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Abstract
Diabetes Mellitus (DM) stands as one of the most widespread non-
infectious diseases globally. Although diagnosis of diabetes is possible 
with the fasting plasma glucose test after 12-hour fast, once diabetes 
is diagnosed, it cannot be reversed. Therefore, it is crucial to identify 
early indicators for predicting diabetes. 
Presently, DM can be discerned through various methods involving the 
analysis of human facial features. One method for facial recognition in 
diabetes relies on experimental evidence, with its accuracy contingent 
on the skill and expertise of the physician. 
Another approach involves diagnosis based on facial morphological 
features. These morphological changes may be attributed to oxidative 
stress, damage of blood vessels and collagen, edema and craniofacial 
abnormalities stemming from hyperglycemia. While cephalometric 
analysis remains the gold standard for diagnosing skeletal craniofacial 
morphology, it is a costly and technique-sensitive procedure. 
Facial recognition based on Artificial Intelligence (AI) has proven 
to be a valuable tool in the diagnosis and screening of diabetes. Its 
combination of simplicity, accuracy, and cost-effectiveness makes it a 
promising addition to the healthcare landscape, ultimately contributing 
to advancements in pre-clinical diagnosis and leading to enhanced 
patient outcomes. 
Given the rapid global increase in diabetes, the importance of early 
detection of diabetes and the limited information about the role of 
facial recognition in this regard, this study assesses diabetes through 
facial features using AI approaches.
Keywords: Artificial intelligence, Diabetes mellitus, Facial 
recognition, Oxidative Stress
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Introduction
The most prevalent non-infectious disease in the 
world is Diabetes Mellitus (DM) (1-8). According 
to the World Health Organization, 171 million 
individuals worldwide have DM. By 2030, this 
number is projected to rise to 366 million (9), 
positioning the condition as one of the leading 
global causes of mortality, disability, and economic 
hardship. Diabetes develops when the body cannot 
adequately utilize or produce sufficient amounts of 
insulin, causing glucose in the blood to remain unable 
to enter cells for conversion into energy (10-19). This 
results in the onset of diabetic symptoms (20-27). 
Various factors such as obesity, genetics, race and 
ethnicity, age, medical history, smoking, nutrition, 
alcohol usage, and stress play a significant role in its 
development (27-39).
Early identification of diabetes poses a considerable 
challenge, and once it is detected, the condition 
cannot be reversed. Therefore, timely recognition of 
diabetes is vital to enable interventions that can delay 
or prevent the onset of type 2 diabetes. On the other 
hand, identifying individuals with prediabetes can 
lead to improved blood sugar control, reduced risk 
of complications, decreased economic burden, and an 
enhanced quality of life (40). 
Various methods have been attempted to detect 
diabetes through blood and urine tests. Traditionally, 
the diagnosis of diabetes involves the Fasting Plasma 
Glucose (FPG) test, which requires a small blood 
sample from the patient after a 12-hour fasting 
period. This method is considered uncomfortable, 
invasive, time-consuming, and inconvenient. Urine 
tests for diabetes have also been conducted in 
hospitals, but they are time-consuming and relatively 
expensive, making them less efficient. Given these 
circumstances, there is a pressing need for innovative 
solutions that allow for easy, effective, and efficient 
diabetes detection (41).
The diagnosis of diabetes through facial features has 
the potential to serve as a cost-effective screening 
tool (42,43). Researchers have currently uncovered 
various methods for detecting DM by analyzing 
human facial features (43). Facial features result 
from the complex interplay of genetic information, 
bone structure, muscle composition, adipose tissue 
distribution, and other factors, all of which are in line 

with the pathogenesis of Type 2 Diabetes (T2DM) 
(44). 
With the rapid development of Artificial Intelligence 
(AI), face recognition has attracted attention due to 
its status as the main method of human identification 
when compared with other types of biometric 
methods. Therefore, AI plays a critical role in face 
recognition technology, enabling systems to identify 
and verify individuals based on their facial features. 
It is essential for early detection and diagnosis, 
offers a non-invasive method, and provides cost-
effectiveness, efficiency, and accuracy (45). 
Face recognition technology, powered by sophisticated 
AI algorithms, leverages deep learning techniques, 
particularly Convolutional Neural Networks (CNNs), 
to enhance the precision and reliability of facial 
identification and verification. These AI-driven 
systems are capable of learning and recognizing 
intricate patterns and features in human faces, even 
in diverse conditions such as varying lighting, angles, 
and facial expressions. Research indicates that AI-
based face recognition systems have surpassed 
traditional biometric methods, achieving higher 
accuracy rates and lower error margins (45,46).
In the healthcare, AI-driven face recognition 
technology plays a pivotal role in patient identification, 
ensuring accurate medical records and personalized 
treatment. It is also being explored for early diagnosis 
of genetic disorders by analyzing facial phenotypes, 
demonstrating the potential for innovative medical 
applications.
Given the rapid global increase in diabetes cases 
(46), it is imperative to identify pre-diabetic patients 
and individuals at higher risk for future diabetes 
development. With the potential of AI and facial 
recognition technology as non-invasive, cost-
effective, and efficient alternatives for detecting 
diabetes, this study aims to improve early diagnosis 
and patient outcomes. Since there is limited 
information regarding the role of facial recognition 
in diabetes diagnosis, this research seeks to evaluate 
early detection of diabetes based on facial features 
using various AI approaches.

Facial recognition 
The human face is a distinct marker of individual 
bio-identity, providing valuable insights into factors 
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such as age, gender, race, consciousness, emotional 
state, and health status. Due to its accessibility and 
cost-effectiveness, facial recognition has gained 
widespread acceptance as a dependable biometric 
method, surpassing fingerprint and iris recognition. 
It is worth emphasizing that many diseases exhibit 
internal structural and functional abnormalities, as 
well as distinct facial characteristics and deformities 
(45).
Automatic facial recognition technology appeared 
in the 1960s, and over time, it has evolved into 
a pivotal tool with a wide range of real-world 
applications, including security surveillance, identity 
verification, forensic science, law enforcement, etc. 
(47). Pioneering research into the utilization of facial 
recognition for disease diagnosis began in the early 
2000s, with initial successes in the identification 
of genetic syndromes in children (48,49) and the 
detection of facial neuromuscular dysfunction (50) 
through knowledge-based approaches. Recently, 
facial recognition-based diagnosis has emerged 
as a highly promising and innovative field within 
interdisciplinary medical practice. 
Facial recognition enables effective screening in 
clinical practice, offering the potential for early 
diagnosis. Such an early detection proves highly 
advantageous for patients, facilitating prompt 
initiation of therapy and ongoing lifelong support. 
The facial recognition system is employed for the 
evaluation of endocrine and metabolic disorders, 
genetic and chromosomal anomalies, neuromuscular 
ailments, and various other categories of diseases.

Influential Factors on the Face of Diabetic 
Patients 
It seems that the main effects of diabetes on the face 
can be attributed to edema, oxidative stress, and 
craniofacial anomalies, damage of blood vessels and 
collagen. 

Edema
Edema, the excessive accumulation of body fluids in 
interstitial spaces or body cavities is visibly evident 
on the faces of diabetic individuals. Edema results in 
puffiness around the eyes, leading to the characteristic 
swollen or compressed appearance of the average 
facial shape in individuals with diabetes (10). 

Damage of blood vessels and collagen
Elevated glucose levels can have detrimental effects 
on blood vessels, leading to impaired circulation and 
reduced blood flow within the skin. This vascular 
damage can result in alterations to the skin’s protein 
structure, particularly collagen, which is impacted by the 
diminished blood flow. Changes in collagen levels can 
significantly influence the skin’s ability to heal its overall 
texture and appearance. Notably, these skin issues often 
serve as indicators of inadequate glycemic control. 
Therefore, in individuals with diabetes, hyperglycemia 
can lead to impaired microcirculation, which can 
manifest clinically as visible deformities in facial veins. 
Consequently, diabetes can contribute to the development 
of various facial skin conditions, such as vitiligo, rubeosis 
faciei, Bell’s palsy, and scleroderma (51).

Oxidative stress and impaired collagen 
production
Hyperglycemia can influence the activity of 
oxidases via both direct and indirect mechanisms, 
ultimately leading to the generation of oxidative 
stress. Mechanistically, oxidative stress stimulates 
collagen breakdown and inhibits collagen production.  
Oxidative stress and the presence of Reactive Oxygen 
Species (ROS) lead to an increase in the c-Jun/AP-1 
transcription factor, multiple matrix metalloproteinases, 
and the degradation of collagen. Furthermore, oxidative 
stress and ROS contribute to the down-regulation of the 
TGF-β type II receptor and Smad3 proteins, resulting 
in impaired collagen production (52). 
In addition, Advanced Glycation End products 
(AGEs), which is formed more quickly when blood 
glucose levels are elevated, produce ROS (53) through 
their primary signaling receptor, the AGE-specific 
receptor (sometimes shortened to RAGE). This causes 
proliferative, inflammatory, thrombotic, and fibrotic 
responses in a range of cells. This data demonstrates 
the role of AGEs in aging- and diabetes-related 
illnesses such complications from diabetic vascular 
disease (54). As a result, AGEs play important roles in 
the etiology of problems associated with diabetes. 

Craniofacial Anomalies 
The development of the craniofacial complex 
is influenced by a combination of genetic and 
environmental factors. Hormones, nutrition, mechanical 
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stresses, and various local growth factors serve 
as regulatory mechanisms governing the normal 
development of the face and head (55). 

Craniofacial Anomalies in Type 1 Diabetes
The peak growth period, which coincides with the 
onset of Type 1 Diabetes (T1DM) and during which 
approximately 60% of adult bone mass, including 
craniofacial bone, is acquired, has a significant impact 
on the process of bone formation. While the exact 
causes of T1DM are still unknown, it is essential to 
emphasize that understanding the disease’s progression 
and its effects on craniofacial development may lead 
to advancements in oral health practices. 
Investigating the alterations in craniofacial bone 
structure and the dynamics of bone formation under 
diabetic conditions is crucial for comprehending how 
diabetes influences various aspects of mandibular 
growth and bone quality (56). A comparison of 
craniofacial skeletal parameters in individuals with 
T1DM and a control group revealed that T1DM 
patients exhibit underdevelopment in most craniofacial 
skeletal and soft tissue aspects when compared to the 
control group. Consequently, diabetic patients display 
reduced skeletal maturation and cephalometric 
parameters (56). 

Craniofacial anomalies in the fetus 
Maternal diabetes can induce systemic metabolic 
changes that impact nearly every organ system, 
with the craniofacial, central nervous, and 
cardiovascular systems being the most commonly 
affected. These deformities, collectively referred 
to as diabetic embryopathy, are believed to stem 
from abnormalities in neural crest cell growth and 
neurulation during the early stages of organogenesis, 
typically occurring within the first 8 weeks of human 
gestation. “Neurocristopathies” is a term used to 
describe problems related to cranial neural crest cell 
production, migration, or differentiation that result in 
craniofacial deformities. Depending on when harm 
occurs during cranial neural crest cell development, 
distinct morphologies become apparent. Pregnant 
women with pre-gestational diabetes have a three-
to-five times higher risk of giving birth to infants 
with birth abnormalities compared to women without 
diabetes (57). The significant likelihood that mothers 

with either Type 1 or Type 2 diabetes will have children 
with diabetic embryopathy points to hyperglycemia 
and increased glucose uptake by the embryo through 
glucose transporters as the primary causative factors 
(58).

The Mechanism of Hyperglycemia effect on 
Neural Tube Defects
Elevated oxidative phosphorylation and generation of 
ROS, stemming from excessive glucose metabolism 
lead to an oxidative stress condition (59,60). One of 
the negative effects of excess ROS is that it can disrupt 
key signaling events during cellular differentiation, 
resulting in structural abnormalities (61). 
Hyperglycemia and epigenetic modifications can 
affect the pax3 downregulation, and TCOF1 down-
regulation. Downregulation of TCOF1 (through 
intermediate signals)  and pax3 down-regulation can 
lead to p53 activation. P53 activation via apoptosis 
and cell cycle arrest lead to neural tube defect. In 
addition, hyperglycemia via increased oxidative stress 
led to accumulation of DNA damage, p53 activation, 
cell cycle arrest, apoptosis, hypoplasia, neural tube 
defects (57).  

Diabetic facial recognition
Diabetic facial recognition can be achieved using 
various methods. Some of these methods are done 
with emphasis on AI Top of Form       

- Physical manifestations 
In patients with DM, symptoms such as dehydration, 
ketosis, dry skin, and reduced skin elasticity can occur 
(62), but in most cases of DM, physical manifestations 
may be typically absent. It means that not all diabetic 
cases have facial clues indicating metabolic/diabetic 
condition. 
Insulin-Dependent Diabetes Mellitus (IDDM) is 
also associated with increased glycosylation of skin 
collagen, which leads to the accumulation of rigid 
and less degradable collagen. Consequently, diabetic 
patients generally have thicker skin, especially on 
the face, compared to non-diabetic individuals. 
This increased skin thickness in diabetics may be a 
contributing factor to the less angular or rounder facial 
shape observed in these individuals.
The faces of diabetic patients often exhibit puffiness 
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around the eyes, giving them a compressed appearance. 
General observations suggest that in male individuals 
with diabetes, there is a noticeable tapering towards 
the front of the face. On the other hand, females tend 
to have smaller nasal cavities and a gentler curvature 
just above the teeth. Notably, females typically lack 
a brow ridge, and their foreheads exhibit a more 
pronounced curvilinear shape (10).  

Morphological Disorder-Based Procedures 
Geometric morphometrics 
Geometric morphometrics serve as a robust visual 
statistical tool (55) for the quantitative analysis of 
biological shape, its variations, and their relationships 
with other biotic or abiotic factors.
In the realm of biomedical and biological research, 
the analysis of an organ or organism’s shape and size 
becomes more precise when utilizing landmarks. In 
the field of medicine, the geometrical properties of 
organs are intertwined with a variety of studies that 
rely on statistical analyses, employing qualitative 
and quantitative measures, particularly in the context 
of image analysis. In this approach, data is acquired 
through landmarks, whose points adhere to the rules 
of homology, signifying biological correspondence 
and ensuring reliable anatomical definitions. This 
homology among landmarks plays a pivotal role in 
securing a biologically interpretable outcome (58).
Geometric morphometrics have proven effective 
in identifying patterns associated with diseases, 
primarily through the description of facial shape. It 
can be instrumental in pinpointing specific health-
related issues within the healthcare domain. Geometric 
morphometrics approaches are employed to explain 
the edema-related alterations on diabetes patients’ 
faces. Diabetic individuals using partial warps may 
exhibit characteristics like right-sided asymmetry or 
elongation, brow ridge drooping, facial compression 
towards the center, and downward skin folding around 
the eyes (10). However, traditional morphometric 
measures such as linear distances, angles, and ratios 
have limitations in accurately quantifying the intricate 
geometry of specific anatomical structures (60).

Cephalometry  
Cephalometry, introduced by Broadbent in 1931, 
ushered in a profound transformation in the diagnostic 

evaluation of facial forms and various craniofacial 
features. Lateral cephalograms, in particular, 
hold immense diagnostic and treatment planning 
significance. Linear and angular measure- ments 
obtained from lateral cephalograms play a pivotal 
role in the diagnosis and assessment of growth and 
developmental abnormalities. It is worth noting that 
while cephalometric analysis remains the gold standard 
for diagnosing skeletal craniofacial morphology in 
orthodontic clinical practice, it is an expensive and 
technique-sensitive procedure (63). 
The cephalometric analysis for both Juvenile diabetes 
and control groups was shown and compared by 
Mushayat et al (56). 
Moreover, cephalometry has general limitations (64).
- Cephalometry provides a two-dimensional view of a 
three-dimensional object, which can limit its accuracy.
- Landmark identification errors can occur, reducing 
the reliability of cephalometric analysis. Errors may 
arise during the tracing procedures.
- Assumptions play a significant role in cephalometric 
method: a) symmetry: analysis based on lateral 
projections assumes the absence of skeletal asymmetry 
in the patient. If asymmetry is present, the analysis 
results may be inaccurate. This can be mitigated by 
analyzing postero-anterior projections. b) Accurate 
occlusal and postural positioning is crucial for the 
cephalogram’s accuracy.
- Fallacy of False Precision: When multiple 
cephalograms of the same individual are taken and 
traced, the measurement of various angles may show a 
standard error of 1:5, indicating slight variations with 
each measurement.
- Neglecting Patient Variability: Cephalometric values 
should not be treated as fixed goals, as individual 
patient differences can influence the results.

Artificial Intelligence (AI)
Since its inception in the 1950s, AI has been deeply 
committed to understanding human problem-solving 
approaches and integrating or simulating these 
strategies within computer programs (65). 
AI is a branch of computer science that aims to create 
systems or methods that analyze information and 
allow the handling of complexity in a wide range 
of applications (in this case, diabetes management). 
Although the application of AI algorithms involves 
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highly technical and specialized knowledge, this has 
not prevented AI from becoming an essential part of 
the technology industry and making contributions to 
major advances within the field (66).
AI-based automatic image recognition has the 
potential to identify image features for diagnosing and 
screening various diseases, demonstrating satisfactory 
performance in diagnosing certain diseases (46,47,67). 
AI has been widely applied in the analysis and 
identification of medical images, such as lung nodules, 
colon polyps, breast nodules, and ocular fundus (68). 
AI is a quickly growing field, and its applications to 
diabetes research are growing even more rapidly.
Moreover, AI-based facial recognition has recently 
played a crucial role in the diagnosis and screening of 
diseases characterized by facial phenotypes or changes 
(45,69). For instance, AI algorithms can detect subtle 
facial anomalies that may indicate genetic disorders, 
enabling early intervention and personalized treatment 
plans. This technology offers a non-invasive, efficient, 
and accurate method for medical professionals to 
enhance diagnostic processes and improve patient 
outcomes.
Overall, the integration of AI in medical image and 
facial recognition continues to revolutionize healthcare 
by providing advanced diagnostic tools, improving 
disease detection accuracy, and fostering innovative 
research avenues in fields like diabetes management 
and genetic disorder identification.
The most important AI-based facial recognition 
methods involve a combination of machine learning, 
computer vision, and deep learning algorithms. These 
techniques enable computers to identify and verify 
human faces from digital images or video frames:

Computer vision
Computer Vision is one of the most fascinating 
and challenging tasks in the field of AI. Computer 
Vision serves as a link between computer software 
and the visuals we see around us (70). A key goal of 
computer vision researchers is to create automated 
face recognition systems that can equal, and 
eventually surpass human performance. To this end, 
it is imperative that computational researchers know 
the key findings of experimental studies regarding 
face recognition by humans. These findings provide 
insights into the nature of cues that the human visual 

system relies upon for achieving its impressive 
performance and serve as the building blocks for 
efforts to artificially emulate these abilities (71).

Machine learning
Machine learning is a branch of computer science and 
has significantly advanced the field of facial recognition 
by enabling computers to learn and improve from 
 experience without being explicitly programmed for 
each specific task. It is closely related to computational 
statistics and mathematical optimization (45,72). 
Machine learning uses algorithms that can learn from 
and make predictions based on data (73). The primary 
types of learning algorithms include (74,75):
- Supervised Learning: Involves training the system 
on a labeled dataset, meaning the data includes both 
the input (e.g., facial images) and the correct output 
(e.g., the identity of the person).
- Unsupervised Learning: The system is trained on 
data without labeled responses, aiming to find hidden 
patterns or intrinsic structures in the input data. 
Techniques such as clustering can be used to group 
similar faces.
- Semi-Supervised Learning: Combines a small 
amount of labeled data with a large amount of 
unlabeled data during training. This approach is useful 
when acquiring a fully labeled dataset is expensive or 
time-consuming.
- Reinforcement Learning: The system learns by 
receiving rewards or penalties based on its actions, 
refining its strategy over time to maximize the 
cumulative reward  (6). 
Machine learning methods can be applied in facial 
recognition systems to detect, align, recognize, verify, 
and identify individuals based on their facial features. 
Each step leverages specific machine learning 
techniques to achieve accurate and efficient facial 
recognition capabilities. In the following, a summary 
of each step in facial recognition is described 
(45,76,77).  
- Feature Extraction: Machine learning algorithms 
automatically identify and extract relevant features 
from facial images, such as the distance between the 
eyes, the shape of the cheekbones, and the contour of 
the lips. 
- Face Detection: The first step in facial recognition 
involves detecting the presence of faces in an image 
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or video stream. Machine learning models are used to 
locate faces with high accuracy.
- Face Alignment: This step involves transforming the 
detected face to a canonical pose, which standardizes 
the face for further analysis. Techniques like facial 
landmark detection help in aligning the face by 
identifying the key points (e.g., corners of the eyes, 
tip of the nose).

- Face Recognition: The core task where machine 
learning models are used to match detected and 
aligned faces to a database of known faces.
- Face Verification and Identification 
Verification: Determines if two faces belong to the 
same person. This is typically a one-to-one matching 
task.
Identification: Identifies a person from a list of known 

Table 1. The studies regarding the role of AI in facial recognition in diabetes
Author
(Ref no.)

Year Area Findings

Ting (81) 2014 DM identification with the 
Gabor Filter based on face 

Block Texture Features

Diagnosis of diabetes with 99.82% accuracy, 99.64% 
sensitivity, and 100% specificity.

Zhang (82) 2014 Non-Invasive DM detection 
through facial block 

color utilizing a Sparse 
Representation Classifier

Diagnosis of DM with an average accuracy of 97.54%

Zhang (83) 2016 Diabetes Identification Using 
Facial Block Color Features 
and Sparse Representation 

Algorithms

With 99.65% sensitivity, 97.93% specificity, and 99.06% 
accuracy, diabetes is diagnosed.

Padawale
(43)

2016 Diabetes Detection according 
to Texture and Color Features 

of Facial Block

94.28% accuracy with k-NN and 97.14% accuracy with 
SVM classifiers were used to distinguish DM from a healthy 

patient.

Shu (85) 2017 Evaluation of different Texture 
Feature extractors for DM 

Detection in Facial Specific 
Regions

Diagnosis of diabetes with an accuracy of 99.02%, and 
sensitivity of 99.64%, as well as specificity rating of 98.26%. 

Parvana
(85)

2017 DM detection using the 
GLCM’s Facial Texture Feature

Diagnosis of DM with 91.67% accuracy, sensitivity of 100% 
and specificity of 83.33%.

Shu (86) 2018 Non-invasive face block 
analysis method for detecting 

diabetes 

Through facial key block analysis, the computer-assisted 
non-invasive diabetes mellitus detection system has 

demonstrated notable success and efficiency in real-time 
discrimination between diabetic patients and their healthy 

counterparts.
Li Zhang (87) 2018 Classification of multiple 

diseases using facial Image 
analysis and a Convolutional 

Neural Network

The proposed technique had an average accuracy of 73% 
based on three datasets that included healthy controls, 
those with diabetes, and people who had lung disease.

Garcia (88) 2019 Features of Facial Texture 
captured for non-invasive DM 
detection in a less restrictive 

environment

SVM-based DM diagnosis with 90% accuracy, 93% 
sensitivity, and 93% specificity. 

Zhou (89) 2019 Facial Chromaticity and Texture 
Features for Non-invasive 
Disease Detection Using 

L-SRC

The average accuracy for detecting pre-diabetes was 
74.31%. This offers a potential non-invasive screening 

technique to deal with future diabetes patients.

Zhu (42) 2020  A Face-based Progressive 
Stack Network for breast 
cancer and DM Detection

The results of the experiments indicated that the proposed 
approach had a 92.94% overall accuracy.
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individuals. This involves a one-to-many matching 
task, where the input face is compared against all 
faces in the database.

Deep Learning Methods
Deep learning is a subset of machine learning that 
utilizes neural networks with multiple layers to learn 
from data and make predictions. Unlike traditional 
machine learning algorithms that require feature 
extraction and selection by humans, deep learning 
models automatically learn hierarchical representations 
of data directly from raw inputs. This capability makes 
deep learning particularly powerful for tasks involving 
complex patterns and large datasets (78-80). 
In recent years, CNNs have become pivotal in facial 
recognition due to their enhanced accuracy. Deep 
learning, as a broader discipline, shows promise in 
reducing the influence of emotional variations and 
varying lighting conditions. Moreover, advanced 
deep learning algorithms have been developed to 
analyze video recordings capturing facial movements 
indicative of certain medical conditions.
Three-dimensional CNNs, an extension of traditional 
CNNs that process data from consecutive frames, are 
utilized to detect neurological disorders characterized 
by facial dysfunctions. Furthermore, cutting-edge 
deep learning architectures such as Long Short-Term 
Memory (LSTM) networks have been integrated with 
conventional classification techniques (45) to further 
enhance diagnostic capabilities

AI Techniques for Diabetes Diagnosis Using 
Facial Features
Advancements in AI techniques have facilitated 

diabetes diagnosis through facial features. However, 
there have been limited studies conducted on the role 
of facial recognition in diabetes using AI approaches. 
Some of the most important ones are mentioned 
(Table 1). 

Conclusion
Diagnosis of diabetes is achievable through the 
analysis of facial features using various approaches. 
While diabetic face recognition can be performed 
by an experienced physician, the combination of 
simplicity, accuracy, and cost-effectiveness of AI 
procedures makes it a promising approach that 
contributes to advancements in pre-clinical diagnosis.
Recent advancements in AI techniques for diabetes 
have substantially enhanced the accuracy of facial 
feature detection. Therefore, it seems that AI-driven 
facial recognition technology can be instrumental 
in identifying pre-diabetic individuals. Early 
identification of pre-diabetes allows for timely 
interventions, such as lifestyle modifications and 
medical management, which can delay or even 
prevent the progression to full-blown diabetes. This 
approach not only improves patient outcomes but 
also reduces the economic burden associated with 
diabetes management and complications.
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