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The nanoliposome is a microscopic vesicle containing a phospholipid bilayer that surrounds a fluid 
space. The thickness of this bilayer lipid is usually between 3 and 6 nm, but the liposomes formed 
from them can have a diameter between 50 nm to 50 μm. Their unique properties have led to 
numerous applications in several scientific and technological fields. Nanoliposomes can cause 
controlled release of various biologically active agents, including food components and 
nutraceuticals at the right place and time. Therefore, nano-liposomes can increase the cellular uptake 
of encapsulated materials and increase their effectiveness. Food additives such as vitamins, 
enzymes, synthetic and natural antioxidants, synthetic and natural antibacterial compounds etc. can 
be converted to stable materials using nanoliposomes. As a result, this article reviews various 
aspects of nanoliposomes, including existing preparation techniques, and their various applications 
in food technology. 
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1. Introduction

Nanotechnology has entered in all dimensions of 
human life. Undoubtedly, nanotechnology has entered 
in all sciences. In particular, this technology has had 
very significant impacts on nanomaterial production 
and food hygiene and safety. Design and fabrication 
coatings for biodegradable films with small particles is 
one of the most researched items. Recently, it can be 
said that nanoparticles are various bioactive 
components of food that play an important role in 
protecting food against adverse conditions created 
during the process and storage of food such as high 
temperature, high humidity, high oxygen, specific pH 
values and light exposure (1,2). 
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Also, this technology can be used to produce foods 
containing food additives with high shelf life (1,3). 
Another advantage of encapsulation is the controlled 
and targeted release of bioactive substances in 
commercial products or the delivery of drugs into the 
human body (4). One of the most popular, simple, 
economical, and common encapsulation methods is 
nanoliposomes. Nanoliposomes are bilayer 
compounds of polar lipids or phospholipids that 
contain food ingredients in nanoscale. One of the 
challenges facing nanoliposomes is their tendency to 
accumulate and increase in size during storage, so 
paying attention to this behavior of nanoliposomes 
during storage is of particular importance (5-7). 
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Nanoliposomes have physical and structural properties 
similar to liposomes, but due to the reduction in size in 
the nano range, they have a higher surface area and 
their efficiency increases accordingly. Nanoliposomes 
often have a diameter range of 50-150 nm (8). 
Liposomes are classified by size and include MLV, 
MVV, ULV and DBV. ULV, Vesicles has a lipid layer 
that is divided into two categories: SUV and LUV, 
which are SUV vesicles smaller than 100 nm and LUV 
vesicles larger than 100 nm. MLV, multiple lipid 
vesicles (more than two layers), MVV vesicles are small 
vesicles surrounded by a single coating, and DBV is 
bilayer vesicles (Figure 1) (8,9). 
Ultrasound and microfluidization methods transfer a 
lot of energy to liposomes, and this amount of energy 
produces smaller nano-liposomes, so more SUV is 
produced compared to other types of liposomes (10). 
By encapsulating compounds in the form of nano-
liposomes, several food ingredients with synergistic 
effect can be encapsulated together (11). There has been 
an appreciable increase in the number of publications 
on the encapsulation of food bioactive ingredients by 
nano-liposome over the past 5 years. Nanoliposome 
encapsulation is convenient because it preserves 
compounds with different solubility (hydrophilic, 
hydrophobic and amphiphilic). 
Using this method, two compounds with hydrophilic 
and hydrophobic properties can be encapsulated 
simultaneously or separately, when encapsulation 
occurs simultaneously, hydrophilic compounds in the 
nucleus of liposomes and lipophilic compounds are 
enclosed between membrane structures (12-14). These 
structures have low production costs and permeability. 
In addition, the ability of nanoliposomes to deliver 
encapsulated materials to specific target areas in food 
and within the body is another significant issue (15). 
They are also phospholipid compounds with food 
grade. By extracting phospholipids such as lecithin 
from the produced food compounds, they are 
approved for use in food and are safe. These 
nanoliposomes have the ability to be produced on a 
large scale. 
They have health benefits due to their suitability lipid 
compounds. These compounds are also biodegradable 
(16-18). The nanoliposome encapsulation process is 
suitable and important for foods such as volatile 
compounds, oils and additives. Some additives such as 
some vitamins, oils, are added to enrich the food and 
must be delivered to certain areas of the body. These 
compounds are sensitive to acidic and alkaline 
conditions as well as the effects of enzymes in the body. 
The order must be maintained until it reaches the target 

organ (19). For this purpose, nanoliposomes with 
smaller dimensions, high encapsulation efficiency and 
controlled release, retain the properties of encapsulated 
compounds in vivo for a longer period of time and 
release at a lower rate, in which case the use of 
polymers increases the stability of nanoliposomes 
under these conditions (20). The elements and 
important parameters of nanoliposome encapsulation 
are described in the section titled elements and 
parameters of nano-liposome preparation for 
encapsulation of food constituents. The most critical 
indices during nanoliposome encapsulation achieves 
high production efficiency with the highest 
encapsulation efficiency. Another important issue is the 
low stability of nanoliposomes at high temperatures 
and environmental conditions. One of the major 
problems in using this method which can be due to the 
oxidation of lipid compounds in the wall of nano-
liposomes, which is vital in terms of using polymers to 
increase the stability of nanoliposome (21). This topic 
has been the focus of published works in recent years 
and thus it is briefly discussed in the section titled 
Nanoliposomes with a biopolymer coating. The aim of 
this study was to investigate the factors affecting the 
preservation of  food ingredients, nanoliposomes and 
methods of production of nanoliposomes. 

1.Elemants and parameters of the preparation of nano
liposomes process for encapsulating food ingredients 

To prepare nanoliposomes, first liposomes are 
produced and then using energy-generating methods, 
their dimensions are reduced to nano-liposomes. The 
production of liposomes is done in a new and 
conventional way. Production of liposomes by 
conventional methods has disadvantages such as 
solvent retention, production of liposomes with larger 
dimensions, damage to lipid compounds, etc. 
Therefore, to preserve the compounds from the 
mentioned disadvantages, new methods can be used, 
which include supercritical fluid process, asymmetric 
double centrifuge, freeze-drying, thin-layer 
evaporation and membrane control technology (22). 
Then, to produce liposomes, first the phospholipids are 
hydrated with water and then, by applying sufficient 
energy, they produce liposome structures using vander 
waals force and hydrophilic-hydrophobic interactions 
(23). 
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Also, in order to apply energy for the production of 
liposomes, can be used from thermal methods. In this 
method, no solvent is used and it does not have the 
stress caused by pressure. In this method, the 
phospholipids are first hydrated and then placed on a 
heater store for 30 min, and to prevent heat damage, the 
materials to be encapsulated are added after the 
encapsulating liposomes are formed (24). Liposomes 
are then transformed into nanoliposomes using one of 
the methods of ultrasound, microfluidization (9), 
polyol dilution (25) and bubble method (26). The 
following is a summary of some of the more common 
methods for producing nano-liposomes: Ultrasound 
method is the simplest method of producing nano-
liposomes. The ultrasound waves created by the probe 
can be between 16 to several hundred kHz and by 
creating holes in the structure of liposomes, it reduces 
their dimensions and turns them into nano-liposomes 
(27). In this method, phospholipids are first dissolved 
in solvents such as chloroform, then evaporated using 
a rotary evaporator under vacuum and the lipids are 
dried. The dried lipids are hydrated with the desired 
material for encapsulation and then stirred for 1-5 min, 
and finally exposed to ultrasound for 5-15 min and for 
1 h at a temperature above the critical temperature in 
an environment with inert gas is placed to cool and 
stabilize (23, 28). Because it is possible to transfer 
titanium particles from the probe to the nanoliposomes, 
they are finally separated using a 0.45 μm membrane 
filter or centrifuge. In this method, ultrasonic bath can 
also be used to prevent the transfer of titanium particles 
(29, 30) . 

Microfluidization is a repeatable method, capable of 
producing large volumes of nanosiposomes and can 
also control particle size (9). The products of 
nanoliposomes in this way is without the use of solvent 
and high pressures are used to reduce the size of 
liposomes (31). In this case, the desired phospholipids 
are hydrated and then mixed using a homogenizer and 
converted into nano-liposomes in the microfluidizer, 
placed in an inert gas medium at a temperature above 
the critical temperature for 1 h to cool irrespective of the 
effect of ultrasound on a series of functional properties 
of food ingredients, this method for the production of 
nano-liposomes increases the encapsulation efficiency 
(32). As mentioned earlier, many studies have shown 
that the use of confinement of two compounds with 
simultaneous synergistic effect is a significant 
advantage of nanoliposomes. Encapsulation of nisin 
with garlic extract has been reported by a 
nanoliposome method ,in order to study the 

antimicrobial properties of these compounds in milk, It 
has been shown to have a synergistic effect in 
preventing the growth of microorganisms, and the 
remarkable point is that nisin alone has less effect on 
gram-negative bacteria, while in combination with 
garlic extract, this effect increased. The use of 
nanoliposome encapsulation has increased the 
antimicrobial effect of these compounds because it 
prevents interference with food compounds (43). 
Vitamin E (α-tocopherols), which have an antioxidant 
effect, oxidize themselves after neutralizing the 
radicals. In this case, CoQH2 causes a synergistic effect 
by reducing tocopherol. Therefore, the α-tocopherol-
encapsulating nanoliposomes along with CoQH2 have 
been observed to increase the antioxidant effect, 
increase oxidative stability and control release (44). Due 
to the antioxidant effect of α-tocopherol and the 
susceptibility to oxidation of eicosapentaenoic acid 
(EPA) and docosahexaenoic acid (DHA), 
nanoliposomes are further studied together. The value 
of peroxide and oxidation by-products shows that in 
addition to the effect of nanoliposomes in preserving 
these compounds, the antioxidant effect of α-
tocopherol also significantly reduces oxidation and loss 
of unsaturated fatty acids (45). Therefore, it can be 
concluded that nano-liposomes lead to better 
protection of antioxidant and antimicrobial activity 
against the process and storage conditions. A summary 
of the recent works in this field is presented in Table 1. 

3. Nanoliposome encapsulation of different food
bioactive compounds  
Nanoliposome is a versatile process that can be used for 
encapsulation of almost all types of food ingredients, 
e.g., enzymes, bioactive peptides and molecules,
phenolic compounds and antioxidants, vitamins, 
minerals, natural food colorants, omega-3 oils, flavors, 
essential oils, antimicrobial agents, and many other 
components. In this article, we focus on the 
encapsulation using nano-liposomes of several groups 
of bioactive food ingredients that have received much 
attention in recent years. 

3.1. Encapsulation of antioxidant and antimicrobial 
compounds using nanoliposomes 
Antioxidant and antimicrobial compounds are a group 
of food additives that are used chemically and microbes 
to produce foods with a long shelf life. Allicin (33), nisin 
(34), thymol and carvacrol (35), curcumin (36) and 
anthocyanins (37) are compounds with antimicrobial 
and antioxidant activity. These compounds, except for 
nisin, are essential oils and have health effects. 
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Some of these compounds together, such as nisin and 
garlic extract (38) or the use of thymol and carvacrol in 
combination with nisin has a synergistic effect (39). 
However, these compounds are highly sensitive to 
environmental conditions, food processing and 
storage, and bacteriocins and similar substances may 
lose their effect by reacting with food compounds and 
interfering with them, (40,41) so they need to be 
encapsulated. Nanoliposome compounding has been 
proven to be a popular way to protect antimicrobial and 
Rasti et al 2017, in their study on the effect of fish oil 
nanoliposomes on the taste of bread and fortified milk, 
they showed that EPA and DHA nano-liposomes 
encapsulated in soy phospholipids which are added to 
bread and milk and stored for 7 and 3 days, 
respectively. The rate of oxidation and loss of 
nanoliposomal fatty acids by measuring peroxide and 
anisidine is significantly lower compared to the free 
state and on the other hand nanoliposomes also mask 
the flavor of fish oil (59). The use of nanoliposomes 
containing DHA and EPA in yogurt shows little 
oxidation after 21 days of storage, while the addition of 
these free fatty acids is significantly oxidized and even 
on the first day of storage, this amount is significant 
(50). The data for this study was presented in Table 2. 
The studies on stability during storage show that 
omega-3 nanoliposomes produced by ultrasound are 
more stable, have a higher encapsulation efficiency, 
and a smaller average diameter than a nanoliposomes 
prepared by microfluidization (60). 
If the oil in the nanoliposomes remains stable in the 
intestinal environment and is released in a way that is 
absorbable by the body, the encapsulation process is 
successful. A summary of the recent works in this field 
is presented in Table 2. 
antioxidant compounds. A widely used compound for 
use in nanoliposomes is phosphatidylcholine. 
Nanoliposome formation of compounds with 
antioxidant properties maintains the antioxidant effect 
for a longer period of time. Existing reports indicate 
that nanoliposomes have more antioxidant properties 
than the free form and with increasing concentration of 
nanoliposome extract added to DPPH solution, the 
amount of the mentioned property also increases 
significantly and the maximum value reported for it is 
at a concentration of 1000 µg/ ml. On the other hand, 
nanoliposomes will be able to maintain their 
antioxidant properties for a longer period of time than 
unenclosed extract. Also, a study has been performed 
on three beverages with different pH, which shows that 
the pH of the food composition also has a significant 

effect on the stability and preservation of 
nanoliposomes added to the food. The encapsulated 
nanoliposomes are released into the food (42). 

3.2.Nanoliposome Encapsulation of Omega-3  Omega 
3 are a group of essential fatty acids that prevent 
many diseases such as cardiovascular disease (50). 
This group of fatty acids includes 
eicosapentaenoic acid (EPA) and decosahexaenoic acid 
(DHA), which are abundant in marine oils. In addition, 
omega-3 fatty acids can be obtained from plant sources 
such as walnut. According to EFSA recommendations, 
the minimum required dose of omega-3 compounds is 
250 mg per day (51). But the amount of omega 3 
consumption is less than this amount and to supply this 
amount should be added to food products. However, 
these fatty acids have a long and unsaturated fatty acid 
chain (PUFA) which is sensitive to oxidation and also 
adding this compound directly to the food creates an 
unpleasant taste and aroma (52,53). Therefore, it is 
necessary to develop an effective protection strategy to 
facilitate their use in food products. Encapsulation of 
these compounds using spray drying method has been 
reported but has a destructive effect due to the use of 
high temperatures and air to dry Omega 3 fatty acids 
(54). Also, the use of larger scale encapsulation does not 
have a definite effect to prevent oxidation and does not 
cover the unpleasant flavors of fish oil (55). Therefore, 
nanoliposomes are one of the newest and most suitable 
technologies for encapsulating fish oils and fatty acids. 
The studies have shown that the use of 
nanoliposomization process increases encapsulation 
efficiency (83-95%) (56-58). There have been many 
related studies on the use of nanosiposomes to protect 
omega-3 compounds and prevent taste in products. 

3.3.Nanoliposome Encapsulation of vitamins and 
carotenoids 
The vitamins are nutrients that are not made in the 
body and when taken in sufficient quantities have 
health effects. Loss of vitamins in the structure of 
nutrients during food processing has led to their 
addition to various types of food and beverage 
products to create functional foods (64). 
The carotenoids are one of the most important groups 
of natural colors that transmit yellow, orange, and red 
colors to vegetables. Conditions, low bioavailability, 
their reaction with other nutrients. 
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Table 1. A brief overview of recent  nanoliposome encapsulation studies on antioxidant and antimicrobial compounds 

Core 

material 

Nanoliposome 

composition 

Nanoiposome 

preparation 

method 

Size 

(nm) 

Encapsulation

(%) 

Results References 

Neohesper

idin 

soybean lecithin 

and cholesterol 
ultrasound 92 64.25% 

Increased antioxidant activity in 
nanoliposomes. 

DPPH free neohisperidin=15% 
DPPH nanoliposomes=25% 

(46) 

Turmeric 

extract 

phosphatidylcho

line 
ultrasound 92  95±2% 

at a concentration of 500 μg/ml DPPH 
free turmeric extract = 75% 

DPPH Nanoliposomes = 80% 
MIC of free extract in the case of 
Staphylococcus aureus = 20 mg/ml 

MIC of nanoliposomes for Staphylococcus 
aureus = 10 mg/ml 

MIC of free extract for Escherichia coli = 5 
mg/ml 

MIC of nanoliposomes for Escherichia coli 
= 1.25 mg/ml 

(42) 

Betalain soybean lecithin ultrasound 55.35 74-76% 

The results revealed that the DPPH 
radical scavenging activity of the 

samples increased by increasing the 
BNL* concentration, when compared 

with blank NLs** 

(47) 

Allicin 
Lecithin and 

cholesterol 
ultrasound 

145.25± 

15.19 
75% 

The highest encapsulation efficiency is 
achieved during ultrasonication time of 3 

minutes, lecithin to allicin ratio 1: 3, 
lecithin-cholesterol 1: 4 and PH = 6.81 

(48) 

Pistachio 

green hull 

extract 

soy lecithin - 90-102 52.93 Nanoliposomes composed of 1% lecithin 
with 1000 ppm of phenolic compounds 

had the highest EE*** 

(49) 

*BNLs is betalain nanoliposoms
**NLs is nanoliposoms
***EE is Encapsulation efficiency 
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Table 2 . A brief overview of recent  nanoliposome encapsulation studies on Omega-3 

Core 
material 

nanoliposome 
composition 

nanoiposo
me 

preparation 
method 

Size 
(nm) 

Encapsu
lation 

(%) 
Results 

References

Fish oil sunflower oil 
and lecithin 

ultrasound 339 90.12±0.2
7 

peroxide value of free fish oil on the 
first day=0.6 

peroxide value of nano-liposomal 
encapsulated fish oil on the first day 

=0.5 
peroxide value of free fish oil on the 

twenty-fifth day=4 
peroxide value of nano-liposomal 

encapsulated fish oil on the twenty-fifth 
day=1.5 

(61) 

Shrimp 
Oil Soy lecithin ultrasound 104.7 

93.64±0.9
8 

The amount of peroxide after 15 days in 
the samples containing nanoliposomes 
was almost unchanged and equal to 4.6 
and the amount of TBARS also changed 

slightly and remained approximately 
constant and equal to 35. 

(62) 

Shrimp 
Oil 

phosphatidyl 
choline ultrasound 104.7 95 

The amount of peroxide of 
nanoliposomes produced by ultrasound 

method is significantly less than the 
number of nanoliposomes produced 

using microfluidization. 

(63) 

Fish oil Soy lecithin ultrasound 73.2 ± 
18.1  - 

significantly higher omega 3 PUFAs % 
recovery and lower peroxide and 
anisidine values were observed in 
nanoliposomal omega-3 PUFAs 

enriched samples in comparison with 
other samples. 

(59) 

Fish oil sunflower oil 
and lecithin ultrasound 400 92.22±0.1

9% 

The value of yogurt peroxide containing 
free fish oil on the first day = 0.9 

The value of yogurt peroxide containing 
fish oil freely on the twenty-first day = 

1.6 
The value of yogurt peroxide containing 

nanoliposomes of fish oil on the first 
day = 0.6 

The value of yogurt peroxide containing 
nanoliposomes of fish oil on the twenty-

first day = 0.7 

(50) 
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Table 3. A brief overview of recent  nanoliposome encapsulation studies on vitamins and carotenoids 

Core 
material 

Nanoliposome 
composition 

Nanoliposome
preparation

nmethod 

Size 
(nm) 

Encapsulation

(%) 
Results References

Vitamin 
k 

Cholesterol and 
Soy 

phosphatidylcho
line 

ultrasound 127 89.03 

The highest encapsulation efficiency 
was obtained at a concentration of 
vitamin K 0.5 mg / ml, 15 minutes 

sonication and a ratio of 
phosphatidylcholine to cholesterol 1: 

6 

(73) 

lycopene 
Cholesterol 

and 
lecithin 

ultrasound 40 - 

activity of liver antioxidant enzymes 
was most strongly increased by 

treatment with lycopene embedded 
In nanoliposomes and that lycopene 
nanoliposomes were targeted to the 

liver. 

(74) 

Ascorbic 
acid 

Marine 
phospholipids 

ultrasound 236-279 55 

In the ratio of 1: 3 phospholipid to 
vitamin C, the maximum EE is equal 
to 55%. This value is equal to 45% for 

1: 4, 20% for 1: 5 and 40% for 1: 6. 

(75) 

Vitamin 
A 

Lecithin and 
cholesterol ultrasound 107 above 

92% 

The use of cholesterol in the 
preparation of nano-liposomes in the 
amount of 10-50 mg has reduced the 

particle size and stability of 
Nanoliposomes after 30 days of 

storage. 

(18) 

beta-
carotene 

soybean 
phosphatidylcho

line 

heating 
process - - 

Beta-carotene nano-liposomes in 
polyvinyl alcohol and polyethylene 

oxide fibers are protected from 
ultraviolet radiation 

(76) 

Astaxant
hin 

soybean 
phosphatidylcho

line 
ultrasound 80.31 ±

1.80 
97.49 ± 

0.27 

The solubility of nanoliposomes in 
water is 17 times that of free 

astaxanthin. In the free state it is 1.45 
μg / ml while nanoliposomes are 

25.12 μg / ml. 

(77) 
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Figure 1. Different types of liposomes and nanoliposomes size 
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There is also the nature of hydrophobic or hydrophilic 
batch of these compounds. It is important to use an 
appropriate encapsulation method to produce and 
protect fortified compounds with improved stability of 
vitamins and carotenoids. The use of encapsulation of 
nano-liposomes has been a successful approach due to 
its ability to enclose hydrophilic and hydrophobic 
compounds as well as to be safe in this area (65). 
Numerous studies have been performed on the effect of 
phospholipids of different origin used as wall  
materials in nanoliposomes, such as soy phospholipids 
and eggs on the stability of nanoliposome-encapsulated 
materials (66). However, some researchers have also 
studied the effects of milk phospholipids (67). 

The vitamin C is one of the vitamins with high 
sensitivity to environmental factors and conditions. 
Also, nanoliposomes of this vitamin are less stable in 
acidic conditions than in neutral conditions. Use of 
phospholipids of milk fat globules to the wall of 
nanoliposomes containing vitamin C has been 
successful in maintaining this compound for 7 weeks, 
so that after this time, 67% of this vitamin is still 
recoverable (68). 
On the other hand, other effective factors in preserving 
vitamin compounds in food products include the 
concentration of nanoliposome wall materials. In this 
regard, Pezeshky et al. 2016 reported that, when the 
concentration of lecithin-cholesterol is used in a ratio of 
10-50 in the encapsulation of vitamins, an optimal 
result is obtained in the stability and particle size of 
nanoliposomes, but in this regard, vitamin A and its 
precursors are an exception and in any case have a 
lower encapsulation efficiency than other vitamins, 
which will be mentioned below (18). The studies have 
also shown that vitamin C, in addition to having health 
benefits, due to encapsulation with vitamin E can also 
enhance antioxidant activity and also alone control the 
oxidation process (44, 69). 
The vitamins E and C have antioxidant properties and 
prevent damage to fatty acids by neutralizing free 
radicals and converting them to their oxidized state, 
due to the synergistic effect of these two compounds on 
each other and the ability of nanoliposomes to 
encapsulate two compounds with hydrophilic and 
hydrophobic properties. The use of this structure to 
maintain antioxidant properties and enhance this effect 
in food sensitive to oxidation can be significant (9). The 
most important carotenoids used in the food industry 
that are encapsulated by nanoliposomes are beta 

carotene and lutein (70). The effect between carotenoids 
and the lipid layer and the physical stability of 
nanoliposomes, which affects the ability of 
nanoliposomes to carotenoids and, in fact, their 
encapsulation efficiency, largely depends on the type of 
wall material, the type of carotenoid and the particle 
size. In this case, the use of egg phospholipids with 
surfactant (Tween 80) have been studied in many 
studies and based on these studies, among carotenoids, 
the lutein encapsulation efficiency was higher than beta 
carotene, then lycopene and finally the least effect was 
related to canthaxanthin. This is due to their orientation 
in the membrane of nanoliposomes. In general, 
although among carotenoids the encapsulation 
efficiency of lutein and beta-carotene is higher, but the 
use of nanoliposomization process for carotenoids has 
a lower encapsulation efficiency than other food 
ingredients. It has been shown that with increasing 
concentration of carotenoids, particle size increases, 
and encapsulation efficiency decreases following this 
increase in concentration (71). The results of a study by 
Tan et al. in 2014 showed beta-carotene and lutein 
nanoliposomes showed significant antioxidant activity, 
while canthaxanthin and lycopene nanoliposomes had 
the opposite effect and acted as peroxidants. Also, the 
stability of nano-liposomes containing canthaxanthin 
and lycopene during storage is much lower than when 
nanoliposomes lack these compounds. Therefore, the 
use of Latin carota and beta-carotene nanoliposomes 
maintains its properties and stability in the 
gastrointestinal tract, while for the other group, the 
opposite is the case (72). A summary of the recent 
works in this field is presented in Table 3. 

4.Nanoliposomes with polymer coating
 Use of nanoliposomes is very important due to many 
of the mentioned benefits. It is also one of the newest 
methods of encapsulating food ingredients but finds 
these compounds have little stability in the 
environment and increase the size of liposomes during 
storage due to their interconnection (78). On the other 
hand, as mentioned, a number of carotenoids using 
conventional nanoliposomes have low encapsulation 
efficiency and are not able to maintain these 
compounds. To improve the encapsulation of 
carotenoids and increase the stability of nanoliposomes 
as well as to prevent them from binding to each other, 
a coating of natural polymers such as chitosan can be 
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used, Which is one of the newest unique bioactive 
formulations of food (79). 
The use of chitosan due to its non-toxicity and increase 
in the stability of nanoliposomes has led to its 
widespread use in various industries. The preparation 
of nanoliposomes is made with a coating of a Chitosan 
biopolymer. After preparing the chitosan solution by 
dissolving chitosan in a buffer solution (acetic acid, 
phosphate, and sodium chloride) and stirring 
continuously and keeping it overnight, then 
nanoliposomes are added (80). 
Chitosan biopolymers improve the thermal stability of 
nanoliposomes. Use of high concentrations of chitosan 
is successful in maintaining encapsulated carotenoids 
due to reduced membrane permeability, and this 
biopolymer improves the encapsulation efficiency and 
bioavailability of nanoliposomes in the gastrointestinal 
tract and in the body (81-84). 
It has also been reported that chitosan coating in 
nanoliposomized peptides increases the encapsulation 
efficiency of peptides if the optimal concentration of 
chitosan is used, but the important point, in this case, if 
a higher concenteration of chitosan coating is used, the 
diameter size of nanoliposomes increase and reduce 
their stability and accumulation, thereby reducing the 
encapsulation efficiency of nanoliposomes (21). 
Following the use of polymers such as gums, after 
preparing nanoliposomes, it is added to the mixture at 
room temperature during continuous mixing. The use 
of guar and xanthan gums with a total concentration of 
0.10% in beta-carotene encapsulation has been shown 
to preserve more carotenoids during 3 months of 
storage (85). 
It can be predicted that the confinement of food 
ingredients with nanoliposomes coated with polymers 
will continue to grow as these compounds grow further 
in the food industry. Specifically and widely available, 
this new technology is very easy and very versatile, 
meaning that it should be suitable for use in heat-
sensitive materials, bioactive peptides, and proteins, 
flavorings, enzymes, etc. 

5.Conclusion
Nanoliposome encapsulation of food bioactive 
ingredients has advanced considerably in recent years, 
with the main goal of scientists being the optimization 
of the process for specific bioactive. Some carotenoids, 
such as lycopene and canthaxanthin, have a concern 
that they may cause excessive peroxidation of the 
nanoliposome membrane due to the encapsulated 
effect, which can be reduced by using biopolymer 
coatings, although in these cases the biopolymer 

concentration should be controlled to prevent the 
accumulation and instability of nanoliposomes. 
Although the use of biopolymers cannot make the 
carotenoid encapsulation efficiency as significant as 
other food components, but it can improve this 
weakness to some extent  . The use of nanoliposomes for 
omega-3 compounds has significantly reduced 
oxidation and has been successful in this regard. 
Finally, for antioxidant and antimicrobial compounds, 
the use of several synergistic compounds can be very 
significant. 
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