

Emerging Resistance in *Chlamydia* Requires Surveillance and Reassessment

Maryam Zamani Alavigeh¹, Hamid Sadeghi^{1,2,3}, Mehdi Bakht¹, Abolfazl Alizadeh Shamlu¹, Masoumeh Aslanimehr^{1*}

1 Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.

2 Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran.

3 Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.

ARTICLE INFO

Article type:

Editorial Article

Article history:

Received	20	Sep	2025
Revised	17	Oct	2025
Accepted	04	Nov	2025
Published	12	Dec	2025

Keywords:

Chlamydia trachomatis,
Resistance, Pubic health.

ABSTRACT

Background: *Chlamydia trachomatis* remains one of the most common sexually transmitted infections (STIs) globally, often asymptomatic but capable of causing serious reproductive complications if left untreated. While azithromycin and doxycycline have traditionally been highly effective first-line treatments, recent evidence suggests a growing concern over reduced antibiotic efficacy and potential resistance.

Conclusion: This commentary highlights emerging clinical patterns, the need for surveillance, and the importance of reassessing treatment strategies to mitigate a future public health challenge.

*Corresponding Authors:
Masoumeh Aslanimehr: Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran. Tel: +98-28-33336001, E-mail: dr.aslanimehr@gmail.com.

- **Please cite this paper as:** Zamani Alavigeh M, Sadeghi H, Bakht M, Alizadeh Shamlu A, Aslanimehr M. Emerging Resistance in *Chlamydia* Requires Surveillance and Reassessment. *J Med Bacteriol.* 2025; **13** (4): pp.98-100. DOI: [10.18502/jmb.v13i4.20530](https://doi.org/10.18502/jmb.v13i4.20530)

Introduction

Chlamydia has long been considered a treatable Sexually Transmitted Infection (STI), its intracellular nature notwithstanding (1). A single-dose azithromycin or a 7-day course of doxycycline has been the standard treatment for uncomplicated *Chlamydia trachomatis* infections for decades (2). However, recent reports of treatment failures, particularly associated with azithromycin, raise concerns about emerging resistance and potential shifts in treatment effectiveness (3). Therefore, in an era of growing antimicrobial resistance and increasing global antibiotic consumption, possibility for *Chlamydia trachomatis* resistance should not be overlooked but rather periodically monitored to ensure we are not caught unprepared (4). Although laboratory-confirmed antibiotic resistance in *Chlamydia trachomatis* remains difficult to establish-primarily due to its intracellular nature and the lack of reliable culture methods-growing clinical evidence indicates an increasing rate of treatment failure (5). A 2016 published study reported that, azithromycin treatment failure rates ranging from 6.2% to 12.8% (6). Moreover, reduced therapeutic efficacy may arise from antibiotic resistance, often driven by genetic mutations, or from bacterial persistence, where incomplete eradication occurs due to the organism's inherent tolerance to antibiotics (7). Several factors contribute to this phenomenon. First, the widespread and sometimes inappropriate use of macrolides like azithromycin for various infections may exert selective pressure on pathogens, including *Chlamydia trachomatis* (8, 9). Second, inconsistent patient adherence and incomplete partner treatment can lead to reinfection rather than true resistance (10). Additionally, the lack of reliable laboratory assays to detect in vitro resistance in chlamydia presents a diagnostic gap. Unlike gonorrhea or other bacterial STIs, resistance in *Chlamydia trachomatis* is typically inferred from persistent infection or recurrent positive tests despite confirmed treatment (11). In light of these concerns, a multifaceted response is needed. First,

enhanced surveillance efforts by regional and national public health authorities are essential to monitor trends in treatment failure and suspected resistance (4). Furthermore, there is a growing body of evidence suggesting that doxycycline may offer superior efficacy, particularly in asymptomatic or rectal infections, warranting reconsideration of current first-line treatment recommendations in select populations (12). Education remains critical, both for healthcare providers and patients, to reinforce the importance of adherence, appropriate antibiotic use, and partner management to reduce the risk of reinfection. Finally, investment in research particularly in the development of vaccines, which are currently progressing through early clinical stages could ultimately transform chlamydia control strategies and reduce reliance on antibiotics altogether (13, 14)

Conclusion

The threat of antibiotic resistance in *Chlamydia trachomatis* is still in its early stages, but the warning signs are clear. As with many other pathogens, the window to act proactively is narrow. Continued reliance on a limited number of antibiotics without robust surveillance or alternative therapies puts us at risk of a future where this common infection may no longer be easily curable. A coordinated effort across clinical practice, research, and public health policy is essential to stay ahead of this emerging challenge.

Funding Information

This study was not supported by any funding.

Ethics approval and consent to participate

This article does not contain any studies with animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Sreter S. The hidden affliction: Sexually transmitted infections and infertility in history: University of Rochester Press; 2019.
2. Hammerschlag MR, Golden NH, Oh MK, et al. Single dose of azithromycin for the treatment of genital chlamydial infections in adolescents. *J Pediatrics* 1993; **122**(6):961-5.
3. Kamath K, Rajan A, Shabaraya R. A review of azithromycin resistance: emerging trends and clinical implications. *Int J Pharmaceutical Sci* 2024; **2**(11):282-92.
4. Ljubin-Sternak S, Meštrović TJAS. Antimicrobial susceptibility testing in *Chlamydia trachomatis*: the current state of evidence and a call for more national surveillance studies. *Applied Sci* 2025; **15**(8):4322.
5. Sandoz KM, Rockey DD. Antibiotic resistance in Chlamydiae. *Future Microbiol* 2010; **5**(9):1427-42.
6. Kissinger PJ, White S, Manhart LE, et al. Azithromycin treatment failure for *Chlamydia trachomatis* among heterosexual men with nongonococcal urethritis. *Sexual Trans Dis* 2016; **43**(10):599-602.
7. Huemer M, Mairpady Shambat S, Brugger SD, et al. Antibiotic resistance and persistence- Implications for human health and treatment perspectives. *EMBO reports*. 2020; **21**(12):e51034.
8. Benamri I, Azzouzi M, Sanak K, et al. Antimicrobials. An overview of genes and mutations associated with *Chlamydia* species' resistance to antibiotics. *Annal Clin Microbiol Antimicrob* 2021; **20**(1):59.
9. Angelucci F, Cechova K, Amlerova J, et al. Antibiotics, gut microbiota, and Alzheimer's disease. *J neuroinflam* 2019; **16**(1):108.
10. Sherrard J, Jensen JSJ, AIDS. *Chlamydia Med Bacteriol*. *Vol. 13, No. 4 (2025): pp.98-100*
11. Budai IJAmeiH. *Chlamydia trachomatis: Milestones in clinical and microbiological diagnostics in the last hundred years*. *Acta Microbiol Immunol Hungaric* 2007; **54**(1):5-22.
12. Chen LF, Wang TC, Chen FL, et al. Efficacy of doxycycline versus azithromycin for the treatment of rectal chlamydia: a systematic review and meta-analysis. *J Antimicrob Chemother* 2021; **76**(12):3103-10.
13. Poston TBJP, Disease. Advances in vaccine development for *Chlamydia trachomatis* *Path Dis* 2024; **82**:ftae017.
14. Tisler-Sala A, Ojavee SE, Uusküla AJSTI. Treatment of chlamydia and gonorrhoea, compliance with treatment guidelines and factors associated with non-compliant prescribing: findings from a cross-sectional study. *Sexual Trans Infect* 2018; **94**(4):298-303.