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ABSTRACT

Introduction: This paper focuses on the prediction of weekly peak levels of 
Particulate Matter with an aerodynamic diameter of less than 2.5 µm (PM2.5 ), using 
various Machine Learning (ML) models. The study compares ML models to 
deep learning models and emphasizes the explain ability of ML models for 
PM2.5 prediction.
Materials and methods: We examine different combinations of features 
and time window dimensions to evaluate the performance of ML models. 
It utilizes Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), 
Decision Tree (DT), and five Ensemble Models (EL) including AdaBoost, 
XGBoost, LightGBM, CatBoost, and Random Forest (RF). The dataset 
includes three years of daily measurements of weather parameters and PM2.5.
Results: Lagged values of PM2.5 improves prediction performance, 
particularly when the lagged value window size spans seven days or multiples 
thereof. This confirms that road traffic, which exhibits a weekly seasonality, 
is the primary source of PM2.5 in Algiers. Interestingly, including lagged 
values of weather parameters decreases prediction performance, even when 
chosen based on their correlation with PM2.5. The AdaBoost model performs 
the best, achieving a Root Mean Squared Error (RMSE) of 2.899 µg/m³ and 
an R2 value of 0.96.
Conclusion: EL models, specifically AdaBoost, exhibit strong performance 
in predicting PM2.5 levels. They not only provide accurate predictions but 
also allow analysis of feature importance. Lagged values of PM2.5 have a 
greater impact on predictions compared to weather parameters. Surprisingly, 
including weather parameters hampers prediction performance. Therefore, 
the utilization of ensemble learning models offers valuable insights into 
feature significance.

Please cite this article as: Ghazi S, Dib A, Mendjel MSM, Khadir T, Dugdale J. Ensemble learning models for the prediction of 
the weekly peak of PM2.5 concentration in Algiers, Algeria. Journal of Air Pollution and Health. 2023;8(3): 381-398.

C O R R E S P O N D I N G  A U T H O R :

sabri.ghazi@univ-annaba.dz
Tel: (+213) 6 97458559
Fax: (+213) 6 97458559

Sabri Ghazi1,*, Ahmed Dib2, Mohamed Said Mehdi Mendjel1, Tarek Khadir1, Julie Dugdale3

1 Electronic Document Management Laboratory (LabGED), Department of Computer Science, University Badji Mokhtar, Annaba, Algeria
2 System and Networking Laboratory ( LRS), Department of Computer Science, University Badji Mokhtar, Annaba, Algeria
3 University Grenoble Alpes, Grenoble Informatics Laboratory (LIG), France 

A R T I C L E  I N F O R M A T I O N

Article Chronology:
Received 12 May 2023
Revised 23 July 2023
Accepted 01 September 2023
Published 29 September 2023 

Keywords: 
Particulate matters (PM2.5); Air pollution; 
Ensemble learning; Time series forecasting; 
Air pollution prediction

Available online at http://japh.tums.ac.ir

Ensemble learning models for the prediction of the weekly peak of PM2.5 
concentration in Algiers, Algeria

Copyright © 2023 Tehran University of Medical Sciences. Published by Tehran University of Medical Sciences.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International license (https://creativecommons.org/licenses/
by-nc/4.0/). Noncommercial uses of the work are permitted, provided the original work is properly cited.

Introduction 

The degradation in air quality is a major challenge 

facing many cities in the world. In developing 
countries, uncontrolled urban expansion, fossil 
energy-based transportation, and the lack of 
legislation to enforce air quality standards, 
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lead to alarming levels of air pollution. Peak 
periods occur when the concentrations of air 
pollutants are above the tolerated level. Among 
the pollutants responsible for these peaks is the 
Particulate Matters (PM2.5), which is a mixture 
of solid and liquid substances, mainly generated 
by anthropogenic activities. The combustion 
engine, construction, industrial process, and 
agriculture are among the main sources of 
PM2.5. In Algiers Fe and Sc are highly present 
among the heavy metal content of PM2.5 as 
concluded in research [1]. The authors deduced 
that the annual level of PM2.5 exceeds local and 
international standards. The same conclusion 
was reached in [2] where the authors analysed 
samples of PM1, PM2.5, and PM10 from two 
stations in Algiers during 2015 and 2016 in an 
urban and roadside environment. By analyzing 
the samples of PM2.5, the concentrations 
of heavy metals were determined, with Pb 
representing 5%.  The composition of PM10 
and PM2.5 in an urban area in Algiers is also 
described in [3]. The heavy metal content of 
PM2.5 confirmed that the origin was from road 
traffic and Saharan dust. It is worth mentioning 
that Algeria was the only country in the world 
that continued to use leaded carburant until 
August 2021 when the Algerian government 
passed a law banning the use and sale of leaded 
carburant. Due to its diameter and toxicity, 
PM2.5 can be inhaled by humans leading to 
serious health problems [4]. Therefore, having 
an accurate prediction of the peak periods of 
PM2.5 can help decision-makers mitigating 
the crisis and reducing its effects, specifically 
by warning people who have special medical 
conditions.
Ensemble Learning (EL) models are easy to 
implement, require less computation, and are 
explainable when compared to Deep Learning 
models. We chose to use EL models because 
of their transparency in terms of feature 
importance. These models often provide 
explicit feature weights or coefficients that 
indicate the contribution of each feature in 
predicting the target variable.

This paper has a specific focus on investigating 
Ensemble Learning (EL) models and their 
performance in predicting the weekly peak 
of PM2.5. The primary aim of this study is 
to thoroughly evaluate the effectiveness of 
these EL models in accurately forecasting 
the highest concentration levels of PM2.5 over 
a weekly timeframe. By doing so, we intend 
to provide valuable insights into the potential 
applications of ensemble learning for this 
particular environmental forecasting task. In 
addition to assessing the predictive capabilities 
of EL models, we also seek to delve into their 
inner workings and enhance our understanding 
of their functionality. This secondary objective 
involves a detailed examination of the 
importance of individual features and their 
lagged values within the ensemble learning 
models. By analysing the contribution of each 
feature and their lagged values, we aim to 
gain a deeper understanding of the factors that 
significantly influence PM2.5 levels during the 
weekly peak periods, and the time dependency 
that may exist between a lagged value of a 
feature and the PM2.5 level. This exploration 
of feature importance will aid in interpreting 
the model's outputs more effectively and 
comprehensively. The ultimate goal of this 
work is to enhance the interpretability of 
the ensemble learning models, making the 
predictions more accessible and useful for 
various stakeholders and policymakers. 
Having a clear understanding of the underlying 
factors and the reasoning behind the model's 
forecasts is crucial for making well-informed 
decisions related to PM2.5 levels. By achieving 
a higher level of interpretability, this study 
aims to contribute to the field of environmental 
forecasting and support decision-making 
processes that can positively impact air quality 
management and public health.
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Table 1. Studies presenting PM2.5 concentration prediction

 
Area and Period Prediction 

horizon 
Model Features Engineering  and 

hyperparameters 
Lagged 
values 

Inputs Multi 
/single 
output 

Algiers, 2003-
2004 

24 h MLP Correlation - PM2.5,WS, RH, T single 

Algiers,  4 
months 

Not 
mentioned 

SVM Correlation, Dragonfly - PM2.5,WS, RH, T, P Single 

Taichung, 
Taiwan, 2017 

3 h AIF Hierarchical Clustering - WS, RH,T, P, A Single 

Gansu, China, 
2019-2020 

From 1 h to 
48 h 

G-LSTM Adjacency Matrix 4 h PM2.5, WS, WD, RH, T, P, 
Pr, CO,NO2, O3,SO2 

PM10, PM2.5 

Both 

Wayne, 
Michigan, USA 

- Lag-FLSTM Bayesian optimization 48 h PM2.5, WS, WD, Press, 
T, CO, SO2, NO2, PM10 

Single 

Beijing, China From 24 h 
to 168 h 

AE-Bi-LSTM Auto-Encoder - PM2.5, WS, P, Snow, T, 
Dewpoint 

Single 

Beijing, China, 3 
years 2015-2017 

- CNN-LSTM Mutual Information 
estimator 

- CO, SO2, O3, NO2, PM2.5, 
PM10, T, WD, WS, 

Single 

Beijing-Tianjin-
Hebe, China 

From 1 h to 
24 h 

LSTM Regression Tree, ANN - WS, WD, RH, T, 
Workday/Weekend, 
Pres,P,, Dew point, 

Season, Month, PM2.5 

Single 

2015-2016 - OrdinaryDifferential 
Equation 

Genetic Algorithm - PM2.5 Single 

London, UK, 
2004-2013 

1 h Linear Regression, 
Random Forest 

Generalized Additive Model - NO2, PM10, PM2.5, 
Latitude, T, Week day, 

WS, WD, RH, Roadside 
vs Background 

Single 

France, 2000-
2019 

1 day Gaussian Markov 
Random Field,Random 

Forest, 

Generalized Additive Model - PM10, PM2.5, AOD, P, T, 
WS. 

Single 

Italy, 2013-2015 1 day Random Forest - - AOD, PM2.5, PM10, WD, 
WS, Press, P, T 

Single 

Iran, Tehran, 
2015-2018 

1 day Random Forest, 
XGBoost 

RF Features Importance 
XgBoost Features 

Importance 
Permutation Importance. 

2 Days AOD, PM2.5, WS, 
RH,WD, P, Press, T, Dew 

Point 

Single 

Beijing, China, 
2018 

1 day Temperature-Nased Deep 
Belief Networks 

- - WS, P, T, PM10, SO2, 
CO2, Pess, RH 

Single 

Newport, 
Taiwan,  2012-

2017 

- XGBoost, RF, MLP, 
Decsion Tree, K neares 

neighbours 

- - - Single 

Wrocław, 
Poland, 2015-

2016 

1 hour RF RF Features Importance. - Road Traffic, T, WS, WD, 
RH, Press, week day, 

holidays, month. 
 

Single 

Christchurch, 
New Zealand 

1 h peak 
1 day peak 

boosted gradient machine - - T, WS,NO, NO2 Single 

Hohhot, Harbin, 
Wuhan, 

Changsha China 

1 h  , 2 h , 
and 3 h 

outlier robust extreme 
learning machine 

-nonconvex sparse 
regularization 

-wavelet transform 

- - Multi 
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Related works 

Many approaches have been used to predict PM2.5 
concentrations and they can be clustered into five 
categories: Deterministic models, Linear models, 
Machine learning based models, Hybrid models, 
and Satellite-derived Aerosol Optical Depth 
models [5]. Moreover, they can be categorised 
according to: the model inputs; the prediction 
horizon and the studied region.  A non-exhaustive 
review of recent studies proposing models to 
predict PM2.5 concentration is summarized 
in Table 1. In the table, weather parameters 
such as Wind Speed, Wind Direction, Relative 
Humidity, Pressure, Ambient temperature and 
Cumulative precipitation are noted respectively 
as WS, WD, RH, Pr, T and P. Anthropogenic 
event data is noted as A.  Despite its significant 
impact on the city's air quality and a lack of 
measurements on PM2.5 concentration in Algiers, 
there are a limited number of studies that present 
models to forecast PM2.5 in Algiers.  An MLP 
(Multi-Layer Perceptron) model to predict the 
long-term concentration of PM10 in Algiers is 
proposed in [6]. It was trained using a two year 
dataset of PM10 concentration and meteorological 
parameters (wind speed, relative humidity, and 
temperature), that were selected based on their 
correlation with PM10. However, the dataset is 
relatively old (2003-2004) and does not reflect 
the climatic and the anthological changes that 
have occurred during the recent decades in 
Algiers. An (Support Vector Machine) SVM 
model to predict the concentration of PM of 
different sizes, including PM2.5, in Algiers is 
described in [7]. To select the best model hyper-
parameters, the authors used a swarm algorithm 
called Dragonfly. The model showed relatively 
good performances. However, the dataset is 
limited as it only covers four months and does 
not include the yearly seasonality of PM2.5. 
Therefore, it affects the model generalization. 
An ordinary differential equation to model PM2.5 
is studied in [8]. The authors compared it with 
an autoregressive model and showed a relatively 
similar performance. However, the model was 
trained using a limited dataset covering only two 

months of daily PM2.5 concentration, leading to 
a weak generalization. Machine learning models 
are commonly used and are compared with linear 
models. To eliminate short-term fluctuations 
that affect the accuracy of the prediction. The 
PM2.5 times series is smoothed using wavelet 
transformation [9]. To mitigate the effects of 
the sudden change in climatic parameters and 
anthropogenic events, the authors described in 
[10], the use of an unsupervised method to cluster 
anthropogenic and environmental events. They 
found that unexpected events such as rainfall 
intensity, as well as wind speed, and road traffic 
have an impact on the concentration of PM2.5. 
Event data are collected from the forecast error of 
an Adaptive Iterative Forecast model. To tackle the 
lack of PM2.5 measurement in London, the authors 
in [11] developed a PM2.5 concentration prediction 
model. The model uses the concentration of 
PM10 and NO as inputs. Linear regression and 
Random Forest models are combined using 
GAM (Generalized Additive Model). The 
authors combined weather parameters to obtain 
the best-performing model. To predict PM2.5 
in Beijing, China, authors in [12], used TDBN 
(Temperature-based Deep Belief Networks) 
with multiple hidden layers and various sizes. 
The inclusion of topographical data as input to 
forecast PM2.5 in Newport, Taiwan is presented 
in [13]. The performance of RF in predicting of 
PM2.5 was investigated in [14]. The dataset was 
divided into many subsets, and after assessing 
the accuracies of each one, the authors concluded 
that RF is more accurate at predicting PM2.5 
during warmer periods. A binary classification 
approach is used to predict PM2.5 excess in 
[15]. The PM2.5 measurements were converted 
into two classes: Peak and No-Peak. However, 
since the number of peaks is always lower than 
the normal level, this results in an unbalanced 
dataset as the peaks represent a minority class. 
This, in trun, affects the model's generalizability. 
Recent studies have used deep learning models 
of various architectures to prediction PM2.5. 
Many monitoring stations in Gansu, China, are 
modelled as weighted graphs, and a Long Short-
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Term Memory (LSTM) network is designed for 
each station. The weight on the edge between 
two stations is included in the LSTM input of 
another station. The model can forecast PM2.5 
concentration in every station without the need 
to build a model for each station. According to 
the study [16], the model took into consideration 
the spatiotemporal information and, as a result, 
outperformed the ensemble learning model, 
using the same dataset. A Bayesian optimization 
was used to determine the values of the hyper-
parameters of a fully connected LSTM model. The 
model used lagged values of inputs, including the 
weather parameters. Compared with other models 
using the same dataset, the model gave the best 
performance. However, the used data to validate 
the model was randomly selected as described 
in [17]. With time series data, this could lead to 
poorly explanatory data since it lacks the time 
order of each observation. The authors in [18] used 
an Auto-Encoder to compress the feature space 
before passing it as input to an LSTM model. The 
later receives as input the lagged values of PM2.5, 
snow, precipitation, ambient temperature, wind 
speed, and direction. Compared to classic models 
such as CAMx, CMAQ, and other deep learning 
models, the proposed model demonstrated the 
best performance. The authors argue that for a 
long-term prediction, the model trained using 
only PM2.5 performed better than the one that 
includes weather parameters. However, for a 
short prediction horizon, the models that included 
weather parameters exhibited better precision. A 
Mutual Information Estimator for determining 
the correlation between times series of weather 
pollutant parameters from 384 stations across 
China is presented in [19].  The authors claim that 
this helps to capture spatiotemporal information. 
The selected features were then used to train a 
CNN-LSTM model. A multi-stage method to 
consider spatial and temporal information in the 
prediction of PM2.5 is described in [20]. Initially, 
for each monitoring station using LSTM, a spatial 
predictor and a temporal predictor are trained. 
Secondly, the output of each LSTM model is 
used in a Regression Tree model to predict PM2.5 

concentration. Lastly, an ANN (Artificial Neural 
Network) is used to predict PM2.5 concentration 
at a grid level.  Some studies included additional 
inputs such as AOD (Aerosol Optical Depth). As 
reported in [21] AOD and empirical data are used 
to predict the daily PM10 and PM2.5 concentrations 
in France. A RF model is used to impute the 
concentration of PM2.5 in the stations that measure 
only PM10 concentration. The missing values 
of AOD are also predicted using an RF model. 
GAM is used to combine the outputs of Linear 
Regression, RF and GMRF (Gaussian Markov 
Random Field). The same strategy is used in [22] 
to predict PM10 and PM2.5 in Italy, with the adding 
of a local predictor at the last stage to improve 
the prediction at a short time horizon. Using data 
from Tehran, Iran, authors in [23], investigated the 
contribution of AOD to enhance the performance 
of PM2.5 prediction model. 

Background on ensemble learning approach 

A Decision Tree (DT) is a machine-learning 
model that builds a tree by inducing the rules from 
the data. First, it selects the feature that splits the 
training sample and builds a decision node, and 
recursively builds sub-trees.  Feature selection is 
performed using the Gini impurity metric, which 
calculates how well a feature splits the samples. 
A DT is commonly used in ensemble learning, 
in which many models, called weak learners, are 
trained and their outputs are combined to obtain 
the final decision. Many techniques are used 
to combine the outputs. Bootstrap aggregation 
assigns an equal weight to each model output in 
the vote to determine the final output. A Random 
Forest (RF) [24] uses DT models and combines 
their outputs. Many DT models are trained 
using random samples of the training data and 
random subsets of the features. The AdaBoost 
algorithm, short for adaptive boosting [25] 
determines the parameters by re-assigning the 
weights to each instance, with higher weights to 
incorrectly classified instances. XGBoost [26] 
is DT-based model that uses a gradient boosting 
strategy. It applies the principle of boosting and 
provides a parallel tree boosting. LightGBM is 
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a recent improvement of the gradient boosting 
algorithm [27]. Its principal advantage over 
the other gradient boosting algorithms is its 
ability to resolve the scalability problem by 
adopting a leaf-wise tree growth strategy. It 
splits the tree leaf-wise with the best fit whereas 
other boosting algorithms split the tree depth-
wise or level-wise. Therefore, when growing 
on the same leaf in LightGBM, the leaf-wise 
algorithm can reduce loss more than the level-
wise algorithm and hence results in much better 
accuracy, which is rarely achieved by any of the 
existing boosting algorithms.  Another version 
of gradient descent is CatBoostGBM [28], 
which is a gradient descent algorithm designed 
to deal with categorical features and also avoid 
the overfitting problem. 

Materials and methods

Studied region 

Algiers is located in the centre of the north 
of Algeria, it is a coastal city bordered by 
the Mediterranean Sea on the North. It is the 
economic and the political capital of Algeria. 
According to the Office National of Statistics 
[29], in 2019 the estimated population was 8 
million habitants. The city has a high economic 
attraction; it hosts many central administrations, 
international corporations’ headquarters, and 
four active industrial zones. However, public 
transportation in Algiers has not expanded 
proportionally to the population growth, resulting 
in a heavy reliance on personal cars, according 
to a study by researchers, Algiers’s motor fleet 
reached 2 million in 2019 . The city also has a 
seaport where goods are primarily transported 
using trucks [30].

Dataset description

This study uses a dataset covering 3 years 
(from 2019 to 2021) of daily measures of 
climatic parameters and PM2.5 concentration. 
The measures of PM2.5 were collected 

by EPA US-Embassy station in Algiers 
that has the following GPS coordinates 
36.75595300548415; 3.039189599146588, 
the data is publiclly available from [31]. The 
climatic parameters are provided by the official 
Algerian meteorology agency (ONM). Table 
2 describes some statistical properties. Some 
important events occurred during the period of 
the dataset, the first is the COVID-19 lockdown, 
which started in March 2020 to December 
2020, and also during the second peak during 
August 2021. Moreover, the forest fires in the 
Tizi-Ouzou Mountains lasted for 7 days, from 9 
to 15 August 2021.  Fig. 1 illustrates a positive 
and negative correlation between PM2.5 and the 
climatic parameters.

 
Auto-correlation

Fig. 2 shows the auto-correlation of PM2.5, 
which measures the correlation between the 
lagged values and the current value of the PM2.5 
time series. The lagged values vary from 1 day 
to 35 days. As illustrated, the local peaks show 
a positive correlation between the value of 
the PM2.5 and its past values, specifically the 
day numbers are multiples of seven such as 7, 
14, 21, 28. This is also confirmed in Fig. 3, in 
which the weekly seasonality is clearly shown. 
This shows how PM2.5 concentration decreases 
during Friday and Saturday, which is the Algerian 
local weekend. During the weekday the PM2.5 
concentration increases specifically, on Sunday, 
Monday, Tuesday and Thursday. With a local 
peak on Tuesday.
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Table 2. Statistical properties of the dataset

 

 

Mean std min max Missing value 

PM2.5 67.78 15.15 40,00 172.00 10% 

Max_temperature (C°) 23.24 5.98 10,00 41.00 0% 

Min_ temperature (in C°) 19.42 5.91 0,00 34.00 0% 

Wind speed_Max_kmh 16.46 6.75 4,00 44.00 0% 

Ttemperature _Morning (in C°) 18.69 5.67 0,00 33.00 0% 

Temperature _Noon (in C°) 22.58 6.07 0,00 38.00 0% 

Temperature _Evening (in C°) 21.53 5.97 0,00 40.00 0% 

PreCIP_Total_Day (mm) 1.79 4.35 0,00 35.00 0% 

Humidity_Max_ (%) 63.46 12.78 34,00 94.00 0% 

Visibility_Avg (km) 9.90 1.05 6.875 20.00 0% 

Pressure_Max_ (mega bar) 1018.69 5.30 1006.00 1035.00 0% 

Cloud cover_Avg_(%) 28.80 25.28 0.00 94.375 0% 

Heat index_Max (C°) 24.13 6.66 10.00 44.00 0% 

Dew point_Max (C°) 14.46 4.79 2.00 26.00 0% 

Wind temp_Max (C°) 19.20 6.28 4.00 34.00 0% 

Weather_code_Morning 141.24 61.60 113.00 386.00 0% 

Weather_code-Noon 140.42 61.32 113.00 386.00 0% 

Weather-code-Evening 144.96 67.18 113.00 389.00 0% 

Total_Snow_mm 0.00 0.00 0.00 0.00 0% 

UV_Index 3.70 2.39 1.00 9.00 0% 

Sun hour 10.48 3.02 3.5 14.5 0% 
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Data normalisation and missed values 
imputation

As described in Table 2, PM2.5 times series 
contains 10% missed values. To maintain the 
time order and its impact, we imputed them 
using KNN (K Nearest Neighbours) imputer. 
This algorithm [32] uses a Euclidian distance to 
determine the K closest complete samples of the 
dataset. Then it fills in the missed values with a 
weighted average of the neighbours. Since the 

Fig. 1. Correlation between the features of the dataset

features are in different scales, we normalized the 
data using Eq. 1.

 (1)

Where min and max are functions which compute 
the minimum and maximum value, and X is the 
vector to be scaled.

𝑋𝑋𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑋𝑋𝑋𝑋 −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚⁡(𝑋𝑋𝑋𝑋)
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑋𝑋𝑋𝑋) − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚⁡(𝑋𝑋𝑋𝑋)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 
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Fig. 2.  Auto-correlation of PM2.5 time series 

Fig. 3. Weekly seasonality of PM2.5 in Algiers

Performances metrics

In order to compare the performance of the 
models, we used RMSE (Root of Mean Square 
Error),  MAE (Mean Absolute Error), and R2 (the 
coefficient of determination), as defined in (2) , 
(3), (4), respectively.

 (2)

(3)

(4)

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = √∑ (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛         

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ |𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝|𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖
𝑛𝑛𝑛𝑛                

 
𝑅𝑅𝑅𝑅2 = 1 −

∑ (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖

∑ (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦́𝑦𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖
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Data normalisation and missed values 
imputation

As described in Table 2, PM2.5 times series 
contains 10% missed values. To maintain the 
time order and its impact, we imputed them 
using KNN (K Nearest Neighbours) imputer. 
This algorithm [32] uses a Euclidian distance to 
determine the K closest complete samples of the 
dataset. Then it fills in the missed values with a 
weighted average of the neighbours. Since the 

Fig. 1. Correlation between the features of the dataset

features are in different scales, we normalized the 
data using Eq. 1.

 (1)

Where min and max are functions which compute 
the minimum and maximum value, and X is the 
vector to be scaled.

𝑋𝑋𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑋𝑋𝑋𝑋 −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚⁡(𝑋𝑋𝑋𝑋)
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑋𝑋𝑋𝑋) − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚⁡(𝑋𝑋𝑋𝑋)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 
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Where yi, measured is the ith measured value of a 
vector of n values, yi, predicted is the ith predicted 
value of the vector of n values. y´measuredis the mean 
of the measured value.

Model hyper-parameter

Hyper-parameters are configuration settings that 
are not learned from the data, but rather specified 
by the designer before training. Training machine 
learning models involves finding the best set 
of hyper-parameters that optimize the model's 
performance. In this study we used grid search, 
which is commonly used technique that allows 
systematically searching through a predefined 
grid of parameter values and finding the best 
combination. 

Results and discussion

The objective is to design a model which 
maps the input PM2.5(t),PM2.5(t-1)…PM2.5(t-k), 
WeatherFactor1(t),WeatherFactor1(t-1)….
WeatherFactor1(t-k),...WeatherFactorm(t),Wea
therFactorm(t-1),… WeatherFactorm(t-k) to the 
output representing the peak of the next week: 
max(PM2.5(t+1),PM2.5(t+2),PM2.5(t+3),PM2.5(t+4)
,PM2.5(t+5),PM2.5(t+6),PM2.5(t+7)). Where t is the 
day, WeatherFactor represents a weather factor, 
m is the number of the used weather factors, k 
is the number of lagged values, and max is a 
function that returns the maximum values of 
PM2.5. To train the models we used the first 70% 
of the dataset, the remaining 30% were used to 
test the performance of the models. We computed 
the peak of each week of the dataset to form the 
target variable.
To investigate the most impactful features, we 
used four combinations: (1) All the features 
and their lagged values, (2) Univariable, which 
includes PM2.5 lagged values, (3) Lagged PM2.5 
and some highly correlated climatic features, 
and (4) Lagged values of PM2.5 and selected 
climatic features without their lagged values. All 
the aforementioned combinations were tested 
using lagged values from one day to 30 days, 

employing 8 Ensemble Learning (EL) models: 
Support Vector Machine (SVM), Multi-Layer 
Perceptron (MLP), Decision Tree (DT), and 
five Ensemble Models, including AdaBoost, 
XGBoost, LightGBM, CatBoost, and Random 
Forest (RF). The total number of trained and 
evaluated models is 960.

All the features and their lagged values 

Lagged values of  21 climatic features, and PM2.5 
are used, from one day to 30 days. As described 
in Fig. 4, the best performing model is RF with 
RMSE of 3.648 and R2 of 0.937, for lagged values 
of 7 days. The next best-performing model is 
AdaBoost with RMSE of 4.770 and R2 of 0.892. 
The order changes with lagged values of 24 days, 
28 days, 29 days, and 30 days, when LightGBM 
outperformed RF. For example, LightGBM 
shows RMSE of 4.566 and R2 of 0.901 where RF 
is 4.832 and R2 is 0.889 for the lagged value of 
24 days. Fig. 4 shows the evolution of the RMSE 
according to the number of lagged values. Except 
for SVM, the performance of the other models 
starts to improve when inputs with a seven days 
lagged value are used. Fig. 5 shows the relative 
importance of the feature determined by using 
RF built-in method. The features X  its  j lagged 
value is noted X t_T_j. PM2.5 lagged values come 
first specifically PM2.5(t-1), PM2.5(t-5), PM2.5(t-2), 
PM2.5(t-3), PM2.5(t-4), after that comes the first 
climatic parameter Pressures_Max. As illustrated 
in Fig. 4, the lagged values of climatic parameters 
are not considered important in the RF model 
with a 7 day lagged value, which is the best 
performing model, except the dew-point and max 
temperature. 
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Univariables models

The models receive the PM2.5 lagged values as 
input. The size of the lagged values window 
was varied from 1 day to 30 days. For models 
with inputs of lagged values of 7 days, Adaboost 
showed the best performance with an RMSE of 
2.899 and an R2 of 0.960, followed by MLP 
with an RMSE of 2.915 and an R2 of 0.959. 
RF exhibited an RMSE of 2.918 and an R2 of 
0.959. This implies that MLP and Adaboost 
perform best when using only the lagged 
values of the time series. The order changes 

Fig. 4. The RMSE evolution according to the number of lagged values, models using all the features

Fig. 5. The RF feature importance using a 7 day lagged value, all features included

for lagged values of 21, 22, 24, 25, 26, 27, 28, 
29, and 30, in which LightGBM shows the best 
performance. For example, LightGBM with 25 
days of lagged values demonstrated an RMSE 
of 3.791. The best model with 23 lagged values 
is RF, with an RMSE of 3.888. Fig. 6 displays 
the RMSE of the models trained using inputs 
with lagged values from 1 day to 30 days. Fig. 
7 illustrates the feature importance of the RF 
model trained using 7 lagged values. The lagged 
values PM2.5(t-1) and PM2.5(t-5) seem to remain 
important.
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Fig. 6. The RMSE according to the number of lagged values of PM2.5, models use only PM2.5 no climatic 
parameters

Fig. 7. Features importance of a RF model trained only with PM2.5, with a 7 day lagged value
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Fig. 8. RMSE evolution according to the size of the lagged values window

Table 3. Comparing the performance of our models with other research's models

 
 
 
 

Study R2 RMSE MAE 

This work - Selected features and ony lagged PM2.5 0.956 3.039 2.495 

This work - Lagged values of both selected features and PM2.5 0.931 3.791 2.534 

This work - Only PM2.5 0.960 2.899 1.843 

This work - All features included 0.937 3.648 2.551 

Work of researchers (Ref 23) 0.8 9.93 13.58 

Work of researchers (Ref 18),  168 hours ahead - 7.93 - 

Work of researchers (Ref 33) - 3.58 7.44 

Work of researchers (Ref 17) - 3.482 1.85 

Work of researchers (Ref 16) - 3.405 2.60 

Work of researchers (Ref 20) 0.87 24.24 8.25 

Work of researchers (Ref 19) - 2.870 2.11 

Work of researchers (Ref 6) 0.85 13.780 - 

Work of researchers (Ref 12) 0.86 11.190 12.29 

Work of researchers (Ref 7) 0.98 1.926 - 

Work of researchers (Ref 10) - 1.780 1.300 

Work of researchers (Ref 22) 0.81 5.36 - 

Work of researchers (Ref 11) 0.95 - - 

Work of researchers (Ref 14) 0.57 - - 
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Model using lagged PM2.5 values and lagged 
values of selected features

The models were trained using inputs of PM2.5 and 
selected climatic parameters, which were chosen 
based on their correlation with the target PM2.5. 
Among all the tested combinations, the models 
using 7-day lagged values exhibited the best 
performance. The RF model demonstrated the best 
performance with an RMSE of 3.791 and an R2 of 
0.931, followed by LightGBM with an RMSE of 
4.345. Fig. 8 depicts that the order changes with 8 
lagged values, where LightGBM shows an RMSE 
of 4.3733, whereas RF shows an RMSE of 4.423. 
This order remains for lagged values of 23 days 
and 27 days. Fig. 9 displays the feature importance 
of the best-performing model. As illustrated, 
the PM2.5 lagged values come first, specifically 
PM2.5(t-5) and PM2.5(t-1). After that, temperature 
appears to be the most significant weather factor.
Lagged values of PM2.5 and selected climatic 
features without their lagged values

We trained the models using an input composed 
of lagged values of PM2.5 and no lagged values 
of the selected weather parameters. This was 
done in order to determine how much the lagged 
values of weather factors can impact the models' 
performance. As shown in Fig. 10, the best 
performing model was found to be the MLP for 
8 day lagged values, with a RMSE of 3.039, 
followed by RF with a RMSE of 3.505. 
The order changes with 9 lagged values, the latter 
shows a RMSE of 3.386 and MLP shows 3.623.  
LightGBM outperforms both models for 22 and 
27, 28 and 29 lagged values, for example with 29 
lagged values it shows a RMSE of 3.934. Fig. 11 
illustrates the importance of the features, it is noted 
that PM2.5 lagged values keep their importance.
As concluded in [18], the climatic parameters 
did not improve the performance of the models 
when predicting over a large time horizon. Models 
using PM2.5 only performed better than those 
using climatic parameters. On the other hand, 
when we used all of the climatic parameters, the 
model performed better than those with selected 
climatic parameters. Also, the lagged values of 
the selected climatic parameters did not show 

any improvement; on the contrary, they tended to 
worsen the prediction.

To summarize, based on our analysis, we find 
that for a smaller lagged value window size, 
Random Forest (RF) and Adaboost demonstrate 
the best performance. However, as the lagged 
values window size exceeds 22 days and above, 
LightGBM emerges as the most effective model. 
Intriguingly, the concentration of PM2.5 from the 
previous day appears to be the most crucial feature. 
This finding can be attributed to the tendency of 
PM2.5 to stagnate between two days under certain 
climatic conditions. The second most important 
feature is the concentration of PM2.5 from the 5th 
previous day. This observation can be explained 
by the persistence of the peak from the last week, 
which continues to impact the PM2.5 concentration 
during the peak of the following week. As 
illustrated in Fig. 3, the weekly seasonality of 
PM2.5 results from road traffic patterns, leading 
to occasional peaks occurring on Monday and 
Tuesday, while Fridays and Saturdays coincide 
with the Algerian weekend. This temporal pattern 
contributes to the significance of the 5th previous 
day's PM2.5 concentration as a predictive feature. 
These findings shed light on the significant role of 
lagged values and specific features in accurately 
forecasting the weekly peak of PM2.5. Such insights 
can enhance our understanding of air quality 
dynamics and assist in developing more effective 
environmental forecasting strategies.
Table 3 shows the performances of the proposed 
models and models from related works, specifically 
those designed to predict PM10 and PM2.5 in Algiers 
and cities with similar climatic conditions. It is 
worth mentioning that this comparison aims to 
show how the proposed models perform and not 
to compare between the models, since each one is 
designed using different data concerning different 
periods and cities. In terms of R2, the [7] model 
outperforms our model. However, it has only been 
designed and tested using 4 months of data, and 
did not include the seasonality aspect of PM2.5. In 
terms of RMSE  model described in [19] performed 
similarly to our model. Other study shows a better 
performance than our model [10].
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Fig. 11. RF features importance using 7 day lagged values of PM2.5 and no lagged values of climatic parameters

Fig. 9. The RF features importance model using selected climatic parameters and PM2.5, 7 day lagged values

Fig. 10. RMSE evolution according to the size of the lagged values window
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Conclusion

Efficient prediction of PM2.5 peaks can be achieved 
with models that do not require expensive 
computing power. The model proposed in this 
paper is easily designed, deployable and can 
be integrated into the decision-making process. 
Unlike deep learning models, machine learning 
models are often considered more interpretable 
and offer the possibility to inspect the importance 
of each feature for the model output. The study 
focused on Algiers, North Algeria, where road 
traffic was found to be the primary source of 
pollution. Weekly seasonality was confirmed, 
and this was utilized to improve the prediction 
accuracy of the proposed model. The quality and 
reliability of the proposed models were evaluated 
using statistical metrics such as RMSE, MAE, 
and R2. Ensemble learning models were found 
to accurately forecast PM2.5 peaks, with feature 
selection methods significantly impacting model 
outcomes. The use of lagged values with a window 
size of multiples of seven significantly reduced 
the model's prediction error. The Adaboost model 
performed the best when using only PM2.5 and 
a 7-day lagged value. RF outperformed other 
models except for input combinations with large 
input size, where lightGBM outperformed RF. 
The use of lagged values of climatic parameters 
did not improve the performance, as changes in 
climatic parameters do not immediately affect 
the weekly peak of PM2.5 concentration. The 
model with selected climatic parameters and only 
PM2.5 lagged values showed better performance 
than those using lagged values of both climatic 
parameters and PM2.5 values. The built-in 
feature importance of the random forest model 
confirmed that the lagged values of PM2.5 are 
more important than climatic parameters, even 
those selected according to their correlation with 
the PM2.5. Future work includes incorporating 
data on road traffic, emission source, and optical 
aerosol depth, as well as visualizing pollution 
dispersion in the geographic area to aid decision-
makers in managing peak periods. 
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