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ABSTRACT

Introduction: Human activities disrupted by COVID-19 have reduced global 
air pollution. Meteorological day-to-day and year-to-year variability affects 
pollution levels and complicates estimating reductions. This paper uses data 
clustering to remove the complexity of non-linear relationships by separating 
meteorology from complex emission patterns before modelling. The case 
study is based on PM2.5 concentration time series data and meteorological 
data for 2018 to 2021 in Colombo, Sri Lanka.
Materials and methods: The southwest monsoon brings sea breezes from 
the Indian Ocean to land from May to October. To separate the effect of the 
monsoon winds on PM2.5 concentrations, analysis of time series data, polar 
plots, clusters, and Theil-Sen trends were used based on hourly-average air 
pollution and meteorological data for the whole dataset.
Results: Two clear clusters were identified from scatterplots, representing 
the monsoon and non-monsoon periods. The study suggests that due to 
the combined effect of the monsoon winds and a reduction in the levels of 
traffic as a result of perturbations in human activity, the PM2.5 concentrations 
decreased at an average rate of 10.61 µg/m3/year (95% CI: 12.86 - 8.11) over 
the four years. During the non-monsoon season, due to traffic reductions 
alone, PM2.5 concentrations reduced at an average rate of 7.95 µg/m3/year 
(95% CI: 10.07 – 5.51).
Conclusion: These results are relevant to policymakers in the post pandemic 
planning of traffic and industry, with the methodology readily adapted for use 
in other locations where a separation of effects may be beneficial.
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Introduction 

Over the last two years, human activity on a 
large scale has been perturbed from the usual 
daily routine, starting around March 2020 
when the World Health Organization (WHO) 

declared COVID-19 "a global epidemic" [1]. 
In order to help prevent the spread of the virus, 
many countries imposed various levels of 
travel restrictions and lockdowns. Schools and 
universities in many places around the world 
were closed to in-person sessions and switched to 
an online delivery mode, and for many employed 
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across both the private and public sectors, work 
from home was also expected. Social distancing 
and travel restrictions resulted in a significant 
reduction in all forms of transport (land, water, 
and air), tourism, construction, mining, and 
quarrying activities. 

During this time, as with many countries around 
the world, Sri Lanka was severely affected by the 
virus. The first COVID-19 case was identified 
on January 27, 2020, with the number of cases 
increasing continuously from then. On March 24, 
a curfew was imposed across many parts of the 
island that continued until May 27, when it was 
then lifted [2]. Subsequently, two more waves 
resulted in travel restrictions of various levels 
of severity throughout the rest of 2020 and into 
2021.

While for many countries around the world, 
COVID-19 disrupted activities from the 
beginning of 2020, in Sri Lanka, other events of 
national significance also caused major disruption 
prior to this period. On Easter Sunday, April 21, 
2019, three churches in Negombo, Batticaloa 
and Colombo, as well as three luxury hotels in 
Colombo, were subjected to a series of planned 
terrorist group suicide bombings in which 253 

people lost their lives, and more than 485 were 
injured. Immediately following, the armed forces 
and police launched a special security operation 
throughout the country, with the government 
declaring a state of emergency and imposing a 
curfew for several days following, and further 
extended it in various parts of the country due 
to minor riots that sparked in places. Schools 
and state universities across the country were 
also closed for a two-week period. Due to the 
uncertainty of the situation, these institutions 
remained inactive for about two months following 
the event. In addition to educational activities, 
the attacks disrupted many industries, including 
tourism, transport, and aviation. Tourist arrival 
numbers fell by about 70 %, and major religious 
festivals, including "Vesak", "Poson", and 
Christmas, were not celebrated that year in the 
usual ways. Also, in the second half of 2019, the 
country was affected by severe floods caused by 
adverse weather conditions that prevailed across 
the country. Thus, in Sri Lanka, major nationwide 
disruptions extended beyond the timespan of the 
global pandemic back to April 2019. The timeline 
and specific dates associated with these events 
are depicted in Fig. 1.

Fig. 1. Interventions that affected ambient concentrations of pollutants from 2019 to 2021
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The curfews imposed stemming from all of 
these events resulted in significant reductions 
in road traffic flows, leading to similarly large-
scale reductions in the quantity of air pollutants 
released into the air across the country. However, 
in addition to their emission source strength, 
local meteorology also plays a significant role 
in forming patterns of ambient air pollution 
concentrations in urban areas, whether from 
vehicle tailpipes or factory stacks. In terms 
of meteorology, wind in particular, can dilute 
locally produced air pollution concentrations 
from pollution sources, and rain readily washes 
out airborne particles in particular, with strong 
winds advecting pollutants, especially dust 
and sea spray, from distant sources. In the case 
of Sri Lanka specifically, along with many 
other countries in similar parts of the world, 
the monsoon impacts the meteorology on a 
seasonal scale, bringing large-scale shifts in 
wind patterns and rainfall. Understanding the 
impacts of such disruptions requires careful 
consideration of the meteorological conditions 
and how these might also have changed in recent 
years as a result of climate change, including, 
for example, the frequency of extreme events in 
relation to rainfall, wind and temperature.

Many studies have been carried out worldwide 
reporting on the effect of lockdown periods on 
local air quality [3-11]. Some of these studies are 
based on ground-based routinely collected air 
quality data, while some are based on satellite 
data. In some cities, the percentage reduction of 
NO2 has been reported to be higher than 70% 
[5]. Recent research presents the effect of the 
COVID-19 lockdown on air quality in South 
Asia based on crude information collected 
from a range of ground-based and satellite data 
sources over the years [12]. The results suggest 
a significant improvement in air quality in India, 
Afghanistan, Pakistan, Bangladesh, Sri Lanka, 
and Nepal. Specifically, it was suggested that 
there was a 27% reduction in air pollution in Sri 

Lanka during the lockdown period compared 
with the 2018 period, and a 28% reduction 
compared with 2019, with results based on 
information provided by the National Building 
and Research Organization (NBRO) in Sri Lanka 
(noting that the original report on which this 
information was based was not cited anywhere). 
However, a commentary by an environmental 
scientist [13], suggests that the reductions in air 
pollution levels in Colombo, Sri Lanka were not 
due to the lockdown but due to the southwest 
monsoon, which began precisely at the same 
time as the March lockdown; every year around 
this time of the year, an improvement in air 
quality is observed as the sea breeze from the 
Indian Ocean dilutes pollutants in the air. It 
is expected that the increase in the frequency 
of extreme weather events that have occurred 
also had an impact, especially with regard to 
the resulting concentrations of fine particulate 
matter. Thus, it is not clear the extent to which 
the improvement in air quality that was observed 
was a result of reductions in emission and the 
extent to which it can be attributed to changes 
in weather patterns. 

In order to address this issue, different 
meteorological normalization or de-weathering 
techniques have been adopted by researchers, 
such as random forest modelling [14, 15], 
parametric techniques [16] and machine 
learning-based statistical modelling [17]. 
These techniques involve training a model to 
describe the changes in air pollution through 
several independent variables, including 
meteorological factors (such as wind speed, 
temperature, and rainfall) and source strength 
(emission pattern, time of the day, day of the 
week). Some models use atmospheric physics 
to determine relationships, while others are 
semi-empirical and statistical in nature. Semi-
empirical models are trained for a given dataset 
and can then be used to predict an independent 
dataset. Previous studies have shown that during 



P. Jayasundara, et al. Disentangling the impact of ...

http://japh.tums.ac.ir

302

the training phase, the data can be expected 
to exhibit a predictable pattern, resulting in a 
reasonable degree of accuracy with respect to 
predictions [18-20]. However, in the case where 
complex non-linear relationships exist between 
pollutant concentration and meteorological 
factors, this pattern-recognition phase requires 
further pre-processing of the data.

In this study, a cluster analysis is carried 
out on routinely collected air quality data 
as an alternative way of understanding the 
contribution of different factors to the trends 
in ambient air pollution concentrations so that 
the source contribution can be separated from 
that of the meteorology in order to estimate the 
extent to which the lockdowns of 2020 and 2021 
impacted on air pollution concentrations. Such 
an approach provides a clear view of the source 
contribution to inform the development of 
complex models to understand the contribution 
of changes under a range of different scenarios. 
We have considered the monsoon and non-
monsoon periods, in order to estimate the 
impact of changes to human activities on air 
quality, taking into account the impact of 
changing weather patterns due to the monsoon. 
Significantly, this study lines up to achieve the 
following objectives:

• Apply data clustering techniques to 
separate the effects of meteorology from 
complex emission patterns to model air quality.

• Analyze time series data, polar plots, 
clusters, and Theil-Sen trends on hourly 
average air pollution and meteorological data 
for Colombo, Sri Lanka, from 2018 to 2021 
to understand the effect on air quality due to 
changes in human behaviour during this period.

• Quantify the average rate of PM2.5 

concentration reduction during the study period 
due to the combined effect of the monsoon winds 
and reduced traffic levels due to disruptions in 
human activity.

• Assess the individual impact of traffic 
reductions during the non-monsoon season on 
PM2.5  concentrations.

Though these techniques are well established 
and applicable in air quality data analysis, they 
are used for the first time to isolate the trend 
in air pollution due to the changes in the daily 
routine experienced in Sri Lanka over the last 
four years.

Materials and methods

Study site

The study site in Colombo, Sri Lanka, is 
presented in Fig. 2. Colombo, the capital city 
of Sri Lanka, is the busiest and most populated 
district of Sri Lanka's twenty-five administrative 
districts. Its population density is 13364 persons 
per km2, and it is considered the country's 
commercial centre. The roads in Colombo 
are congested most of the day. Colombo is 
a coastal city with its western side bounded 
by the Indian ocean. The central hills of Sri 
Lanka act as a significant climatic barrier to the 
monsoonal winds and contribute significantly 
to the country's two climate zones: the wet 
zone and the dry zone. Colombo is located in 
the wet zone, which is exposed to the southwest 
monsoon winds. Apart from the monsoon, the 
first inter-monsoon also produces high rainfall 
rates in the wet zone [21]. The winds in Colombo 
are most often from the southwest from May to 
October [22], then change to the south, east and 
northeast during the rest of the months of the 
year (see the wind rose diagram in Fig. 1). Air 
quality monitoring data, used as an indicator 
of the pollution levels in the air, are limited to 
a concentration of particulate matter less than 
2.5 µm in size (PM2.5) and are collected at the 
US Embassy of Sri Lanka in Colombo. The site 
faces Galle Road (located at a latitude of 6.52° 
N and a longitude of 80.01° E).
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Data

PM2.5 data collected at the above site were 
obtained from the "Air Quality Open Data 
Platform – Worldwide COVID-19 Data Set" 
[23]. The air quality data at this site is collected 
using a Beta Attenuation Monitor located at the 
US Embassy of Sri Lanka. Meteorological data 
were obtained from visual crossing Weather 
Data & API [24]. The Visual Crossing Weather 
platform provides weather data to help analysts 
better inform decisions using hyper-local and 
worldwide weather and climate data.

Data analysing tools

This study uses dedicated functions for analyzing 
air pollution data, available in the openair R 

Fig. 2. Site Map showing the location of the study site with wind rose diagram (upper right corner) showing 
annual wind pattern

'package' [25]. R is a computer programming 
language mainly developed to analyse data and 
produce statistical outputs and graphics. R is 
available as free software under the terms of the 
free software foundation's GNU general public 
license [26]. The dedicated functions introduced 
in the Openair manual [27] are used in this study. 

Time series data analysis

Daily, weekday and monthly variations in air 
pollutant concentrations were studied to help 
determine the contributing sources based on 
the expected patterns. Specifically, road traffic 
sources typically manifest as diurnal variations, 
those from firewood burning for home heating 
show a distinct seasonal pattern, while sources 
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such as sea spray show more irregular patterns. 
The "TimeVariation" function in Openair was 
used to study the mean concentrations of the 
time series.

Theil-Sen trend analysis

In this paper, temporal trends are estimated using 
the Thiel-Sen approach on de-seasonalized data 
using the Openair platform. Ordinary linear 
regression is the most commonly used method 
for identifying linear trends [27]. However, the 
autocorrelation effect, the non-linearity and 
the non-normality of air pollution data can all 
lead to poor interpretation of trends when linear 
regression is used. The Thiel-Sen estimator  [28, 
29] is an effective technique used to overcome 
the autocorrelation effect and issues of non-
linearity and non-normality of air pollution 
data where the error variance is not constant 
[27]. The "Thiel-Sen" function in the Openair 
platform uses a bootstrap resampling technique 
to estimate the slope from the median of the 
slope of all pairs of data points in the dataset.

Concentration polar plots and polar cluster 
analysis

Concentration polar plots and polar clusters 
were used in this study to identify the possible 
emission sources and effects of wind speed and 
direction on PM2.5 concentrations graphically. 
The polar plots illustrate the joint wind speed 
and direction dependence on the concentration 
of pollutants and have been used effectively 
in previous source apportionment studies [20, 
30, 31]. In the construction of the polar plots, 
a smoothing technique was used to obtain a 
smooth surface of the concentrations in polar 
coordinates. Polar clusters identified on the 
concentration polar plots were then used to 
separate the data set into clusters with similar 
concentration interactions with wind speed 
and direction using an unsupervised learning 
technique described as K-means clustering. The 

number of groups identified by the letter "k" is 
predetermined. There is no definitive method for 
determining the optimum number of clusters in 
this approach; it is decided by careful observation 
of the time series analysis of the data in each 
cluster. In this study k=2, 3, 4, 5, and 6 solutions 
were considered, and each solution was studied 
carefully to decide the final number of clusters 
for meaningful interpretation of possible sources 
that affect the PM2.5 concentrations at the study 
site.

Results and discussion

Fig. 3 shows the box and whisker plot of the 
monthly median PM2.5 concentrations in 
2020 at the Galle Road site in Colombo, Sri 
Lanka. According to the pattern displayed, 
PM2.5 concentrations are high in the months 
of November, December, January, February, 
and March and low in April, May, June, July, 
and October. Also, it indicates that PM2.5 
concentrations in Colombo exceed the WHO's 
guidelines, posing potential health risks to the 
population. When moving from March to April, 
there is a significant drop in the concentration of 
PM2.5. This could be a result of seasonal changes 
in the wind pattern. The major lockdown in 
Sri Lanka happened precisely from the end of 
March to June 2020.  Hence without analyzing 
data across years together with meteorology, the 
improvement in air quality in April 2020 cannot 
be entirely attributed to limited human movement 
due to the lockdown. Researchers concluded in a 
study that, there was a significant improvement 
in air quality because of the lockdown in April 
2020 [32]. However, this analysis was limited to 
2020 data alone. Other researchers used satellite 
data across years and showed graphically that 
there is a drop in NO2 and SO2 in 2020, but 
not together with meteorological data [12]. 
The present study overcomes this limitation by 
analyzing PM2.5 and meteorological data across 
the years.
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Fig. 4a shows the PM2.5 data from the Colombo 
site plotted according to monthly averages from 
2018 to 2021. It shows that in all years, the 
concentrations were high from January to March 
and also from November to December, while 
concentrations were low from April to October. 
Fig. 4a shows a significant drop in concentration 
when moving from May to December 2019, 
which was not observed in 2018 (this drop is 
shown using arrows in Fig. 4a). Fig. 4b shows the 
yearly variation in PM2.5 concentrations measured 
in Kerala, India, situated in a southernmost point 
of India (see Fig. 1). The data in Fig. 4b are also 
plotted separately for the years 2018, 2019, 2020 
and 2021. Concentration variations in Kerala 
and Colombo followed the same pattern in 2018, 
while this coherence did not persist from 2019 to 
2021.

Interestingly, in both regions, the lowest 
concentrations were reported in 2021. The drop 
in PM2.5 concentrations observed in Colombo, 
Sri Lanka, from May to December 2019 was not 
observed in Kerala, India, suggesting that this is 
not the result of any regional effect. The monthly 
wind patterns for 2018 to 2021 were investigated 
to investigate whether this drop in concentration 

Fig. 3. Box plot showing monthly median PM2.5 concentration for the year 2020 with 25/75th quantiles values

results from changes in wind patterns over the 
months and years. 

Fig. 5 shows the monthly average wind speed and 
wind direction from 2018 to 2021. According to 
Fig. 5a, wind speed varies in a similar manner in 
all years from 2018 to 2021, except with some 
high winds observed during the months of April 
and May 2020, exactly when the first lockdown 
occurred. Dilution effects created by these high 
wind speeds could have masked the actual effect 
of the lockdown on the ambient concentrations 
of pollutants. From Fig. 5b, it can be clearly seen 
that from May to October in all years, winds are 
southwesterly (225°). Then, from November, the 
wind direction changes clockwise and becomes 
northeasterly (45°) in December and January. 
From May to October, the southwest monsoon 
brings air from the Indian Ocean to the island, 
bringing rain to the study area. The winds from 
the ocean are strong and thus help to dilute the 
concentrations of pollutants at the site. When the 
wind shifts to the opposite direction (moving from 
south, east, then to northeast) from November 
to March, the wind is such that the air at the 
monitoring site originates from the city, bringing 
a highly polluted air mass to the site. Thus, the 
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seasonal variations in the concentration can be 
explained by wind shifts brought about by the 
monsoons (for further detail regarding the wind 
patterns, see 22). 

Fig. 6 shows the monthly average precipitation 
in millimeters at the study site for the years 2018 
to 2021. A very similar precipitation pattern is 
observed across all years concerned. According 
to Fig. 6, precipitation is high in April, May, 
September, October, and November in all of 
the years concerned, except for a reduction in 
precipitation in the early months of 2019. It is 
expected that a reduction in precipitation would 
lead to an increase in PM2.5 concentration during 
these months. However, the opposite is observed 
with this data set. However, according to the 
overall observations from Fig. 5 and Fig. 6, the 
significant reductions in PM2.5 concentration 
in 2019, 2020, and 2021 compared to 2018 
seems to be source-related and not as a result of 
meteorological changes over the years. 

(a)

(b)

To further understand the possible source 
contribution of PM2.5 at the study site, 
concentration polar plots for 2018-2021 were 
created and presented in Fig. 7. Based on Fig. 7, a 
distinct pattern with respect to the wind direction 
can be seen. When the winds are mainly from the 
southwest (225°), that is, from the Indian Ocean, a 
dilution effect of PM2.5 concentration is observed 
at the study site, with stronger winds leading to 
lower concentrations. In contrast, when the winds 
are mainly from the east (90°) and northeast 
(45°), the air mass at the study site has travelled 
over the city before reaching the site, bringing 
in pollutants, with stronger winds associated 
with higher concentrations. According to Fig. 
7, there is a decreasing trend over time in terms 
of the PM2.5 concentrations of pollutants in the 
air mass travelling across the land from easterly 
and northeasterly directions from 2018 to 2021, 
suggesting a reduction in PM2.5 emissions over 
these years. 

Fig. 4. Monthly average PM2.5 concentrations plotted separately by year; (a) In Colombo, Sri Lanka, and (b) In 
Kerala, India. The black arrows in plot (a) show the distinct drop in the concentration of PM2.5 in Colombo after 
May 2019. The vertical boxes denote the 95% confidence intervals of the monthly mean based on daily averages
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(a)

(b)

Fig. 5. Monthly average wind speed (a) and wind direction (b) for years 2018 to 2021
North 0°, East 90°, South 180°, West 270°; Northeast 45°, Southwest 225°

Fig. 6. Monthly average precipitation in millimeters for years 2018-2021
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Fig. 7. Concentration polar plot showing wind speed in meters per second and wind direction in polar 
coordinates while the concentration of PM2.5 is given in the colour index in study site Galle Road, Colombo, 
Sri Lanka.  N- north 0°, E-east 90°, S-south 180°, W-west 270°; in text, northeast is 45°, southwest is 225°

To further understand the cause of this reduction, 
a cluster analysis was carried out on the 
concentration polar plot drawn for the whole 
of the dataset from 2018 to 2021. In the cluster 
analysis, 2, 3, 4, 5, and 6 cluster solutions were 
carefully studied. Time series and scatterplots 
drawn for these clusters suggest that the two-
cluster solution is capable of separating the data 
set in the monsoon (winds coming from the 
Indian Ocean) and non-monsoon (winds coming 
from land) periods. The two cluster solutions 
are given in Fig. 8. The total number of data 
points in Cluster One and Two are 758 and 529, 
respectively. Fig. 9 shows the whole of the time 

series of data from 2018 to 2021 according to 
the colour of the cluster, which confirms that the 
two-cluster solution separates the air quality data 
into two main wind sectors. Cluster 1 represents 
the Colombo southwest monsoon season from 
May to October, while Cluster 2 represents 
the non-monsoon season when the winds are 
predominantly easterly and northeasterly. This 
time series data analysis confirms the rationale 
behind the clustering based on the monsoon and 
non-monsoon seasons. It becomes evident that 
distinct patterns and effects are associated with 
these two seasons by examining the trends in 
PM2.5 concentrations.
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Fig. 8. Two-cluster solution: Cluster 1 represents the southwest monsoon season from April to October while 
cluster 2 represents the non-monsoon season in Colombo when the winds are northeasterly

Fig. 9. Time series data of PM2.5 according to the two clusters, shown as two different colours
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Fig. 10. Thiel- Sen trend analysis of PM2.5 Concentration from 2018 to 2021; (a) Whole data set, (b) Cluster 1 
(c) Cluster 2
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Lastly, long-term trends in concentrations 
were investigated using Thiel-Sen trends on 
the deseasonalized dataset as a whole and for 
the two datasets separated by clusters. These 
are shown in Fig. 10.  Fig. 10a shows the trend 
for the whole of the dataset from October 2017 
to October 2021, indicating a reduction in the 
concentration of 9.53 µg/m3 per year (with a 
95% confidence interval of 11.96 – 7.09 µg/
m3) on average over the four years. Fig. 10b 
shows the trend for the monsoon season only. 
This illustrates the combined effect of both a 
reduction in emissions and a dilution effect due 
to monsoon winds and precipitation. For this 
data series, a PM2.5 concentration reduction of 
10.61 µg/m3 per year (with a 95% confidence 
interval of 12.86–8.11 µg/m3) is observed. Fig. 
10c shows the equivalent for the non-monsoon 
season. In this case, the reduction in human 
activities alone explains a reduction in PM2.5 
concentration of 7.95 µg/m3 per year (with a 
95% confidence interval of 10.07-5.51 µg/m3). 
The results of this study suggest that there has 
been an apparent reduction in emissions from 
2018 to 2021 due to the different human-related 
interventions. Since previous studies [12, 32] 
considered only the 2020 pre-lockdown and 
post-lockdown period, this study is the first 
that has considered long-term trends in PM2.5 in 
Colombo, Sri Lanka, treating the monsoon and 
non-monsoon periods separately. 

Units- µg/m3, *** trend p-value<0.005, and 95% 
confidence interval is given in square brackets

These long-term trend analyses provide valuable 
insights into the overall trajectory of PM2.5 
concentrations, indicating a continual decline 
in emissions over the four years from 2017 to 
2021, with other fluctuations witnessed during 
the monsoonal and non-monsoonal phases. 
The results gained from this study highlight 
the significance of considering both short-term 
and long-term trends to understand air pollution 

dynamics in the region comprehensively. The 
dataset used for this research provides desirable 
details but represents only a specific monitoring 
location, and it cannot capture the city's total 
spatial variability of air pollution. Moreover, 
it is unable to fully understand the sources 
and their individual impacts due to the lack 
of detailed information on specific emission 
sources contributing to PM2.5 concentrations, 
such as nearby factories and constructions.

Conclusion

In this study, simple statistical techniques were 
used to separate changes in atmospheric pollutant 
concentrations due to emission strength as a 
result of changes in human activity from those 
resulting from changes in meteorology brought 
about in part by the monsoon.  Many previous 
studies are limited in that the reduction in the 
level of air pollution was assessed based only on 
a few months of data on either side of a change 
in COVID-related lockdown measures. This 
study highlights the importance of considering 
the impact of meteorology over a number of 
years to aid in separating causes.

Several significant events have occurred in 
Sri Lanka since April 2019, causing major 
disruptions to everyday life and ultimately to 
the patterns of emissions of air pollution. The 
closure of businesses, the implementation of a 
state emergency and curfew, reductions in the 
use of public transport, reductions in human 
movement due to lockdown measures, the 
closure of schools, the halting of mass gatherings 
for national festivals, limitations in activities 
associated with religious festivals and the 
closure and limitation in the number of people 
able to visit temples/mosques are all examples 
of changes that have contributed to the drastic 
reduction in anthropogenic emissions and air 
pollution levels that have been observed. As 
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activities move back to some sense of 'business 
as usual', it can be expected that air pollution 
levels return to levels commensurate with these 
conditions. 

It is also worth mentioning that a vehicle 
emission testing programme was initiated in 
Sri Lanka in 2008 that ascertains whether the 
vehicular emissions of a particular vehicle are 
within the allowable limit before it is allowed 
on the road. This might also have contributed 
to the improvement in air quality observed over 
the years. Though temporary changes in human 
behaviour would have caused the observed 
negative trend in PM2.5 in Colombo from 2018 to 
2021, this provides a platform for authorities to 
consider industrial and traffic emission control 
and traffic planning. Specifically, we would like 
to highlight the importance of the development 
of an emission inventory, receptor modelling 
and comprehensive traffic monitoring to allow 
for further investigation into different scenarios, 
allowing a data-informed emission control plan 
to be implemented. 

As a future study, it would be worth investigating 
whether there has been a reduction in respiratory-
related health problems in Colombo (other than 
COVID-19-related infections), such as a reduction 
in hospital admissions to the National Hospitals 
in Colombo for asthma-related issues related 
to this negative trend in PM2.5 concentration in 
Colombo from 2018 to 2021. The results of such 
a study could be used to improve public health 
policy in Sri Lanka. Future studies could also 
explore multi-pollutants, including Nitrogen 
dioxide (NO2), Ozone (O3), and Volatile Organic 
Compounds (VOCs), analyses to provide a more 
comprehensive understanding of the air quality 
dynamics in the region.
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