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 Statistical indicators are essential parts of research in many scientific fields such 
as health and treatment. These indicators play a major role in the evaluation of 
many health indicators in the general population and can help predict future 
issues. Statistical indicators are needed to evaluate performance of the tests. 
Two of the primary indicators are sensitivity and specificity, and other indices 
are obtained from them. In this tutorial study, evaluation indicators of statistical 
performance such as false negative rate (FNR), false positive rate (FPR), false 
discovery rate (FDR), false omission rate (FOR), bookmaker informedness 
(BM), markedness (MK), diagnostic odds ratio (DOR), positive likelihood ratio 
(PLR), negative likelihood ratio (NLR), prevalence threshold (PT), threat score 
(TS), prevalence (P), Fowlkes-mallows (FM), Phi-coefficient or Matthews 
correlation coefficient (MCC) and F1 score have been reviewed. 
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Statistical Performance Evaluation Indices 
 

Introduction 
Today, it is no secret that statistics play an 

important role in various fields of medicine and 
health. Statistical indicators (SI) are an example in 
this regard. SI such as sensitivity and specificity 
and their derivatives are used as performance 
indicators of many tests in medical science, so they 
can provide useful information to researchers  
(1- 3). 

In this tutorial, first, the two main concepts of 
sensitivity and specificity are discussed, and then, 
the indicators derived from them will be explained 
in detail. Sensitivity and specificity, from a 
statistical point of view, express the performance 
of a test regarding the presence or absence of a 
disease (4). Sensitivity shows how well a test can 
identify true positive cases; specificity shows how 
well a test can identify true negative cases (5, 6). 

If the true state of the condition cannot be 
identified, sensitivity and specificity can be 
defined relative to the "gold standard test". There is 
usually a relationship between sensitivity and 
specificity, such that higher sensitivity means 

lower specificity.(7). A test that leads to a high 
number of true positives and a low number of false 
negatives in diagnosing the condition has high 
sensitivity (8). A test that results in a high number 
of true negatives and a low number of false 
positives has a high specificity. This is important 
when people are diagnosed with the disease (3). 

Imagine a study in which the results of a test are 
used to screen sick people. The test result can be 
positive or negative. The test results for each 
subject may or may not correspond to the actual 
conditions of the subject. Therefore, the following 
results might be obtained:  

True positives: People who are correctly identified 
as sick. False positives: people who are wrongly 
identified as sick. True negative: People who are 
correctly identified as healthy. False negatives: 
people who are wrongly identified as healthy. 

After obtaining the numbers of true positives, false 
positives, true negatives and false negatives, 
sensitivity and specificity can be calculated.

Table 1. Indicator’s guide 

# Positive (P) The number of real positive cases  
# Negative (N) The number of real negative cases  
True positive (TP) A test result which correctly indicates the presence of a condition 
True Negative (TN) A test result which correctly indicates the absence of a condition 
False positive (FP) A test result which wrongly indicates a particular condition or attribute is present. 
False negative (FN) A test result which wrongly indicates a particular condition or attribute is absent. 
 
Sensitivity, recall, hit rate (HR), or true positive 
rate (TPR) 
Sensitivity refers to the ability of a test to 

correctly distinguish patients from healthy 
individuals. Sensitivity is the result of dividing true 
positives by the sum of true positives and false 
negatives (9). Mathematically, this can be 
expressed as: 

TPR =TP 
P

 =  TP
TP+FN 

 = 1 − FNR (Eq.1) 

Specificity, selectivity or true negative rate 
(TNR) 
Specificity refers to the test's ability to correctly 

reject healthy patients without a condition. 
Specificity is the result of dividing the true 

negatives by the sum of the true negatives and 
false positives (10). Mathematically, this can be 
expressed as: 

TNR = TN
N

 =  TN
TN+FP

 = 1 − FPR (Eq.2) 

Accuracy (ACC) 
To calculate the overall accuracy, the number of 

correctly classified sites should be added up, and 
then, divided by total number of the reference site 
(11). Accuracy is the proportion of true results in a 
population. It measures the accuracy level of a 
diagnostic test in a condition. The accuracy of a 
test by definition is its ability to differentiate the 
patient from healthy cases accurately (12). 
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ACC =𝐓𝐏+𝐓𝐍
𝐏+𝐍

 = TP+TN
TP+TN+FP+FN

 (Eq.3) 

Performance evaluation indices 
Here are some examples of each index which 

helps medical researchers for better understanding.  

Miss rate (MR) or false negative rate (FNR) 
The false negative rate (FNR) is the proportion 

of positives which yield negative test outcomes 
with the test, i.e., the conditional probability of a 
negative test result given that the condition is 
present (13). 

FNR = FN
P

 = FN
FN+TP

 = 1-TPR (Eq.4) 

Fall-out or false positive rate (FPR) 
In statistics, when performing multiple 

comparisons, the false positive rate is the 
probability of falsely rejecting the null hypothesis 
for a particular test (14). 

FPR = EP
N

 = FP
FP+TN

 = 1-TNR (Eq.5) 

False discovery rate (FDR) 
It is a method of expressing the rate of type I 

errors in null hypothesis testing when performing 
multiple comparisons. FDR control procedures are 
programmed to control FDR. So that the predicted 
proportion of "discoveries", which are incorrect 
(15, 16). 

FDR = FP
FP+TP

 = 1-PPV (Eq.6) 

False omission rate (FOR) 
A negative predictive value refers to that 

generated by control groups. Meanwhile, the 
negative probability of the post-test refers to a 
person's luck. If the individual's pre-test probability 
is the same as the prevalence in the control group, 
these two are numerically equal (17). 

FOR = FN
FN+TN

 = 1-NPV (Eq.7) 

Informedness or bookmaker informedness 
(BM) 
Informedness is evaluating how regularly the 

test predicts the result by combining surface 
measures, and what proportion of the results is 
correctly predicted. It also introduces markedness 
as a measure for the estimated probability, which 

prediction is marked versus chance (18).  

BM = TPR + TNR – 1 (Eq.8) 

Markedness (MK) 
Markedness estimates how marked a condition 

is for the specified predictor, and measures the 
probability that a condition is marked by the 
predictor (versus chance). Informedness introduces 
markedness as a dual measure for this probability; 
test is marked versus chance (18). 

MK = PPV + NPV – 1 (Eq.9) 

Diagnostic odds ratio (DOR) 
DOR is a measure that shows how effective a 

diagnostic test can be. This is the odds ratio of a 
positive test. Also about whether the subject has a 
disease or whether there is a possibility that the test 
will be positive or not (19). 

DOR = 𝐬𝐞𝐧𝐬𝐢𝐭𝐢𝐯𝐢𝐭𝐲 ×𝐬𝐩𝐞𝐜𝐢𝐟𝐢𝐜𝐢𝐭𝐲
(𝟏−𝐬𝐞𝐧𝐬𝐢𝐭𝐢𝐯𝐢𝐭𝐲)×(𝟏−𝐬𝐩𝐞𝐜𝐢𝐟𝐢𝐜𝐢𝐭𝐲)

   (Eq.10) 

Positive likelihood ratio (PLR) 
The positive likelihood ratio is the probability of 

a positive test in a patient divided by the 
probability of a positive test in a healthy person 
(20). 

PLR = 𝐒𝐞𝐧𝐬𝐢𝐯𝐢𝐭𝐲
𝟏−𝐬𝐩𝐞𝐜𝐢𝐟𝐢𝐜𝐢𝐭𝐲

  (Eq.11) 

Negative likelihood ratio (NLR) 
It is possible that the test is negative and the 

person is sick. This is divided by the probability of 
a negative test for a person who does not have the 
disease (20). 

NLR = 𝟏−𝐬𝐞𝐧𝐬𝐢𝐯𝐢𝐭𝐲
𝐬𝐩𝐞𝐜𝐢𝐟𝐢𝐜𝐢𝐭𝐲

  (Eq.12) 

Prevalence threshold (PT) 
This corresponds to the prevalence level below 

which the positive predictive value of the test is 
sharply reduced. This is due to the prevalence of 
the disease and the rate of false positive results can 
increase (21). 

PT = �1−specificity
�sensivity+(1−specificity)

 (Eq.13) 

Threat score (TS) 
It is the ratio of the area where prediction was 
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accurate, to the area where prediction was not 
verified (22). 

TS = TP 
TP+FN+FP

 (Eq.14) 

Prevalence 
In statistics, prevalence is the proportion of the 

specific part of population with a special property 
(23, 24). For example, to calculate the prevalence 
of malnutrition in a society, the number of people 
with malnutrition should be divided to the total 
number of populations. If there are 25 
malnourished girls in a population of 100 students 
in a school, prevalence of malnutrition in that 
school would be 0.04. This index can be reported 
as percentage. In that condition, the prevalence 
will be 4%. 

Prevalence = 
𝐩𝐞𝐨𝐩𝐥𝐞 𝐰𝐡𝐨 𝐡𝐚𝐬 𝐭𝐡𝐞 𝐬𝐩𝐞𝐜𝐢𝐟𝐢𝐜 𝐜𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧 𝐨𝐫 𝐝𝐢𝐬𝐞𝐚𝐬𝐞

𝐭𝐨𝐭𝐚𝐥 𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐭𝐡𝐞 𝐩𝐨𝐩𝐮𝐥𝐚𝐭𝐢𝐨𝐧

 (Eq.15) 

The Fowlkes-mallows (FM) 
It is used as a method to determine the similarity 

between two clusters (the clusters obtained after 
the clustering algorithm) (25). In other words, this 
index is a method to indicate the similarity 
between two clustering (26). A higher value for the 
Fowlkes-Mallows index indicates greater similarity 
between clusters and benchmark classifications. 

FM = � TP
TP+FP 

 × � TP
TP+FN

 = 

√PPV × TPR     (Eq.16) 

Phi-coefficient or Matthews’s correlation 
coefficient (MCC) 
Phi-coefficient is an index to measure the 

association between two variables which are binary 
(27); for example, estimating the association 
between Rheumatic Heart Disease (RHD) of the 

blood group types and gender. 

MCC = 
(TP × TN)−(FP × FN)

�(TP+FP)( TP+FN) (TN+FP) (TN+FN)
     (Eq.17) 

F1 score 
F1 score is used as a harmonic mean for recall 

and precision (28). 

F1 = 2 × PPV ×TPR
PPV+TPR

 = 2TP
2TP+FP+FN

  (Eq.18) 

Conclusion 
To determine the performance of diagnostic 

tests in medical field, it is necessary to use 
statistical indicators. In this review study, the most 
important statistical indicators for evaluating the 
performance of diagnostic tests and their 
appropriate use were reviewed. It seems that 
researchers' familiarity with different disciplines, 
especially medical sciences, and with performance 
evaluation indicators, can increase the quality of 
studies and pave the way for compiling valuable 
studies. 
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