**

-0.794**

-0.843**

-0.888**

-0.894**

-0.884**

-0.395*

-0.488**

Transition phase open;
Pain-free group

RA
IO
EO
ML
IC

-0.739**

-0.858**

-0.791**

-0.862**

-0.650**

-0.831**

-0.754**

-0.772**

-0.332*

-0.335*

-0.644**

-0.671**

-0.617**

-0.311
-0.121

Notes: Correlation coefficient = Pearson; *P<0.05; **P<0.01. 

Abbreviations: RA: Rectus abdominis; IO: Internal oblique; EO: External oblique; ML: Multifidus; IC: Iliocostalis; BMI: Body 
mass index; ODI: Oswestry disability index.
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Table 2. AUC-reciever operating characteristics of both software during functional tasks

Groups Muscle
Eyes Closed Transition Phase Eyes Open Transition Phase

AUC-LR AUC-SPSS AUC-LR AUC-SPSS

Stabilization group

RAb 0.56 0.51 0.55 0.54

RAa 0.53 0.52 0.56 0.55

IOb 0.57 0.57 0.58 0.57

IOa 0.56 0.57 0.57 0.58

EOb 0.53 0.52 0.56 0.54

EOa 0.53 0.52 0.49 0.48

MLb 0.47 0.47 0.5 0.5

MLa 0.46 0.47 0.5 0.5

ICb 0.5 0.5 0.49 0.5

ICa 0.5 0.5 0.49 0.5

Movement group

RAb 0.53 0.52 0.6 0.6

RAa 0.53 0.52 0.6 0.6

IOb 0.53 0.52 0.6 0.6

IOa 0.54 0.52 0.6 0.6

EOb 0.53 0.52 0.6 0.6

EOa 0.57 0.57 0.6 0.6

MLb 0.56 0.58 0.46 0.5

MLa 0.56 0.58 0.52 0.78

ICb 0.56 0.58 0.5 0.5

ICa 0.56 0.58 0.5 0.5

Pain-free group

RA 0.57 0.56 0.65 0.65

IO 0.74 0.74 0.53 0.65

EO 0.43 0.43 0.5 0.5

ML 0.52 0.5 0.65 0.49

IC 0.46 0.46 0.71 0.96

Abbreviations: AUC-LR: Area under curve-logistic regression; RAb: Rectus abdominis before; RAa: Rectus abdominis after; 
IOb: Internal oblique before; IOa: Internal oblique after; EOb: External oblique before; EOa: External oblique after; MLb: Mul-
tifidus before; MLa: Multifidus after; ICb: Iliocostalis before; ICa: Iliocostalis after; FRR: Flexion relaxation ratio; STS: Sit to 
stand; FF: Forward flexion.
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F1-score was employed as a statistical measure to eval-
uate the accuracy of our model. The outcomes revealed 
F1-scores ranging from 0.4 to 1 across all parameters 
and all groups, signifying the mode’s proficiency in ac-
curately classifying true positive cases and actual posi-
tive cases.

Discussion

In this study, an ML approach was employed to create a 
predictive model for estimating the activity level of trunk 
muscles in individuals with active extension nonspecific 
low back pain (AENSLBP) and pain-free groups using 
information from pain and disability scores, age, weight, 
height, and BMI. In the previous study [25], the LR-
SML was employed for individuals with tinnitus to fore-
cast brainwave patterns. The study demonstrated that the 
model was simple and effective in predicting the func-

tional profile of tinnitus using subjective scales and EEG 
data. In the present study, a similar model was applied.

Sensitivity and specificity metrics indicate how cor-
rectly the model identifies positive (true positive) and 
negative (true negative) classes, respectively. In this 
study, the values of sensitivity and specificity were high 
in testing dataset indicating that LR-SML has a good 
ability to accurately classify instances with a low rate 
of error. Moreover, the results of F1scores observed for 
all tasks indicates the model’s well performance in accu-
rately predict positive instances while minimizing both 
false positives and false negatives.

In line with the findings of Kyzet et al. [26], which 
showed higher accuracy during isometric contractions 
compared to dynamic tasks, our results revealed lower 
prediction accuracy in more challenging tasks, such as 

Table 3. Performance parameters of logistic regression supervised machine learning for predicting Trunk muscles activity

Muscle Activity;
Groups Muscle Sensitivity (%) Specificity (%) Accuracy (%) F1-Score

Double leg close; 
Stabilization group

RAb
RAa
IOb
IOa
EOb
EOa
MLb
MLa
ICLb
ICLa

0.9
0.95
0.93
0.96
0.96
0.93
0.96

1
09
0.9

0.91
0.92
0.92
0.92
0.92
0.92

1
1
1
1

90
95
92
95
95
92
97

100
92
92

0.92
0.96
0.94
0.96
0.96
0.94
0.93

1
0.92
0.93

Double leg close; 
Movement group

RAb
RAa
IOb
IOa
EOb
EOa
MLb
MLa
ICLb
ICLa

0.96
0.96
0.96
0.93
0.96
0.93
0.90
0.90

1
0.90

0.92
0.92
0.92
0.92
0.92
0.92
0.91
0.90
0.93
0.90

95
95
95
92
90
95
92
90
97
90

0.96
0.96
0.96
0.94
0.96
0.94
0.93
0.93
0.97
0.93

Double leg close; 
Pain-free group

RA
IO
EO
ML
IC

0.45
0.5

0.44
0.37
0.45

0.42
0.5
0.4

0.35
0.42

50
44
55
44
48

0.6
0.48
0.53
0.34
0.43

Abbreviations: RAb: Rectus abdominis before; RAa: Rectus abdominis after; IOb: Internal oblique before; IOa: Internal oblique 
after; EOb: External oblique before; EOa: External oblique after; MLb: Multifidus before; MLa: Multifidus after; ICb: Iliocostalis 
before; ICa: Iliocostalis after; FRR: Flexion relaxation ratio; STS: Sit to stand; FF: Forward flexion.
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one-leg standing with closed eyes. This suggests that 
additional input data may be necessary to enhance the 
performance. Previous research has highlighted that pre-
dicting pain incidence is challenging because of the intri-
cate interplay between various factors [27].

Similarly, muscles within the musculoskeletal system 
are complex and challenging to model, and the static. 
Thus, Using the model in clinical devices presents a 
significant challenge [28]. The primary objective of this 
study was to provide clinicians with a means of estimat-
ing EMG activity without an electrode setup. This study 
aimed to find a method for accurately and efficiently pre-
dicting muscle activation using an ML model. Recently, 
ML models have been developed to estimate skeletal 
muscle activity without explicit modeling of the physical 
characteristics of muscles. However, an inverse muscle 
model has yet to be developed using an ML model. The 

LR-SML model can offer the ability to predict muscle 
activity via subjective information.

The estimated EMG signals and real data showed that 
the designed model in some cases had slight differences; 
however, the pattern of the estimated signals was suf-
ficiently similar to allow the students and clinicians to 
avoid EMG electrode setups in the laboratory and use 
LR-SML instead. However, the model is task specific 
and may require extensive data for a more generalized 
model.

Notably, most computational techniques for calculating 
muscle variables have inherent limitations in their ana-
lytical expressions and suffer from unrealistic assump-
tions in muscle models. The model parameters identi-
fied with measurements that are subject to error, such 
as the relative location between muscles and electrodes 
[26], variability in individuals’ biological characteristics, 

Table 4. Mean error of two software

Muscle Activity;
Groups Muscle Mean difference P Muscle Activity;

Groups Muscle Mean Difference P

Double leg close; 
Stabilization group 

RAb
RAa
IOb
IOa
EOb
EOa
MLb
MLa
ICb
ICa

2.03
2.82
2.25
0.98

2
2.95
4.86
3.3

3.31
2.85

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

Double leg open; 
Stabilization group

Rab
Raa
Iob
Ioa
Eob
Eoa
MLb
Mla
Icb
Ica

2.27
0.93
2.18
1.57
1.96
2.92
1.53
1.99
2.99
2.88

0.00
0.00
0.00

0.001
0.00
0.00
0.00
0.00
0.00
0.00

Double leg close; 
Movement group

RAb
RAa
IOb
IOa
EOb
EOa
MLb
MLa
ICb
ICa

2.63
3.72
2.33
1.1

2.35
3.74
2.21
1.4

2.04
3.24

0.00
0.00
0.00
0.00
0.00
0.00
0.04
0.02
0.04
0.00

Double leg open; 
Movement group

Rab
Raa
Iob
Ioa
Eob
Eoa
MLb
Mla
Icb
Ica

1.1
1.1
1.7
0.8

0.53
0.6

2.94
1.71
3.22
2.4

0.00
0.04
0.02
0.11
0.18
0.02
0.00
0.00
0.00
0.00

Double leg close; 
Pain-free group

RA
IO
EO
ML
IC

1.17
1.29
5.45
1.43
2.86

0.6
0.06
0.02
0.10
0.10

Double leg open; 
Pain-free group

RA
IO
EO
ML
IC

-1.4
-2.39
-0.74
-0.28
-0.36

0.32
0.14
0.36
0.49
0.56

Abbreviations: RAb: Rectus abdominis before; RAa: Rectus abdominis after; IOb: Internal oblique before; IOa: Internal oblique 
after; EOb: External oblique before; EOa: External oblique after; MLb: Multifidus before; MLa: Multifidus after; ICb: Iliocostalis 
before; ICa: Iliocostalis after; FRR: Flexion relaxation ratio; STS: Sit to stand; FF: Forward flexion.
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and activation patterns of muscles, require a continual 
optimization loop and result in estimated muscle activa-
tions that may not be entirely accurate [29]. The complex 
behaviors of muscles during dynamic tasks make them 
difficult especially for static models.

Results of the present study revealed that despite the 
higher error of the LR-SML in the LBP group compared 
with SPSS, it stands out for its simplicity and feasibil-
ity. Because an integral part of an ML algorithm is to be 
user-friendly and easily integrated into existing clinical 
procedures [30], the model’s architecture was designed 
to be robust and stable, even when processing large data 
despite its accuracy, SPSS showed inconsistency in han-
dling increased data volume and complexity.

Conclusion

The results of the present study suggest that LR-SML 
may provide slight but clinically relevant, predic-
tions for defining trunk muscle activity of people with 
AENSCLBP and pain- free controls.

Despite the promising results obtained, further studies 
are necessary to improve model’s performance and have 
a better estimation of muscle activity level. 

Study limitations

The present study has several limitations. First, a spe-
cific dataset was used in this study, which may increase 
the risk that the results are population-specific and the 
prognostic factors may decrease generalizability in other 
populations. Second the model is task-based and it is not 
certain that the model can be used for other tasks. For a 
general model, a large amount of data is required. In ad-
dition, a homogenous subgroup of people with low back 
pain limits the generalizability of our findings; however, 
acceptable results during most tasks are promising.

Therefore, further research is needed to determine the 
generalizability of our findings to different populations 
and to explore the impact of these conditions on treat-
ment outcomes.
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Table S1. Correlation between input and primary output layers (muscle activity) for supervised machine learning

Muscle Activity;
Groups Muscle Age Weight BMI Pain 

Before
ODI 

Before

Double leg close; 
Stabilization group

RA
IO
EO
ML
IC

-0.591**

-0.562**

-0.566**

-0.684**

-0.562**

-0.671**

-0.518**

-0.512**

-0.494**

-0.511**

-0.517**

-0.493**

-0.462**

-0.450**

-0.509**

-0.525**

-0.936**

-0.945**

-0.959**

-0.933**

-0.927**

-0.921**

-0.923**

-0.906**

-0.790**

-0.821**

Double leg close;
Movement group

RA
IO
EO
ML
IC

-0.597**

-0.574**

-0.569**

-0.654**

-0.645**

-0.516**

-0.503**

-0.496**

-0.532**

-0.530**

-0.483**

-0.464**

-0.453**

-0.527**

-0.531**

-0.942**

-0.955**

-0.957**

-0.941**

-0.942**

-0.908**

-0.906**

-0.907**

-0.842**

-0.844**

Double leg close;
Pain-free group

RA
IO
EO
ML
IC

-0.847**

-0.785**

-0.838**

-0.919**

-0.859**

-0.790**

-0.825**

-0.784**

-0.722**

-0.807**

-0.714**

-0.690**

-0.691**

-0.734**

-0.762**

Transition phase close;
Stabilization group

RA
IO
EO
ML
IC

-0.709**

-0.528**

-0.539**

-0.649**

-0.623**

-0.474**

-0.483**

-0.473**

-0.491**

-0.498**

-0.401*

-0.422**

-0.415**

-0.472**

-0.471**

-0.894**

-0.968**

-0.974**

-0.948**

-0.958**

-0.745**

-0.914**

-0.892**

-0.787**

-0.815**

Transition phase close;
Movement group

RA
IO
EO
ML
IC

-0.568**

-0.549**

-0.544**

-0.615**

-0.606**

-0.495**

-0.484**

-0.477**

-0.507**

-0.518**

-0.445**

-0.430**

-0.421**

-0.480**

-0.492**

-0.963**

-0.970**

-0.972**

-0.960**

-0.960**

-0.896**

-0.894**

-0.894**

-0.840**

-0.856**

Transition phase close;
Pain-free group

RA
IO
EO
ML
IC

-0.836**

-0.900**

-0.811**

-0.898**

-0.849**

-0.783**

-0.698**

-0.775**

-0.721**

-0.800**

-0.686**

-0.658**

-0.645**

-0.683**

-0.728**

One leg open; 
Stabilization group

RA
IO
EO
ML
IC

-0.535**

-0.504**

-0.514**

-0.525**

-0.583**

-0.471**

-0.463**

-0.455**

-0.418**

-0.472**

-0.405**

-0.390*

-0.384*

-0.346*

-0.427**

-0.978**

-0.980**

-0.984**

-0.975**

-0.970**

-0.877**

-0.897**

-0.875**

-0.755**

-0.802**

One leg open;
Movement group

RA
IO
EO
ML
IC

-0.504**

-0.530**

-0.494**

-0.501**

-0.549**

-0.447**

-0.471**

-0.440**

-0.247
-0.305

-0.367*

-0.410**

-0.362*

-0.191
-0.260

-0.987**

-0.978**

-0.988**

-0.837**

-0.871**

-0.859**

-0.886**

-0.867**

-0.448**

-0.518**

One leg open;
Pain-free group

RA
IO
EO
ML
IC

-0.907**

-0.849**

-0.730**

-0.766**

-0.494**

-0.669**

-0.745**

-0.751**

-0.405**

-0.232

-0.633**

-0.645**

-0.527**

-0.250
0.046

One leg close; 
Stabilization group

RA
IO
EO
ML
IC

-0.535**

-0.504**

-0.681**

-0.617**

-0.617**

-0.471**

-0.463**

-0.463**

-0.474**

-0.473**

-0.405**

-0.390*

-0.389*

-0.440**

-0.440**

-0.978**

-0.978**

-0.904**

-0.958**

-0.958**

-0.877**

-0.897**

-0.742**

-0.780**

-0.780**

One leg close; Move-
ment group

RA
IO
EO
ML
IC

-0.541**

-0.526**

-0.517**

-0.582**

-0.567**

-0.475**

-0.467**

-0.457**

-0.485**

-0.489**

-0.412**

-0.401*

-0.387*

-0.441**

-0.442**

-0.976**

-0.980**

-0.983**

-0.972**

-0.975**

-0.882**

-0.880**

-0.877**

-0.829**

-0.845**

One leg close;
Pain-free group

RA
IO
EO
ML
IC

-0.873**

-0.858**

-0.817**

-0.872**

-0.839**

-0.740**

-0.687**

-0.769**

-0.718**

-0.792**

-0.674**

-0.582**

-0.640**

-0.637**

-0.696**
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Muscle Activity;
Groups Muscle Age Weight BMI Pain 

Before
ODI 

Before

STS;
Stabilization group

RA
IO
EO
ML
IC

-0.597**

-0.557**

-0.548**

-0.056
-0.199

-0.516**

-0.493**

-0.480**

0.355*

0.239

-0.483**

-0.449**

-0.431**

0.350*

0.222

-0.942**

-0.963**

-0.966**

0.100
-0.087

-0.908**

-0.903**

-0.904**

0.580**

0.417**

STS;
Movement group

RA
IO
EO
ML
IC

-0.597**

-0.552**

-0.536**

0.543**

0.547**

-0.516**

-0.471**

-0.472**

0.645**

0.660**

-0.483**

-0.434**

-0.419**

0.653**

0.679**

-0.942**

-0.969**

-0.971**

0.760**

0.729**

-0.908**

-0.877**

-0.903**

0.933**

0.918**

STS;
Pain-free group

RA
IO
EO
ML
IC

-0.917**

-0.905**

-0.870**

0.669**

0.656**

-0.707**

-0.424**

-0.279
0.952**

0.945**

-0.710**

-0.440**

-0.334*

0.871**

0.902**

FRR;
Stabilization group

ML
IC

-0.006
-0.006

0.268
0.268

0.091
0.091

0.784**

0.784**
0.932**

0.932**

FRR;
Movement group

ML
IC

-0.008
-0.008

0.273
0.273

0.093
0.093

0.786**

0.786**
0.932**

0.932**

FRR;
Pain-free group

ML
IC

0.797**

-0.745**
0.885**

0.157
0.881**

0.037

Notes: Correlation coefficient = Pearson, *P<0.05; **P<0.01. 

Abbreviations: RA: Rectus abdominis; IO: Internal oblique; EO: External oblique; ML: Multifidus; IC: Iliocostalis; BMI: Body 
mass index; ODI: Oswestry disability index.

Table S2. AUC-ROC of both software during double leg standing with eye open and closed, flexion relaxation ratio, forward 
flexion, and sit to stand before and after exercise in people with AENSLBP and pain-free controls

Groups Muscle 
Eyes Closed Double Leg Eyes Open Double Leg

AUC-LR AUC-SPSS AUC-LR AUC-SPSS

Stabilization group

RAb
RAa
IOb
IOa
ERb
EOa
MLb
MLa
ICb
ICa

0.55
0.55
0.53
0.53
0.53
0.55
0.51
0.5
0.5
0.5

0.55
0.55
0.52
0.52
0.52
0.55
0.49
0.5
0.5
0.5

0.53
0.53
0.53
0.59
0.53
0.53
0.52
0.5

0.51
0.49

0.52
0.52
0.52
0.58
0.52
0.52
0.5
0.5
0.5
0.5

Movement group

RAb
RAa
IOb
IOa
EOb
EOa
MLb
MLa
ICb
Ica

0.47
0.45
0.47
0.47
0.47
0.45
0.47
0.48
0.48
0.47

0.47
0.45
0.48
0.48
0.48
0.45
0.45
0.47
0.47
0.45

0.66
0.66
0.6
0.6
0.6

0.64
0.48
0.61
0.48
0.55

0.67
0.66
0.61
0.6
0.6

0.64
0.5

0.58
0.51
0.55

Pain-free group

RA
IO
EO
ML
IC

0.57
0.74
0.43
0.52
0.46

0.56
0.74
0.43
0.5

0.46

0.53
0.42
0.43
0.58

0.53
0.44
0.4

0.54
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Groups Muscle
Eyes Closed One Leg Eyes Open One Leg

AUC-LR AUC-SPSS AUC-LR AUC-SPSS

Stabilization group

RAb
RAa
IOb
IOa
EOb
EOa
MLb
MLa
ICb
ICa

0.58
0.6

0.62
0.61
0.66
0.62
0.51
0.53
0.5

0.56

0.58
0.6

0.63
0.63
0.68
0.63
0.52
0.55
0.5

0.58

0.53
0.59
0.61
0.61
0.58
0.58
0.56
0.6

0.55
0.6

0.52
0.58
0.61
0.6

0.57
0.58
0.58
0.6

0.58
0.61

Movement group

RAb
RAa
IOb
IOa
EOb
EOa
MLb
MLa
ICb
ICa

0.6
0.6
0.6

0.56
0.6
0.6

0.56
0.56
0.6
0.6

0.6
0.6
0.6

0.57
0.6
0.6

0.56
0.56
0.6
0.6

0.61
0.61
0.6

0.61
0.6

0.61
0.62
0.66
0.6
0.7

0.62
0.62
0.62
0.62
0.59
0.62
0.63
0.67
0.6
0.7

Pain-free group

RA
IO
EO
ML
IC

0.48
0.44
0.43
0.52
0.42

0.47
0.4
0.4

0.53
0.4

0.44
0.5

0.33
0.45

1

0.52
0.5

0.36
0.41
0.95

Groups Muscle 
STS FRR FF

AUC-LR AUC-SPSS AUC-LR AUC-SPSS AUC-LR AUC-SPSS

Stabilization group

RAb
RAa
IOb
IOa
EOb
EOa
MLb
MLa
ICb
ICa

0.42
0.4

0.42
0.4

0.42
0.42
0.43
0.92
0.5

0.74

0.42
0.4

0.42
0.4

0.42
0.42
0.47
0.75
0.53
0.66

0.73
0.5
0.7
0.5

0.3
0.44
0.65
0.5

-
-
-
-
-
-

0.57
0.2

0.66
0.84

-
-
-
-
-
-

0.76
0.58
0.68
0.31

Movement group

RAb
RAa
IOb
IOa
EOb
EOa
MLb
MLa
ICb
ICa

0.58
0.56
0.52
0.56
0.48
0.52
0.88
0.63
0.88
0.6

0.57
0.6

0.57
0.61
0.5

0.58
0.92
0.64
0.92
0.66

0.66
1

0.62
0.62

0.67
0.97
0.64
0.64

-
-
-
-
-
-

0.58
0.71
0.5

0.71

-
-
-
-
-
-

0.64
0.65
0.48
0.65

Pain-free group

RA
IO
EO
ML
IC

0.71
0.6

0.84
0.8
0.9

0.7
0.73
0.9
0.8
0.8

0.85
0.6

0.81
0.6

-
-
-

0.59
0.71

-
-
-

0.66
0.75

Abbreviations: AUC-LR: Area under curve-logistic regression; AENSLBP: Active extension nonspecific low back pain; RAb: 
Rectus abdominis before; RAa: Rectus abdominis after; IOb: Internal oblique before; IOa: Internal oblique after; EOb: External 
oblique before; EOa: External oblique after; MLb: Multifidus before; MLa: Multifidus after; ICb: Iliocostalis before; ICa: Iliocos-
talis after; FRR: Flexion relaxation ratio; STS: Sit to stand; FF: Forward flexion.
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Table S3. Performance parameters of logistic regression supervised machine learning for predicting trunk muscles activity

Muscle Activity;
Groups Muscle Sensitivity(%) Specificity(%) Accuracy (%) F1-Score

One leg close; 
Stabilization group

RAb
RAa
IOb
IOa
EOb
EOa
MLb
MLa
ICLb
ICLa

0.92
0.93
0.92
0.92
0.92
0.92
0.93
0.96
0.93
0.93

1
1
1
1
1
1
1
1
1
1

95
95
95
95
95
95
95
98
95
95

0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.98
0.96
0.96

One leg close; 
Movement group

RAb
RAa
IOb
IOa
EOb
EOa
MLb
MLa
ICLb
ICLa

0.93
0.93
0.92
0.93
0.92
0.93
0.92
0.92
0.89
0.93

1
1
1
1
1
1
1
1
1
1

95
95
95
95
95
95
95
95
92
95

0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.94
0.96

Double leg close; 
Pain-free group

Ra
Io
Eo
ML
IC

0.4
0.41
0.44
0.42
0.46

0.38
0.38
0.4
0.4

0.43

40
40
42

0.55
0.45

0.6
0.41
0.88
0.75
0.5

Double leg open; 
Stabilization group

RAb
RAa
IOb
IOa
EOb
EOa
MLb
MLa
ICLb
ICLa

1
1
1
1
1
1
1
1

0.94
1

1
1
1
1
1
1
1
1
1
1

100
100
100
100
100
100
100
100
98

100

1
1
1
1
1
1
1
1

0.97
1

Double leg open; 
Movement group

RAb
RAa
IOb
IOa
EOb
EOa
MLb
MLa
ICLb
ICLa

0.96
0.96
0.93
0.93
0.93
0.96

1
1
1
1

0.92
1

0.92
0.92
0.92
0.92

1
1
1
1

95
97
92
92
92

100
100
100
100
100

0.96
0.97
0.96
0.96
0.96
0.96

1
1
1
1

Double leg open; 
Pain-free group

Ra
IO
EO
ML
IC

0.48
0.45
0.52
0.47
0.6

0.46
0.41
0.53
0.45
0.88

47
64
52
46
66

0.5
0.45
0.55
0.5
0.6

One leg open; 
Stabilization group

RAb
RAa
IOb
IOa
EOb
EOa
MLb
MLa
ICLb
ICLa

1
1
1
1
1
1

0.84
1

0.87
1

1
1
1
1
1
1
1
1
1
1

100
100
100
100
100
100

9
100
93

100

1
1
1
1
1
1

0.91
1

0.93
1
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Muscle Activity;
Groups Muscle Sensitivity(%) Specificity(%) Accuracy (%) F1-Score

One leg open; 
Movement group

RAb
RAa
IOb
IOa
EOb
EOa
MLb
MLa
ICLb
ICLa

0.93
0.93
0.92
0.92
0.92
0.93

1
1
1
1

1
1
1
1
1
1
1
1
1
1

95
95
95
95
95
95

100
100
100
100

0.96
0.96
0.96
0.96
0.96
0.96

1
1
1
1

One leg open; 
Pain-free group

Ra
Io
Eo
ML
IC

0.4
0.45
0.53
046
0.62

0.38
0.42
0.55
0.44
0.85

55
56
53
45
70

0.4
0.46
0.53
0.46
0.61

FRR; 
Stabilization group

MLb
MLa
ICb
ICa

0.97
1
1

0.97

1
0.88
0.88

1

98
98
98
98

0.98
0.98
0.98
0.98

FRR; 
Movement group

MLb
MLa
ICb
ICa

1
0.98

1
1

0.88
1

0.88
0.88

98
98
98
98

0.98
0.98
0.99
0.98

FRR; 
Pain-free group

ML
IC

0.37
0.45

0.35
0.42

36
44

0.4
0.45

FF; 
Stabilization group

MLb
MLa
ICb
ICa

0.94
1

0.94
1

1
1
1
1

95
100
95

100

0.96
1

0.97
1

FF; 
Movement group

MLb
MLa
ICb
ICa

0.94
1

0.94
1

1
1
1
1

95
100
95

100

0.97
1

0.97
1

FF; 
Pain-free group

ML
IC

0.49
0.72

0.49
0.79

50
75

0.5
0.71

STS; 
Stabilization group

RAb
RAa
IOb
IOa
EOb
EOa
MLb
MLa
ICLb
ICLa

0.96
0.97
0.97
0.96
0.93
0.96

1
1
1
1

0.92
1

0.93
1

0.92
1
1
1
1
1

95
97
97
97
92
97

100
100
100
100

0.95
0.95
0.95
0.97
0.93
0.97

1
1
1
1

STS; 
Movement group

RAb
RAa
IOb
IOa
EOb
EOa
MLb
MLa
ICLb
ICLa

0.96
0.96
0.93
0.96
0.93
0.96

1
1
1
1

0.92
1

0.92
1

0.92
1
1
1
1
1

95
97
92
97
92
97

100
100
100
100

0.95
0.97
0.93
0.97
0.93
0.97

1
1
1
1

STS; 
Pain-free group

RA
IO
EO
ML
IC

0.38
0.39
0.43
0.48
0.54

0.37
0.36
0.41
0.47
0.57

40
40
42
50
55

0.4
0.38
0.43
0.46
0.54

Abbreviations: RAb: Rectus abdominis before; RAa: Rectus abdominis after; IOb: Internal oblique before; IOa: Internal oblique 
after; EOb: External oblique before; EOa: External oblique after; MLb: Multifidus before; MLa: Multifidus after; ICb: Iliocostalis 
before; ICa: Iliocostalis after; FRR: Flexion relaxation ratio; STS: Sit to stand; FF: Forward flexion.

Salamat S, et al. Predicting Muscle Activity Using Machine Learning Algorithm. JMR. 2025; 19(2):148-163.

April 2025, Volume 19, Number 2

https://jmr.tums.ac.ir/index.php/jmr


163

Table S4. Mean error of two software

Muscle Activity;
Groups Muscle Mean Difference P Muscle Activity;

Groups Muscle Mean Difference P

One leg close; 
Stabilization group

RAb
RAa
IOb
IOa
EOb
EOa
MLb
MLa
ICb
ICa

1.56
1

1.19
1.25
1.5

1.33
4.08
3.94
4.2

2.19

0.00
0.06
0.04
0.02
0.41
0.03
0.00

0.002
0.00
0.00

One leg open; 
Stabilization 

group

RAb
RAa
IOb
IOa
EOb
EOa
MLb
MLa
ICb
ICa

1.54
0.97
1.51
1.42
1.56
1.2

-0.04
1.64
1.99
1.95

0.00
0.03
0.00
0.11
0.00

0.052
0.92
0.07
0.01
0.01

One leg close; 
Movement group

RAb
RAa
IOb
IOa
EOb
EOa
MLb
MLa
ICb
ICa

1.85
1.3
1.7

0.22
1.41
2.2
2

1.42
1.44
2.03

0.004
0.02

0.006
0.43
0.01
0.01

0.014
0.03

0.016
0.023

One leg open; 
Movement group

RAb
RAa
IOb
IOa
EOb
EOa
MLb
MLa
ICb
ICa

0.32
0.25
0.55
0.58
-0.14
0.27
4.52
2.06
1.8

0.97

0.32
0.14
0.47
0.34
0.77
0.49
0.01

0.004
0.005
0.005

One leg close; 
Pain-free group

RA
IO
EO
ML
IC

2.97
1.05
7.08
2.08
4.33

0.06
0.17
0.00
0.15
0.04

One leg open; 
Pain-free group

RA
IO
EO
ML
IC

-1.14
-4.02
-1.6

-0.58
-0.35

0.04
0.09
0.25
0.64
0.53

FRR; 
Stabilization group

MLb
MLa
ICb
ICa

-0.09
-0.02
-0.07
-0.02

0.00
0.00
0.00
0.00

FRR; 
Pain-free group

ML
IC

0.01
0.00

0.08
0.59

FRR; 
Movement group

MLb
MLa
ICb
ICa

-0.02
-0.003
-0.02

-0.009

0.00
0.82
0.00
0.00

FRR; 
Stabilization 

group

MLb
MLa
ICb
ICa

-0.09
-0.02
-0.07
-0.02

0.00
0.00
0.00
0.00

FRR; 
Pain-free group

ML
IC

0.01
0.00

0.08
0.59

FRR; 
Movement group

MLb
MLa
ICb
ICa

-0.02
-0.003
-0.02

-0.009

0.00
0.82
0.00
0.00

FF; 
Stabilization group

MLb
MLa
ICb
ICa

-3.71
1.58
-1.86
1.4

0.008
0.57

0.005
0.61

STS; 
Stabilization 

group

RAb
RAa
IOb
IOa
EOb
EOa
MLb
MLa
ICb
ICa

0.95
0.41
0.59
0.21
0.47
0.37
2.5

1.41
2.7
3.5

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

FF; 
Movement group

MLb
MLa
ICb
ICa

3.39
-0.04
1.07
0.07

0.00
0.95
0.02
0.9

STS; 
Movement group

RAb
RAa
IOb
IOa
EOb
EOa
MLb
MLa
ICb
ICa

-0.17
-0.04
-0.5
-0.7

-0.45
-0.23
0.3

1.42
0.4

0.36

0.54
0.67
0.00
0.14
0.00
0.26
0.43
0.1

0.38
0.36

FF; 
Pain-free group

ML
IC

2.01
0.09

0.14
0.09

STS; 
Pain-free group

RA
IO
EO
ML
IC

-0.61
-0.26

-1
0.09
0.04

0.32
0.45
0.00
0.91
0.94

Abbreviations: RAb: Rectus abdominis before; RAa: Rectus abdominis after; IOb: Internal oblique before; IOa: Internal oblique 
after; EOb: External oblique before; EOa: External oblique after; MLb: Multifidus before; MLa: Multifidus after; ICb: Iliocostalis 
before; ICa: Iliocostalis after; FRR: Flexion relaxation ratio; STS: Sit to stand.
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