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Abstract 

Background and Purpose: The contamination by potentially toxic element (PTE) is a common 

environmental issue in worldwide rivers. The present study examined PTEs concentration in 

sediments of Talar River which is one of the main rivers in the Sothern Caspian Basin. 

Materials and Methods: The sediment samples (n= 44) were collected from top 0–5 cm of 

surface sediment in the main channel and floodplain of Talar River using a Van-Veen grab 

sampler. The concentrations of trace elements were determined by inductively coupled plasma 

mass spectrometry (ICP-MS). Principal component analysis (PCA) was used to evaluate 

possible relationships between the observed variables and source identification. Enrichment 

factor (EF) was also applied to determine the integrated effects of different elements and 

evaluate the sediment quality. 

Results: The average concentration of all elements except Mo were found to be higher than the 

concentration of elements in upper continental crust (UCC). The result of enrichment factor (EF) 

indicated that most elements were unpolluted and showed minimal to moderate contamination 

level.  Multivariate statistical analysis indicated Pb, Cu, V, Zn, Cd, Co and Ni typically have 

anthropogenic sources. Whereas Mn, Sb, Sc, Mo and as showed geogenic source. 

Conclusion:It was concluded that sediments in Talar River was then experiencing slightly 

polluted status originated from local anthropogenic sources in the basin which might potentially 

pose detrimental effects on both ecological and health conditions in the basin. 
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1. Introduction  

Due to the persistence of trace elements in 

aquatic environments, they can enter food 

chains and consequently accumulate in 

animals’ tissues (1-3). The contamination 

by potentially toxic element (PTE) is a 

common environmental issue worldwide 

(4, 5). Sediment is an important proxy of 

the environmental condition in riverine 

environments and is regarded as the final 

precipitating medium for PTEs (6-8). 

River sediments are considered as one of 

the major sources/sinks of trace metals and 

a good indicator of background pollution 

of the river (9-11). The chemical 

composition of river sediments is 

influenced by natural and anthropogenic 

pollutants (12). The main sources of trace 

metals in river environments include local 

lithologies, surface runoff, atmospheric 

precipitation and anthropogenic activities 

(13). However, economic development, 

urban expansion and consequently the 

uncontrolled inputs of pollutants from 

anthropogenic sources and over the last 

decades degraded the quality of aquatic 

environments (14). Among all pollutants 

in aquatic environments, trace metals are 

considered as the important contaminants 

due to their biological accumulation, 

ecological toxicity, and persistence (15-

17). It is estimated that nearly 85% of the 

trace metals loads entering aquatic systems 

are deposited in sediments in various 

forms (14). 

 

The flocculation and precipitation are the 

main deposition mechanisms of trace 

metals into river sediments (11, 13). The 

changes in chemical conditions of aquatic 

environments can lead to the release of 

trace metals from sediments into overlying 

waters causing secondary pollution (9, 18).  

PH, temperature and oxygen levels in river 

water can influence chemical behaviors of 

trace metals in river sediments (19). 

 Trace metals in riverine systems can be 

accumulated and biomagnified to a high 

degree in sediment and the aquatic food 

chain, leading to detrimental effects on 

aquatic organisms (20). 

Investigating the distribution and sources 

of potentially toxic elements (PTEs) in 

rivers is very important to understand the 

contamination and associated ecological 

risks of trace metals, and it improves 

watershed ecosystem safety. It also 

manages environmental and ecological 

risk factors in riverine environments (21).  

Talar River, as one of the important rivers 

entering the southern basin of the Caspian 

Sea, passes through several cities and is 

exposed to input of various anthropogenic 

contaminants. 

 There is a lack of data on the 

concentration of trace metals in the 

sediments of the Talar River. Mohammadi 

et al. (2019) undertook research on the As, 

Cu, Cr and Ni concentration in Talar river 

sediments. They showed a positive 

correlation between heavy metals and land 

uses in Talar River which varied with the 

level of agricultural and urbanization 

development at sub-watershed. However, 

this study did not cover most of the 

important toxic metals and their sources.  

The main objectives of this study were to 

characterize the concentration of several 

trace elements in sediments of Talar River, 

assess the degree of contamination using 

environmental and geochemical indices, 

and determine the main sources of trace 

metals in river sediments and identify the 

influence of possible pollution sources.  
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2. Materials and Methods 

Talar River with a length of 150 km is 

located in Mazandaran Province in north 

of Iran. Its basin covers a total area of 

2800 km
2
 and the main stream flows from 

northern part of Alborz mountain ranges to 

southern part of Caspian Sea (22) (Fig. 1). 

On its way toward Caspian Sea, the river 

flows through several urbanized areas 

including Pol-e-Sefid, Zirab, Shirgah, 

Ghaemshahr and Kiakola and enters the 

Caspian Sea in the Mir-rud area.  

Extensive outcrops from the Paleozoic to 

the present can be seen in the catchment 

area of the hall. Geologically, the studied 

area is dominated by Jurassic and Lower 

Cretaceous carbonate rocks, shale, 

sandstone, siltstone with thin coal seams 

(23). Moreover, Miocene marl and 

calcareous sandstone and Pliocene 

conglomerate form the major lithological 

units in Cenozoic (24).  

The sampling network has been extended 

in the Talar river watershed along the main 

river channel from upstream of the basin to 

the sea according to the United States 

EPA’s (USEPA) criteria for sampling (25). 

The number and location of samples were 

determined on the basis of our primary 

field observation, evaluation of potential 

point/non-point pollution sources, and the 

situation of population centers, location of 

industrial zones, agricultural practices, and 

river geomorphology. The sediment 

samples (n= 44) were selected from main 

channel and floodplain of Talar River 

(Fig.1). At each station, three composite 

samples with approximate mass of 200 g 

were collected. The samples were 

collected from top 0–5 cm of surface 

sediment using a Van-Veen grab sampler. 

The sampling sites were distributed 

uniformly in the upstream (n= 20) and the 

plain (n= 24) with the average distance of 

about 3.5 km across the river.  

All sediment samples were air-dried at 

room temperature, pulverized in a mortar, 

filtered through a polyethylene sieve 

having pores of 63 µm aperture (20). The 

<63-µm bulk sediments have been 

digested using nitric acid (HNO3), 

perchloric acid (HClO4), and hydrofluoric 

acid (HF). For this purpose, approximately 

0.5 g of subsample was digested in Teflon 

tubes using a mixture of nitric acid, 

hydrofluoric acid and perchloric acid. The 

mixture was then heated to temperature of 

approximately 110 °C until all residues 

were completely decomposed. Next, to 

remove residual HF, 20 mL nitrate 

solution (2%) was added to the dissolution 

(11, 26, 27). Total concentrations of trace 

elements were analyzed using inductively 

coupled plasma mass spectrometry (ICP-

MS) in chemical lab of Geological Survey 

of Iran.   
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Fig 1. The sampling sites in Talar River basin. The sample locations are shown with red circles  

One common method for evaluating 

anthropogenic effects on sediments and 

soils was to calculate the enrichment 

coefficient (EF). EF for different elements 

can be calculated based on equation 1 (28): 

(1)          
[  ] [  ]        

[  ] [  ]          
 

where Cn and Cx are the concentration of 

element of interest and reference element 

in the sediment sample, Bn and Bx are the 

concentration of the element of interest 

and reference element in the geochemical 

background. In this study, Sc is selected as 

reference element and world average shale 

(29) is considered as geochemical 

background environment (29-31). 

Enrichment factor has empirically divided 

the enrichment coefficient into 5 

categories (32) (Table 1). 
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Table 1.  Classification of enrichment factor (EF) (32)  
Enrichment factor Categories of contamination 

EF<2 Depletion to minimal enrichment (no or minimal pollution) 

2–5 Moderate enrichment (moderate pollution) 

5–20 Significant enrichment (significant pollution) 

20–40 Very high enrichment (very strong pollution) 

EF> 40 Extreme enrichment (extreme pollution) 

 

 

Contamination factor (CF), is commonly 

used to show the contamination level of 

potential toxic elements in sediments 

suggested using the following equation 

(33): 

(2)                  
       

           
 

Where Csample is the concentration of metal 

in a specific sediment sample and 

Cbackground is the concentration of same 

element at a background site, reference 

value or a national criterion. In this study, 

the concentration of elements in world 

average shale was considered as reference 

values (29). There are four qualitative 

classification to describe the 

contamination factor (34): Cf<1, low 

contamination; 1 ≤ Cf < 3, moderate 

contamination; 3 ≤ Cf < 6, considerable 

contamination and Cf  ≤ 6, very high 

contamination. 

 

Muller (35) introduced a quantitative 

measure of the level of contamination in 

aquatic sediments. This index can be 

calculated using the following formula: 

(3)                      
  

        
 

Where Cn t is the concentration of the 

element in the sample and Bn is the 

concentration of the element in the 

geochemical background concentration. 

This index was classified in 6 classes as 

indicated in Table 2.  

 

Table 2.  Classification of the geo-accumulation index (Igeo) (35) 

Igeo value Class Designation of sediment quality 

I geo ≤ 0 0 Unpolluted 

0<I geo≤1 1 Unpolluted to moderately polluted 

1<I geo≤2 2 Moderately polluted 

2<I geo≤3 3 Moderately to strongly polluted 

3<I geo≤4 4 Strongly polluted 

4<Igeo≤5 5 Strongly to extremely polluted 

Igeo > 5 6 Extremely polluted 

 

 

Shapiro-Wilk test (p>0.05) was conducted 

in order to evaluate the normality of the 

data distribution. Then, Spearman 

correlation and principal component 

analysis (PCA) were used to evaluate the 

possible relationships between the 

observed variables and their source 

identification after normalization of all 

non-normal elemental data.  

 

 

 

 [
 D

O
I:

 1
0.

18
50

2/
jh

s.
v1

0i
1.

91
09

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 jh

s.
m

az
um

s.
ac

.ir
 o

n 
20

22
-0

4-
24

 ]
 

                             5 / 13

http://dx.doi.org/10.18502/jhs.v10i1.9109
https://jhs.mazums.ac.ir/article-1-788-en.html


Heavy metals contamination in the surface sediments                                                                           K. Shabani Gorji et al. 

   

Iran J Health Sci 2022; 10(1): 36 
 

3. Result  

Table 3 lists the statistical summary of the 

heavy metal concentrations in the surficial 

sediment samples. The concentrations of 

trace elements in Talar River sediments 

exhibited a wide range of variations 

throughout the studied sites. The average 

concentration of all elements except Mo 

were higher than the concentration of 

elements in upper continental crust (UCC) 

(36). Most elements showed average 

concentration lower than world average 

shale (Table 3). Only Cr showed values 

higher than global shale (29) . The average 

concentration of elements followed the 

order of: Mn (666.4)> Cr (105.2)> V 

(82.7) > Zn (67.9), Ni (43.6) > Cu (28.5) > 

Pb (18.3) > Co (13.7) > As (9.8) > Sc (9.3) 

>Mo (1.1) > Sb (0.6) > Cd (0.1).  

 

 

Table 3. The statistical summary of trace elements concentration (mg/kg) in sediments of Talar river  

Elements Minimum Maximum Median Mean Std. Deviation 
Average 

shale 
1
 

UCC
2
 

 Cd 0.10 0.26 0.15 0.16 0.04 0.3 0.1 

Co 4.87 20.19 14.41 13.75 3.39 19 11.6 

Mn 215.33 953.35 673.91 666.49 154.05 850 527 

Mo 0.63 2.56 1.01 1.11 0.36 2.6 1.4 

Ni 21.77 72.71 41.04 43.62 12.47 68 18.6 

Pb 9.94 25.49 18.98 18.32 3.45 20 17 

Sc 3.07 16.47 9.38 9.35 2.40 13 7 

As 4.76 21.05 10.02 9.84 2.67 13 2 

Cr 65.40 179.21 104.68 105.27 19.33 90 35 

Cu 12.58 45.03 27.42 28.52 7.61 45 14.3 

V 28.85 130.09 81.11 82.70 19.95 130 53 

Zn 14.00 108.60 67.77 67.90 20.55 95 52 

Sb 0.29 2.82 0.56 0.60 0.36 1.5 0.31 

1. Data from (29) 

2. Upper continental crust (36) 

 

 

Figure 2 indicated the box plot diagram of 

the EF in the sediments in the study area. 

Most of the elements showed minimal to 

moderate contamination. The highest EF 

were attributed to Cr, Zn, Pb, As and Mn, 

respectively. Among the investigated 

metals, Sn, Sb, Mo and Cd showed the 

minimum EF values. Values for those 

metals were relatively close to the natural 

background, suggesting they were not 

significantly affected by anthropogenic 

activities (37). 
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Fig 2. Boxplot diagram of EF in the sediment samples of Talar River 

The result of Igeo also indicated that all 

samples were classified as unpolluted (Fig. 

3).  Cr, Pb, Zn, as and Mn showed the 

highest Igeo in the study area. Moreover, all 

samples showed CF values < 1 indicating 

low contamination in the samples (Fig. 4). 

In some samples, Cr and Pb displayed 

moderate contamination.  

 

 

 

 

 

 

 

 

 

 

Fig 3. Boxplot diagram of Igeo in the sediment samples of Talar River 
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Fig. 4. Boxplot diagram of contamination factor (CF) in the sediment samples of Talar River 

Table 4 represents the results of the 

Spearman correlation matrix among the 

studied elements of Talar River sediments. 

Most elements showed medium to strong 

correlation with each other. This may 

imply that these elements had the same 

sources or similar geochemical behavior 

and were incorporated in sediments in a 

similar way.  

The results displayed the strong positive 

correlation between Co and Cr (0.67), Ni 

(0.73), Pb (0.76), Sc (0.84) and V (0.81). 

Also, the elemental pairs Ni/Sc (0.72), 

Ni/V (0.71), Cu/V (0.72), Cu/Zn (0.62), 

Zn/V (0.66) showed strong correlations; 

whereas, As, Mo, Cd and Sb showed the 

lowest associations with other examined 

elements.  

 

Table 4. Spearman correlation coefficients for the metal concentrations  

  Cd Sb Mo As Cr  Co    Ni    Pb    Sc   Cu  V Zn  Mn   

Cd 1.00             

Sb -0.05 1.00            

Mo 0.17 0.22 1.00           

As 0.04 .323
*
 0.12 1.00          

Cr 0.18 0.26 0.28 0.24 1.00         

 Co   .403
**

 .422
**

 .334
*
 .357

*
 .676

**
 1.00        

 Ni   .593
**

 0.05 .324
*
 0.15 .499

**
 .733

**
 1.00       

 Pb   .347
*
 .444

**
 .302

*
 .350

*
 .399

**
 .765

**
 .575

**
 1.00      

 Sc   0.24 .349
*
 .423

**
 .387

**
 .611

**
 .842

**
 .724

**
 .793

**
 1.00     

Cu 0.21 0.19 0.11 .343
*
 .534

**
 .595

**
 .530

**
 .628

**
 .651

**
 1.00    

 V .332
*
 .298

*
 0.28 .427

**
 .619

**
 .819

**
 .712

**
 .712

**
 .873

**
 .725

**
 1.00   

Zn .462
**

 0.17 0.12 0.26 .394
**

 .576
**

 .536
**

 .653
**

 .482
**

 .623
**

 .664
**

 1.00  

 Mn   -0.01 .370
*
 0.18 .299

*
 .528

**
 .594

**
 .375

*
 .540

**
 .602

**
 .393

**
 .451

**
 .364

*
 1.00 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

 

 [
 D

O
I:

 1
0.

18
50

2/
jh

s.
v1

0i
1.

91
09

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 jh

s.
m

az
um

s.
ac

.ir
 o

n 
20

22
-0

4-
24

 ]
 

                             8 / 13

http://dx.doi.org/10.18502/jhs.v10i1.9109
https://jhs.mazums.ac.ir/article-1-788-en.html


Heavy metals contamination in the surface sediments                                                                           K. Shabani Gorji et al. 

 

Iran J Health Sci 2022; 10(1): 39 
 

Factor analysis of sampling data generated 

three major factors which cumulatively 

explain 70.70 % of the total data variance 

as shown in Table 5. The first component 

(PC1) explained 59.63% of the total 

variance as it showed strong association 

with most variables including Pb, Cu, V, 

Zn, Cd, Co and Ni. This group included 

the main heavy metals that were typically 

considered to be anthropogenic pollutants, 

originating mainly from industrial and 

untreated sewage (38, 39). It has been 

stated that trace elements from 

anthropogenic sources can originate from 

different segments, such as urban sewer, 

agricultural and industrial activities (19, 

40). PC2 accounted for 13.67% of the total 

variance, and displayed the strongest 

weight for Mn, Sb, Sc and As. Meanwhile, 

PC3 displayed about 9.37% of the total 

variance and showed the loading of Mo.  

Thus, it seemed that both PC2 and PC3 

dominantly controlled natural or geogenic 

sources. However, the relatively medium 

to large loadings of Co, Cr, Cu and Pb in 

PC2 can be described by mixed natural-

anthropogenic sources for these elements. 

 

Table 5. Principal components, loadings and percentage variance explained after Varimax rotation 

 

Elements 
Component 

PC1 PC2 PC3 

Mn 0.33 0.66 0.15 

Pb 0.68 0.48 0.17 

Cu 0.71 0.41 -0.18 

V 0.79 0.43 0.10 

Zn 0.80 0.19 -0.11 

Cd 0.71 -0.39 0.21 

Co 0.74 0.47 0.31 

Sb -0.01 0.73 0.29 

Cr 0.51 0.44 0.26 

As 0.19 0.63 -0.13 

Ni 0.86 0.06 0.27 

Mo 0.13 0.13 0.88 

Sc 0.10 0.91 0.23 

% of variance 37.16 21.33 10.50 

Cumulative % 37.16 58.50 69.01 

                                              Extraction Method: Principal Component Analysis. 

                                             Rotation Method: Varimax with Kaiser Normalization. 

                                            a. Rotation converged in 4 iterations. 

 

 

4. Discussion 

In this study the concentration, distribution 

and sources of potentially toxic elements 

were determined in the surface sediments 

of Talar River in north of Iran. Conducting 

the analysis of PTEs in the sediment 

samples revealed that the average 

concentration values of all elements except 

Cr were lower than global shale (29). The 

pattern of metals distribution was not 
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uniform through river path, but higher 

pollution loads were observed near urban 

and agricultural areas and close to 

industrial zones. 

Table 3 indicated the comparison of toxic 

metal concentration in sediments of Talar 

Rive with some selected rivers in Iran and 

other countries. The concentration of all 

elements in Talar River is higher than 

those in Tajan River which is located in 

the neighbor watershed as well as Karoon 

River which is the longest river in Iran. 

This is the case compared with Itacaiúnas 

River (Brazil) and Old Brahmaputra River 

(India). However, Talar River showed 

higher concentration of As, Cr, Cu, Pb, Ni 

and Zn with respect to Kor River in south 

of Iran, but lower concentration of Cd and 

Mo. The concentration of elements in 

Talar River sediments was lower than 

those Luan in China and Tisza River in 

Serbia. The reason can be attributed to 

difference in geological characteristics, 

industrial activities, level of urbanization, 

and agricultural practices in watersheds of 

these rivers.   

The positive correlation between Mn and 

the elements including Cr, Pb, V, Co, Cu, 

Ni, Sc and Zn indicated the presence of 

Mn-hydroxyoxides and its important role 

in adsorbing of these elements in 

sediments of the Talar River (41, 42). The 

positive correlation of some elements can 

also be attributed to their similar 

geochemical behaviors. For example, Cu, 

Zn, As and Pb were geochemically 

chalcophile elements which mostly 

showed association with sulfur (S) in 

geological environments (43). Ni, Co, Mo 

and Mn are siderophile (44) elements and 

V, Cr, Sc are lithophile elements (45).  

 

Table 3. Comparison of mean potentially toxic metal concentrations (mg/kg) in the sediments of Talar 

River with selected rivers in different parts of the world 

River As Cd Cr Cu Mo Ni Pb Zn Reference 

Talar, Iran 9.84 0.16 105.2 28.52 1.11 43.62 18.32 67.9 This study 

Tajan, Iran 4.11 0.33 54.29 18.00 - 33.42 17.88 50.4 (46) 

Kor, Iran 6.15 0.238 83.4 20.29 1.51 104.41 7.47 46.56 (47) 

Karoon, Iran 3.01 - 37.69 20.92 - 42.08 9.69 44.62 (48) 

Gomti, India – 2.42 8.15 5 – 15.17 40.33 41.67 (49) 

Luan, China 5.14 0.14 71.47 45.68 – – 22.1 75.51 (26) 

Old Brahmaputra, 

India 

 0.48 6.6 6.2   7.60 52.70 (50) 

Itacaiúnas, Brazil 1.60 0.02 46.16 30.05 0.44 11.55 10.26 25.04 (51) 

 

The results of statistical analysis indicated 

that toxic metals in the Talar River 

sediments had two main geogenic and 

anthropogenic sources. The association of 

Mn with elements in PC2 may imply that 

absorption by Mn-hydroxyoxides controls 

the behavior of As and Sb in Talar River 

sediments. Among the studied elements, 

Mo and Sb showed the lowest enrichment 

with respect to background values. 

However, the relatively medium to large 

loadings of Co, Cr, Cu and Pb in PC2 can 

be described by mixed natural-

anthropogenic sources for these elements.  

Overall, contamination indices revealed an 

unpolluted to slightly polluted status in the 
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studied stations. Generally, all indices 

showed that Talar River sediments did not 

show a major risk of pollution. It is 

necessary to develop longtime monitoring 

and contamination control management of 

toxic metals in Talar River and its 

corresponding sites.  
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