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HIGHLIGHTS  
 Parvalbumin was the primary allergen and was present at higher levels in white meat than red meat. 

 Pressure heating was more effective than steaming at diminishing both the intensity and quantity of allergenic protein bands. 

 Powder production enhanced allergen reduction, achieving over 83% reduction across all meat types. 
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 ABSTRACT 

Background: Parvalbumin, the main allergen in mackerel tuna (Euthynnus affinis), is 

present in higher concentrations in white meat relative to red. Parvalbumin reduction can 

be achieved through heating methods such as pressure heating (autoclaving) and 

steaming. This study aimed to evaluate the impact of these methods on the nutritional 

value of mackerel tuna fish powder, analyze molecular weight profiles during processing, 

and assess allergenicity across different meat types. 

Methods: Fish powder production begins by separating the meat into three types: white, red, 

and mixed with a weight ratio of red meat to white meat of 1:3 (w/w). Fifteen samples—five 

per meat type, including fresh, post-heating, and post-flour processing were analyzed in 

January 2024, with each treatment performed in duplicate. Nutritional composition  

(proximate analysis), protein molecular weight (Sodium Dodecyl Sulfate Polyacrylamide Gel 

Electrophoresis), and allergenicity (Enzyme-Linked Immuno-Sorbent Assay kit) were 

evaluated. Statistical analysis was conducted using SPSS 25.0, with significance set at 5%. 

Data were analyzed using t-tests and Analysis of Variance (ANOVA). Duncan’s Multiple 

Range Test (DMRT) was applied to evaluate significant differences. 

Results: Pressure heating and steaming both significantly reduced moisture content and 

increased protein levels in fish powder. Pressure heating more effectively reduced 

allergenic protein bands, especially parvalbumin, compared to steaming. Moreover, 

pressure heating achieved greater allergenicity reduction in white (85.49%), red 

(84.24%), and mixed meats (83.01%).  White meat exhibited the highest parvalbumin 

levels, followed by mixed and red meats. 

Conclusion: Both heating methods effectively reduced allergenicity. Based on 

allergenicity and economic factors, mixed meat types are recommended. 

© 2025, Shahid Sadoughi University of Medical Sciences. This is an open access 

article under the Creative Commons Attribution 4.0 International License. 
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Introduction 

   Indonesia's extensive maritime territory offers significant 

potential for producing fishery resources. The population 

of Mackerel tuna (Euthynnus affinis) in Indonesian waters 

appears abundant, as reflected by findings from the Java 

sea showing wide distribution, year-round recruitment, and 

high catch volumes across multiple coastal areas 

(Mardlijah et al., 2022). The abundant supply, stable 

availability, and low cost of mackerel tuna make it a top-

rated source of animal protein in Indonesia.  

   The protein content in mackerel tuna comes primarily 

from its meat, which constitutes nearly 50% of the fish's 

total mass. Mackerel tuna muscle proteins are classified 

into myofibrillar, stromal, and sarcoplasmic categories, 

with sarcoplasmic proteins accounting for 25-30% of the 

total muscle protein. These water-soluble proteins include 

myoglobin, various enzymes, and parvalbumin (Strasburg 

et al., 2017). 

   Globally, the World Allergy Organization (WAO) 

reports that between 220 and 550 million people suffer 

from food allergies (WAO, 2013). Fish allergy is relatively 

uncommon worldwide, affecting less than 1% of the 

population; however, its prevalence is higher in regions 

with high fish consumption. In areas with extensive fish-

processing industries, the prevalence may increase to 3%. 

Among pediatric populations, fish allergy can affect up to 

7% of individuals, whereas its occurrence is generally 

lower in adults (Mastrorilli et al., 2023). Although data on 

fish allergies in Indonesia is limited, a study conducted in 

several schools in Surabaya revealed that 0.8% of 

adolescents aged 13-18 and 2.66% of adults over 19 suffer 

from fish allergies (Soegiarto et al., 2019). 

   The primary cause of fish allergies, including those 

related to mackerel tuna, is parvalbumin, a small protein 

with a molecular weight of 10-12 kDa (Prester, 2016). 

Allergic reactions are triggered when Immunoglobulin E 

(IgE) antibodies recognize peptide fragments in 

parvalbumin as allergenic compounds (Kamath et al., 

2023). Following an allergic reaction, the body responds 

by releasing mediators that stimulate increased mucus 

production, vasodilation, and enhanced vascular 

permeability. These physiological changes can lead to 

symptoms such as swelling, abdominal discomfort, nausea, 

diarrhea, and skin rashes. In more severe cases, the 

reaction may cause bronchial constriction and anaphylaxis 

(Tedner et al., 2022). Both intrinsic and extrinsic factors 

influence the allergic response to parvalbumin. Intrinsic 

factors include the fish species and muscle type, each with 

varying levels of parvalbumin. Studies have shown dark 

fish meat contains 4-8 times less parvalbumin than white 

fish meat (Dasanayaka et al., 2020). Extrinsic factors, such 

as food processing methods, also affect allergenicity. 

Techniques like heating, high-pressure treatment, radiation, 

and ultrasound can alter protein structures, affecting the 

allergen's conformational epitopes. Additionally, linear 

epitopes may degrade into smaller fragments during 

microbial fermentation or enzymatic hydrolysis, reducing 

allergenicity (Zhou et al., 2021). 

   Heating processes are commonly employed to extend the 

shelf-life of fish products, such as in producing fish 

powder. Fish powder is an intermediate product easily 

incorporated into various food products. The fish powder 

production process is designed to increase protein content 

(Khasanah et al., 2020; Maulidah et al., 2022). It involves 

several steps including washing, cooking, drying, grinding, 

and sieving (Maulidah et al., 2022). Typically, cooking 

during fish powder production involves either boiling or 

steaming. However, modifying this process using pressure 

heating can reduce the allergenicity of the resulting fish 

powder. Research on white snapper, for example, has 

shown that autoclaving for 30 min results in lower 

parvalbumin levels compared to boiling for 10 min at 98 

°C (Schrama et al., 2022). 

   While previous studies primarily focus on allergen 

reduction, they often lack direct applications in 

hypoallergenic food development. This study goes beyond 

merely identifying the most effective processing method 

for reducing allergenicity by assessing its practical 

implications for fish powder formulation. By integrating 

allergen reduction with nutritional enhancement, this 

research provides valuable insights for both the food 

industry and consumers, bridging the gap between 

scientific findings and real-world applications. 

   Given the potential of fish powder as a hypoallergenic 

food ingredient, particularly for individuals with allergies, 

this study aimed to evaluate the effects of heating (both 

pressure heating and steaming) on the nutritional value 

during mackerel tuna fish powder production, analyze the 

molecular weight profile throughout the production 

process, and assess the level of allergenicity in mackerel 

tuna fish powder made from three different types of meat. 

 

Materials and methods 

Materials 

   The main ingredient in this study was mackerel tuna 

meat obtained from Muara Angke, North Jakarta in 2024. 

The materials used for analysis included Sodium Dodecyl 

Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

solution: ammonium persulfate (APS; (CAS 7727-54-0, 

Sigma-Aldrich, Germany), tris-base (77-86-1, Sigma-

Aldrich, Germany), glacial acetic acid (CAS 64-19-7, 

Merck, Germany), tween-20 (CAS No.9005-64-5, Sigma, 

USA), Tetramethylethylenediamine (TEMED; CAS 110-

18-9, Merck, Germany), sodium dodecyl sulphate (SDS; 
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MSDS–817034, Merck, Germany), bis-acrylamide solution 

(30%, 29:1) (1610156, BIORAD, UK), pectra multicolor 

broad range protein ladder (26634, Thermo Scientific, 

USA), and fish protein Enzyme-Linked Immuno-Sorbent 

Assay Kit (ELISA; E96FSH, 3MTM, USA). The 

equipments used to make fish powder consist of autoclave 

(Korimat, Europe), steamer (Armfield, UK), drum dryer 

(Tummers Simon Dryers Technology, UK), grinder (GEA 

Getra, Indonesia), and an 80 mesh sieve. Furthermore, 

centrifuges (Hermle, Germany), SDS-PAGE units 

(BIORAD, UK), and microplate reader (BIORAD, UK) 

were utilized to support research and analysis. 

Mackerel tuna powder production 

   Fish powder production begins by separating the meat 

into three types: white, red, and mixed with a weight ratio 

of red meat to white meat of 1:3 (w/w). Furthermore, a 

heating process is carried out consisting of two steps: (1) 

pressure heating at 121 °C for 30 min (Maulidah et al., 

2022) and (2) steaming at 100 °C for 30 min (Khasanah et 

al., 2020). The fish meat is then dried using a drum dryer 

(Pramestia et al., 2015) at 148 °C, p=5 bar for six s/cycle. 

The samples are then ground using a grinder and sieved 

with an 80 mesh sieve. The powdered samples are then 

separated. Thus, each type of meat has five samples; one 

without process, two samples after heating, and two 

samples after powder production. Therefore, there are a 

total of 15 samples, which are then extracted and analyzed. 

Sample extraction 

   The fat removal was performed on the fish powder 

samples before extraction (Wulan et al., 2024). The fish 

powder samples were mixed with hexane solvent at a ratio 

of 1:3 (w/v) for one h at 25 °C in a water bath shaker. The 

process was repeated twice with the same steps. 

Subsequently, the solid was dried in an oven at 50 °C for 

one h. Protein extraction was carried out using Tris-

Buffered Saline (TBS; 20 mm Tris-HCl, 150 mm NaCl, pH 

7.4) solvent overnight at four °C at a ratio of 1:5 (w/v). The 

mixture was then centrifuged at 10,000 × g for 30 min. The 

supernatant was filtered through filter paper and stored at 

−20 °C for analysis (Nugraha et al., 2021; Palupi et al., 

2021). 

Yield 

   The yield of mackerel tuna fish powder is calculated by 

comparing the final weight (dry fish powder) with the 

initial weight of fresh meat mackerel tuna fish. These 

measurements are used to determine the efficiency of the 

mackerel tuna fish powder manufacturing process. 

Nutritional composition analysis 

   The nutritional composition of the samples was carried 

out using a proximate test in accordance with AOAC 

International (1995). This analysis encompassed water 

content (oven method), ash content (gravimetric method), 

fat content (Soxhlet method), and protein content (Kjedhal 

method). Carbohydrate content was calculated by 

difference.. 

Protein molecular weight by SDS-PAGE 

   Protein molecular weight analysis with SDS-PAGE was 

carried out using gel with concentration stacking gel 5% 

and separating gel 12%. A 12 μl sample was injected into 

the well, streaming the current with a voltage of 100 volts 

for 90 min. The gel was colored with solution staining for 

30 min and washed using solution destaining (Laemmli, 

1970). The molecular weight and intensity of the protein 

bands were determined using Gel Analyzer 23.1 software. 

Allergenicity analysis with ELISA kit 

   The test was conducted using the fish protein ELISA Kit 

(3MTM, USA) based on the principle of sandwich ELISA. 

The sample, extracted with the extraction buffer, was 

injected into the ELISA well containing the primary 

antibody. The sample was then analyzed using methods 

and reagents included in the kit. Absorbance was measured 

at a length of 450 nm wave using a microplate reader 

(BIORAD, UK) (Abbott et al., 2010). 

Statistical analysis 

   Data were analyzed using t-tests and ANOVA for white, 

red, and mixed meat under a Completely Randomized 

Design. Each treatment performed in duplicate. Statistical 

analysis was conducted using MS Excel 365 and SPSS 25.0, 

with significance set at 5%. Duncan’s Multiple Range Test 

(DMRT) was applied to identify significant differences. 

 

Results and Discussion 

Yield 

   The yield was utilized to assess the efficiency of 

mackerel tuna meat utilization in producing fish powder. 

The heating and drying process (Table 1) produced a yield: 

18% for white meat, 16-17% for red meat, and 20% for 

mixed meat. The yield after drying showed relatively 

similar values between pressure heating and steaming 

across all three types of meat (white, red, and mixed). 

Statistically, the p-value indicated no significant difference 

between the two heating methods (p>0.05). These values 

represent a reduction to approximately 80% of the yield 

after heating. This decline can be attributed to water loss 

during heating and milling. A reduction in the yield of the 

dried product was noted as the drying temperature 

increased. This may be attributed to a greater loss of 

moisture during the drying process, resulting in a lower 

final mass of the dried material (Tontul and Topuz, 2017). 
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   The fish powder yield from mixed meat is more 

economically advantageous than that from white meat 

because mixed meat includes red meat, which is often 

underutilized and considered waste in processed products. 

Incorporating red meat increases the product’s economic 

value (Li et al., 2017). Optimizing these processing by-

products can boost total production by up to 61% (Stevens et 

al., 2018). 

 

Table 1: Yield of mackerel tuna fish powder 

Treatment Fresh meat weight (g) 
Yield (%) 

post heating p-value post drying p-value 

White meat  

Pressure heating 562.50 62.05±1.02 
0.081 

18.25±1.36 
0.858 

Steaming 539.55 67.36±2.04 18.32±1.47 

Red meat 

Pressure heating 182.40 60.70±3.06 
0.155 

16.10±4.58 
0.563 

Steaming 191.15 69.63±4.77 17.64±3.37 

Mixed meat 

Pressure heating 742.75 63.50±1.12 
0.055 

20.66±0.22 
0.551 

Steaming 723.65 67.22±0.64 20.76±0.49 

 

Nutritional composition 

   The processing steps, including pressure heating, 

steaming, and powder production, significantly impacted 

the nutritional profile of the final product, namely fish 

powder. The nutritional values (Table 2) showed a 

substantial reduction in moisture content and increased 

protein levels. These changes indicate a concentration of 

nutrients, which can be beneficial for certain applications. 

However, only minor changes were observed in ash, fat, 

and carbohydrate contents, which may not significantly 

affect the nutritional quality of the fish powder. 

   Moisture content decreased following the heating process 

(pressure heating and steaming) and powder production 

(drying and milling). The initial water content of 

71.98±1.16-73.29±1.35% was reduced to 61.13±0.31-

62.18±0.55% after pressure heating and to 63.48±0.20-

66.65±0.81% after steaming. Cooking the fish using these 

methods causes the release of free water from the food, 

lowering its water content (Adawyah et al., 2020). The 

drying process similarly affected the removal of free water 

from the food. A decrease in moisture content of 

3.34±0.11-6.69±0.27% was observed in the fish powder, 

caused by direct contact between the fish and the hot 

surface of the drum dryer, which accelerated water 

evaporation. The longer the material remained in contact 

with the drum dryer (due to the lower drum rotation speed), 

the more significant the reduction in moisture content 

(Rittisak et al., 2022). In terms of meat type (fresh or 

processed), white meat exhibited a higher moisture content 

compared to red and mixed meat, which is consistent with 

previous research (Kannaiyan et al., 2019), showing that 

white mackerel tuna meat had a higher moisture content 

(75.52%) than red meat (74.85%). 

   Ash content in food reflects the presence of minerals and 

inorganic compounds. Pressure heating and steaming, can 

reduce ash content by affecting the mineral composition of 

the material. Ash content ranged from 4.62±0.49-

5.71±0.61% in fresh products, 2.66±0.19-3.93±0.56% after 

pressure heating, 3.99±0.09-4.41±0.75% after steaming, 

and 3.36±0.18-4.70±0.02% after powder production. The 

reduction in ash content following heating may attribute to 

the loss of dissolved minerals through evaporation. 

Meanwhile, a study by Kong et al. (2024) indicates that ash 

content decreases under pressure cooking treatments and 

increases under steaming treatments. In Table 2, the ash 

content decreases after heating but increases again 

following the powder production process (except in red 

meat). This increase in ash content after powder production 

demonstrates a significant effect influenced by meat type 

and heating method. The average ash content in flour 

processed by pressure heating and steaming is 4.02±0.58 

and 3.86±0.33%, respectively. This increase is attributed to 

the reduction in moisture content, leading to a relative rise 

in ash concentration compared to the total mass of the 

material (Ariva et al., 2020). The ash content in fish 

powder can increase up to fourfold compared to its fresh 

form (Tiwari et al., 2021). White meat generally had lower 

ash content than red and mixed meat (except in the 

steaming process). The higher ash content in red meat is 

likely due to its higher concentrations of minerals such as 

iron (Fe), cupper (Cu), potassium (K), magnesium (Mg), 

and calcium (Ca) (Albrecht-Ruiz and Salas-Maldonado, 

2015). 

   Fat content changed significantly after pressure heating 

but did not show notable differences after steaming and 

powder production. The fat content of fresh fish, which 

ranged from 1.37±0.46-2.91±1.82%, increased to 

7.40±1.41-8.97±0.30% after pressure heating. This 

increase may be attributed to changes in the composition of 

saturated and unsaturated fatty acids due to the effects of 

heat and pressure. These processes can trigger triglyceride 

hydrolysis, leading to higher levels of free fatty acids 
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(Lakmini et al., 2022). The polyunsaturated fatty acid 

content in mackerel tuna, particularly omega-3 and omega-

6, also demonstrated more excellent stability after pressure 

heating than steaming and grilling (Kilic, 2022). Similar 

findings were observed in a study of swamp gourami, 

where pressure-heated fish exhibited higher fat content 

than steamed fish (Adawyah et al., 2020). Regarding meat 

types, red meat (fresh, pressure-heated, and pressure-

heated-powdered) contained higher fat levels than white 

and mixed meats, which aligns with research showing that 

red meat had triple the total fat content of white meat and a 

higher proportion of polyunsaturated fatty acids 

(Kannaiyan et al., 2019). However, white meat showed an 

increase in fat content after steaming and steaming-powder 

production, potentially due to the instability of free fatty 

acids in red meat following steaming, which did not 

significantly affect other meat types. 

 

Table 2: Nutritional composition of mackerel tuna during the fish powder production process 

Treatment/ 

Sample 

Water Content 

(wb%) 

Ash Content 

(db%) 

Fat Content 

(db%) 

Protein 

Content (db%) 

Carbohydrate 

Content (db%) 

White meat 

Fresh white meat  73.26±1.73 a 4.62±0.49 a 1.93±0.52 c 86.07±1.28 a 7.39±5.29 a 

Autoclaved white meat  61.50±1.01 c 2.66±0.19 c 7.40±1.41 a 89.15±0.84 b 1.15±1.26 b 

Steamed white meat  65.38±0.40 b 4.41±0.75 a 4.76±1.48 b 89.11±2.79 b 2.23±1.32 ab 

Autoclaved white meat powder  5.09±0.46 d 3.36±0.18 b 2.59±0.17 c 92.37±1.11 c 5.96±5.64 ab 

Steamed white meat powder  6.41±0.22 d 3.49±0.09 b 3.14±0.56 c 92.48±0.42 c 3.14±2.46 ab 

Red meat 

Fresh red meat  71.98±1.16 a 5.15±0.18 a 2.91±1.82 b 76.23±1.45 a 16.48±1.62 a 

Autoclaved red meat  61.13±0.31 c 3.72±0.41 d 8.97±0.30 a 86.68±0.46 b 0.92±1.09 b 

Steamed red meat  63.48±0.20 b 3.99±0.09 cd 1.79±0.29 b 93.30±1.06 d 1.27±1.03 b 

Autoclaved red meat powder  3.73±0.18 d 4.70±0.02 c 2.81±0.19 b 89.82±2.94 c 9.60±10.77 a 

Steamed red meat powder  3.34±0.11 d 4.24±0.08 b 2.23±0.21 b 91.00±0.65 cd 9.15±2.50 a 

Mixed meat 

Fresh mixed meat  73.29±1.35 a 5.71±0.61 a 1.37±0.46 a 78.38±1.19 a 14.53±5.70 a 

Autoclaved mixed meat  62.18±0.55 c 3.93±0.56 b 7.80±0.78 d 86.47±3.14 b 2.53±2.81 bc 

Steamed mixed meat  66.65±0.81 b 4.37±0.18 b 1.96±0.65 ab 89.04±2.42 b 5.79±1.61 b 

Autoclaved mixed meat powder 5.67±0.09 d 3.99±0.10 b 2.66±0.44 bc 93.24±0.27 c 0.40±0.48 c 

Steamed mixed meat powder 6.69±0.27 d 3.87±0.33 b 3.02±0.52 c 92.44±0.64 c 2.35±1.10 bc 

wb=Wet Base; db=Dry Base. 

Different superscript letters in the same column indicate significant differences (p<0.05).  

   

   The method of processing fresh mackerel tuna into fish 

powder significantly impacted protein content. The protein 

content of fresh mackerel tuna ranged from 76.23±1.45 to 

86.07±1.28%, which increased to 86.47±3.14 to 

89.15±0.84% after pressure heating, 89.04±2.42 to 

93.30±1.06% after steaming, and 89.82±2.94 to 

93.24±0.27% after the powder production process. These 

changes in protein content have significant implications for 

the nutritional value and quality of processed mackerel 

tuna. Previous research on salmon and mackerel 

demonstrated a significant increase in protein content 

following steaming and canning using an autoclave 

(Bastías et al., 2017). This rise in protein content is 

attributed to reduced water content during heat treatment, 

leading to protein solids concentration, including collagen, 

muscle tissue fragments, sarcoplasmic proteins, and fat 

(Bastías et al., 2017). 

   The increase in protein content observed after drying is 

not solely due to moisture reduction but also to the 

retention of nitrogen compounds including protein and 

Non-Protein Nitrogen (NPN). As water content decreases 

in food, the relative concentration of nitrogen compounds, 

such as proteins and their degradation products, increases. 

The drying process may also initiate the breakdown of 

proteins into peptides and free amino acids, thereby 

increasing NPN content, such as ammonia, trimethylamine 

(TMA), and dimethylamine (DMA) (Nguyen et al., 2022). 

Other studies have also reported a gradual increase in 

protein content during drying, attributed to the dehydration 

of water molecules between proteins, which promotes 

protein aggregation (Akhtara and Borah, 2022). Regarding 

meat types, white mackerel tuna meat generally has a 

higher protein content than red or mixed meat. However, 

other studies indicate that the protein content between red 

and white meat is not significantly different, with both 

types containing nearly equivalent protein levels at 

approximately 23.12±0.13% for white meat and 

23.15±0.02% for red meat (Kannaiyan et al., 2019). 

Protein molecular weight profile by SDS-PAGE 

   The molecular weight profile of fresh and processed 

mackerel tuna proteins was examined using SDS-PAGE. 

Based on their molecular weight, the separation of protein 

bands on a polyacrylamide gel revealed a protein profile, 

as shown in Figure 1. According to previous studies 
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(Ruethers et al., 2018), several protein bands have been 

identified as allergenic in fish including parvalbumin (10-

13 kDa), tropomyosin (33-39 kDa), aldolase A (40 kDa), 

β-enolase (50 kDa), and collagen (>100 kDa). In addition 

to allergenic proteins, other proteins commonly found in 

fish include Myosin Heavy Chain (MHC) (221.6 kDa), 

Myosin Light Chain (MLC) (16.8 kDa), actin (42 kDa), 

troponin subunit T (33.6 kDa), troponin subunit I (19.7 

kDa), troponin subunit C (18.2 kDa), paramyosin (107.5 

kDa), α-actinin (103.9 kDa), and myoglobin (15.6 kDa) 

(Ochiai and Ozawa, 2020). 

   Figure 1 displays differences in the number and intensity 

of protein bands detected in fresh mackerel tuna including 

white, red, and mixed meat. Specifically, 14 protein bands 

were identified in white meat, 17 in red meat, and 13 in 

mixed meat. Darker shades marked protein bands with 

higher intensities. Non-allergenic protein bands detected in 

fresh mackerel tuna included those at 16-17 kDa (MLC) in 

white and mixed meat, 33 kDa (troponin subunit T) in all 

meat types, 15-16 kDa (myoglobin) in red and mixed meat, 

and 19 kDa (troponin subunit I) in red meat. Conversely, 

protein bands at 10-13 kDa (parvalbumin) and 33-39 kDa 

(tropomyosin) were suspected to be allergenic. 

   Following heat treatments, including pressure heating, 

steaming, and powder production, changes in the number 

and intensity of allergenic protein bands, specifically 

parvalbumin and tropomyosin, were observed. These 

changes are shown in Figure 2. In white meat, the number 

of protein bands decreased after heat treatment. The initial 

14 protein bands in fresh meat were reduced to nine after 

pressure heating and to 10 after steaming, but increased 

again to 13 after the powder production process. In 

addition to band number changes, intensity variations were 

noted. Pressure heating led to a 100% reduction in 

parvalbumin intensity and a 75% reduction in tropomyosin 

intensity. In comparison, steaming resulted in a more than 

100% increase in parvalbumin intensity and a 62% 

decrease in tropomyosin intensity. 

   Fresh red meat had 17 protein bands, but its lower 

stability resulted in a loss of many bands after processing. 

Following treatment, the bands detected were seven, four, 

three, and seven for pressure heating, steaming, powder-

pressure heating, and powder-steaming, respectively. This 

band reduction was accompanied by decreased intensity, 

particularly in parvalbumin, which increased the 12 kDa 

band after steaming. 

   In mixed meat, the number of protein bands initially 

stood at 13. After undergoing pressure heating, steaming, 

powder-pressure heating, and powder-steaming, the bands 

changed to four, six, nine, and 12, respectively. However, 

the large number of protein bands after the combined 

steaming and powder production was directly proportional 

to the increased intensity of parvalbumin. 

   Pressure heating effectively reduced the number and 

intensity of protein bands, particularly parvalbumin and 

tropomyosin. In contrast, steaming tended to increase the 

number and intensity of bands. The increase in band 

intensity is presumably a result of heating, which leads to 

the unfolding of peptide chains, thereby gradually exposing 

more hidden epitopes (Chen and Hsieh, 2021). After 

powder production, the number and intensity of protein 

bands rose again. The reduction in protein bands during 

pressure heating was attributed to the combined effects of 

heat and pressure, which caused the secondary structure of 

parvalbumin, such as α-helix and β-strands, to decrease by 

up to two-fold, resulting in more irregular coils (De Jongh 

et al., 2015). Heating at 60-100 ˚C eliminated certain 

protein bands, such as those at 37 and 50 kDa, while 

boiling at 120-140 ˚C effectively reduced bands in the 10-

100 kDa range in salmon (Kubota et al., 2016). Heating at 

100 ˚C for 30 min also reduced the intensity of bands at 10 

and 35 kDa compared to unheated samples (Dasanayaka et 

al., 2022). Similarly, studies on tilapia (Oreochromis 

niloticus) and mud grouper (Epinephelus coioides) found 

that parvalbumin (10 kDa) and tropomyosin (35 kDa) 

bands remained detectable after heat treatments involving 

steaming (10 min) and autoclaving (20 min) (Tsai et al., 

2023). 

   In general, red meat exhibits more protein bands when 

fresh compared to other types of meat. However, after 

heating, the number of protein bands in red meat decreases 

significantly due to its lower stability during processing 

and storage (Li et al., 2017). This phenomenon is also 

observed in the sarcoplasmic proteins of carp, where red 

meat shows a more significant number of protein bands, 

although with lower intensity than white meat (Li et al., 

2016). SDS-PAGE analysis of sarcoplasmic proteins in 

carp revealed that white meat contained a total of 22 

protein bands with a range of molecular weights, including 

11 major protein bands at 12 kDa, three bands in the 22-35 

kDa range, two bands between 35-40 kDa, and individual 

bands at 50, 60, 100, and 130-180 kDa. In contrast, red 

meat had only six detectable protein bands, consisting of 

three bands within the 12-15 kDa range, one between 35-

40 kDa, one between 40-55 kDa, and one at 180 kDa (Li et 

al., 2017). 
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Figure 1: Molecular weight profile and bands intensity of mackerel tuna during the fish powder production process in (a): white meat; (b): red meat; 
and (c): mixed meat  

M=Marker; FWM=Fresh White Meat; AWM=Autoclaved White Meat; SWM=Steamed White Meat; AWP=Autoclaved White Meat Powder; 

SWP=Steamed White Meat Powder; FRM=Fresh Red Meat; ARM=Autoclaved Red Meat; SRM=Steamed Red Meat; ARP=Autoclaved Red Meat 
Powder; SRP=Steamed Red Meat Powder; FMM=Fresh Mixed Meat; AMM=Autoclaved Mixed Meat; SMM=Steamed Mixed Meat; 

AMP=Autoclaved Mixed Meat Powder; SMP=Steamed Mixed Meat Powder 
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Figure 2: Changes in allergen band intensity of mackerel tuna allergen during the fish powder production process 

 

Allergenicity analysis with ELISA kit 

   The processing of fresh mackerel tuna into powder 

through heating and milling stages substantially affects 

allergen level reduction. The changes in allergenicity were 

evaluated using the fish ELISA kit with the sandwich 

ELISA method, as shown in Figure 3. Heating, either by 

pressure heating or steaming for 30 min, reduced allergen 

levels by 68.00-74.30 and 58.91–67.32%, respectively. 

This reduction became more pronounced following the 

powder production process, which involved drying at 80 ˚C 

and grinding, with allergen levels decreasing by 83.01-

85.49% after pressure heating and 67.45-74.55% after 

steaming. Overall, pressure heating proved to be more 

effective at lowering allergen levels than steaming, and its 

effectiveness was enhanced when combined with powder 

production. Similar findings were reported in cod, where 

parvalbumin levels dropped significantly after heating, 

from 388.2 to 29.0 µg/ml (heating at 100 ˚C) and 0.5 µg/ml 

(heating at 120 ˚C) (De Jongh et al., 2015). This decrease 

suggests that heat can disrupt epitopes, impairing antibody 

binding. Epitopes in heat-resistant fractions are typically 

linear, while conformational epitopes from folded 

structures are not recognized by PoAb (Dasanayaka et al., 

2022). Additionally, heating may generate new epitopes 

(no allergens) or degrade existing ones, ultimately altering 

protein allergenicity (Laly et al., 2022). 

   In addition to heating, the drying process plays a crucial 

role in reducing allergen levels in food products. Drying 

using a drum dryer has been proven effective in lowering 

allergenicity. A study on shrimp demonstrated that 

fluidized-bed drying at 45°C for 4-5 h could reduce 

allergen levels by up to 92% (Wulan et al., 2024). This 

significant reduction is believed to be associated with the 

prolonged drying duration, which affects the stability of 

allergenic protein structures. According to Al Sailawi et al. 

(2020), the most effective drying method for reducing 

allergenicity in crabs is microwave drying, followed by 

oven drying, sun drying, salted fish drying, and freeze 

drying. 

   Grinding also contributes to allergen reduction through 

significant mechanical effects. According to Vanga et al. 

(2017), the grinding process generates high shear stress and 

velocity gradients, which can break protein bonds and 

cause molecular structure fragmentation. This effect 

reduces the protein’s ability to interact with antibodies, 

thereby lowering its allergenicity potential. 

   In terms of meat type, white meat exhibited the highest 

parvalbumin levels compared to mixed and red meat, with 

concentrations of 6.61, 3.26, and 1.67 mg/g protein, 

respectively, in fresh samples. These results align with 

studies on Pacific mackerel, where parvalbumin levels 

were 1.86 mg/g in white meat and 0.74 mg/g in red meat 

(Kobayashi et al., 2016). The elevated parvalbumin content 

in white meat is attributed to the greater demand for 

muscle relaxation during movement, a process in which 

parvalbumin plays a crucial role, compared to red meat 

(Kuniyoshi et al., 2019). Furthermore, lower allergen levels 

influence the mechanism by which IgE recognizes protein 

epitopes in terms of linear amino acid sequences and 

specific three-dimensional conformational structures. 

These structural changes ultimately affect the 

immunogenicity or the ability of the proteins to induce 

allergic reactions (Dasanayaka et al., 2022). 
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Figure 3: Allergen content and percentage reduction of mackerel tuna allergen during the fish powder production process in (a): white meat; (b): red 
meat; and (c): mixed meat an 

Different superscript letters indicate significant differences (p<0.05).  

FWM=Fresh White Meat; AWM=Autoclaved White Meat; SWM=Steamed White Meat; AWP=Autoclaved White Meat Powder; SWP=Steamed 
White Meat Powder; FRM=Fresh Red Meat; ARM=Autoclaved Red Meat; SRM=Steamed Red Meat; ARP=Autoclaved Red Meat Powder; 

SRP=Steamed Red Meat Powder; FMM=Fresh Mixed Meat; AMM=Autoclaved Mixed Meat; SMM=Steamed Mixed Meat; AMP=Autoclaved Mixed 

Meat Powder; SMP=Steamed Mixed Meat Powder. 
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Conclusion 

   This study provides insights into the effects of heat 

treatment on mackerel tuna's nutritional profile, molecular 

weight distribution, and allergenicity, highlighting its 

potential as a hypoallergenic food source. The findings 

indicate that both pressure heating and steaming 

significantly reduce moisture content while increasing 

protein levels in fish powder. Moreover, pressure heating 

effectively eliminates allergenic protein bands with 

molecular weights of 10-11 kDa, whereas steaming 

increases band intensity. Analysis of allergen levels in 

mackerel tuna showed that pressure heating significantly 

reduced allergenicity in white, red, and mixed meat with a 

greater reduction than steaming. Additionally, the drying 

and grinding process further enhanced allergen reduction, 

with white meat showing the greatest effect, followed by 

red and mixed meat. Among the meat types, white meat 

exhibited the highest parvalbumin content, followed by red 

and mixed meats. Considering chemical properties, lower 

allergenicity, and better economic value, mixed meat (ratio 

of three parts white meat to one part red meat) is 

recommended for fish powder production over the other 

meat types. The study did not include sensory evaluation or 

consumer acceptance testing, which are essential for 

assessing market feasibility. Furthermore, although 

economic and sustainability aspects were considered, a 

detailed cost-benefit and environmental impact analysis 

was not conducted; future research can focus on these 

parameters.  
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