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Abstract 
Background: Insecticide resistance is one of the most important problems associated with the control of Musca domes-

tica, due to the potential of the rapid development of resistance to different chemical insecticides. The present study was 

carried out to evaluate dichlorvos resistance in the house fly populations collected from central regions of Iran, Isfahan 

Province and Chaharmahal and Bakhtiari Province, during 2017 to 2019. 

Methods: Bioassays were carried out using a standard topical application method as well as a fumigation method. The 

Koohrang population (susceptible) with the lowest LD50 values to dichlorvos was chosen to calculate the resistance rati-

os (RR). Altered sensitivity of acetylcholinesterase (AChE), a target enzyme for dichlorvos, was investigated. 

Results: According to the results, very high levels of dichlorvos resistance were observed in the Mobarake population 

(RR= 80.25-fold by topical application and 33-fold by fumigation bioassay), and Isfahan population (RR= 107.30-fold 

by topical application and 43-fold by fumigation bioassay) compared to the Koohrang population. Acetylcholinesterase 

of the Koohrang population was the most sensitive to inhibition by dichlorvos based on the determination of median 

inhibitory concentration (IC50), but AChE of Mobarake and Isfahan populations were 741.93- and 343.94- fold less sen-

sitive to inhibition. 

Conclusion: The insensitivity of AChE was possibly involved in dichlorvos resistance in the house fly populations.  
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Introduction 
 

The house fly, Musca domestica Linnaeus, 

is a crucial pest in medical and veterinary. 

House fly is a vector of different kinds of 

pathogens in humans and animals. The flies 

not only act as a source of annoyance but also 

transfer pathogens mechanically when mov-

ing to residential, commercial, livestock, and 

poultry places (1). The chemical control, of-

ten against the adult stage of house flies, is 

mainly by synthetic insecticides such as pyre-

throids, neonicotinoids, organophosphates, and 

carbamates (2-5). In the dairy and poultry in-

dustry, house flies are considered as a major 

pest, and for its control, pyrethroids and or-

ganophosphates are extensively applied in Iran. 

Several organophosphorus (OPs) compounds 

including of dichlorvos, diazinon, fenchlorphos, 

malathion, fenthion, dimethoate, and trichlor-

fon are used for house fly control (4). Organ- 

 

 
ophosphorus bind to AChE, which leads to an 

accumulation of acetylcholine (ACh) in cho-

linergic synapses and subsequently disrupt nerv-

ous functions, resulting in paralysis and death 

(6). 

Among OPs, dichlorvos (O, O- dimethyl-O-

2,2-dichlorovinylphosphate or DDVP) has been 

recognized as one of the widely used insecti-

cides for the management of house fly and 

other arthropod pests (7). However, the World 

Health Organization has classified dichlorvos 

as a highly hazardous pesticide (8), and harm-

ful to human and animal health by long-term 

low-level dietary uptake of food containing 

dichlorvos residues (9). Furthermore, there are 

several reports on the development of dichlor-

vos resistance in this species all over the 

world (10-16). Development of resistance may 

cause increasing the dosage and frequency of 
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insecticide applications in the residential, com-

mercial, livestock, and poultry places, which 

enhances the cost of control, and it also has 

negative impacts on the environment (17, 18).  

Also, metabolic resistance via the enhanced 

activity of detoxification enzymes has been as-

sociated with resistance to OPs, and modified 

AChE has been reported as the main mecha-

nism of resistance (19, 20). Biochemical char-

acterization of altered AChEs has shown that 

there is a wide range of insensitivity between 

insect species and between OPs compounds 

(21). Insensitivity of AChE to OPs insecticides 

in house fly was documented for the first time 

in 1973 (22). Several mutations in the AChE 

gene of the house fly have been proved to be 

involved in OPs resistance (21). Despite nu-

merous cases of insecticide resistance in the 

house fly, there is a broad spectrum in insecti-

cide sensitivity between populations. Thus, the 

assessment of resistance to different insecti-

cides in regional populations of house flies can 

provide useful information for the fly control 

and insecticide-resistant management programs 

(17, 23). In the present study, efforts were made 

to understand dichlorvos resistance status and 

mechanisms in the different house fly popula-

tions. 

 
Materials and Methods 
 

Chemicals 

Technical grade of dichlorvos insecticide 

(98.7%) was provided by Golsam Sepahan Com-

pany (Iran), acetylthiocholine iodide (ATChI), 

Coomassie Brilliant Blue G-250, bovine serum 

albumin, 3,3′,5,5′-, fast blue RR salt were pur-

chased from Sigma-Aldrich (Germany). 

 

Insect rearing 

The house fly populations were collected 

from dairies in Mobarake (Isfahan Province- 

32.3347°N, 51.5571°E) and Isfahan (Isfahan 

Province -32.6546° N, 51.6680° E). The pop-

ulation of Koohrang (Chaharmahal and Bakhtiari 

Province -32.3297° N, 50.1112° E) was col-

lected from a rural area where insecticides had 

not been used. Adults were reared under la-

boratory conditions of 25±2 ºC, 16:8 (L: D), 

and 60±5% relative humidity. The adult diet 

consisted of sesame meal and wheat bran (1: 

3) in a plastic container. Also, a mixture of wa-

ter and sugar (10%) was provided in another 

plastic container. Larvae were transferred to 

plastic buckets containing 20g a diet, included 

sesame meal and wheat bran (1: 3), 1.5g milk 

powder, 1.5g honey mixed with 8ml of water. 

Female house flies were used for bioassays. 
 

Topical and fumigation bioassays 
Topical bioassays were followed, as de-

scribed by Kasai et al. (24). Briefly, technical 

grade dichlorvos solved in acetone, and then 

1μL were topically applied by micropipette 

(Nichiryo Model 8100, Tokyo, Japan) on the 

notum of CO2-anesthetized flies (3–5-day-old 

females, n= 20 flies per concentration/per rep-

lication). In control groups, flies only received 

topical application of acetone. The treated flies 

were released in plastic jars (250ml) contain-

ing cotton moistened with a 20% sugar solu-

tion. Mortality data were recorded after 24h 

exposure to insecticide. For bioassays, 5 to 6 

concentrations of insecticide were prepared as 

serial dilutions in acetone and replicated three 

times. 

The fumigant bioassay was conducted, ac-

cording to Rossi et al. (25), with slight modi-

fications. Briefly, female house flies (3–5-days 

adult) were placed in a fitted glass jar (650ml). 

Serial dilutions prepared dichlorvos concen-

trations in acetone were then placed on a cot-

ton pad inside a Petri dish; the dish was sealed 

to prevent fly contact and was placed inside a 

glass bottle. The bottle was sealed tightly and 

kept in a home temperature (25±2 °C) for 30 

min. Mortality data were recorded after 30min 

of exposure. Each test was replicated three times. 
 

Acetylcholinesterase activity and inhibition 

by dichlorvos  

Twenty heads of 3–5-day old females from 

each population were homogenized in 1mL of 
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sodium phosphate buffer (0.1M, pH 7.5), con-

taining 0.1% (w/v) Triton X-100 in ice-cold 

conditions. After centrifugation (12,000g at 4 

°C for 15min), the supernatant was used for the 

enzyme assay. The AChE activity was assayed 

based on the method of Ellman et al. (26) with 

slight modifications. The ATChI (10 mM) was 

used as the substrate. To determine median in-

hibitory concentrations (IC50s) aliquots (10μL) 

series of dichlorvos concentrations mixed with 

20μL enzyme source and 70μL sodium phos-

phate buffer solution and the mixture was in-

cubated for 5min at room temperature (25±2 

°C). The reaction was started by adding 900 

μL of substrate - reagent solution, containing 

1mL ATChI, 250μL DTNB reagent (10mM) 

dissolved in 8.750mL sodium phosphate buff-

er (0.1M, pH 7.5). The control treatments were 

prepared by adding 10μL of acetone without 

insecticide. The acetone concentration of all re-

actions was 1%. The change in absorbance was 

measured using a spectrophotometer (Unico, 

Model UV-2100, USA) at 412nm for 10min 

with a read interval of the 30s at room temper-

ature (25±2 °C). The tests were replicated three 

times. Protein content was determined by the 

Bradford method (25), and bovine serum al-

bumin was used as the standard. To convert ab-

sorbance into molarity an extinction coefficient 

of 13.6mM−1 cm−1 was used. The specific ac-

tivity of AChE expressed as nmol of acetylthi-

ocholine iodide hydrolyzed per min per mg pro-

tein (nmol min−1 mg of protein−1). The inhibition 

rate was calculated as a percentage with respect 

to the control by the following formula (26): 

% Inhibition= 100– [(Enzyme Activity of 

Treatment÷ Enzyme Activity of Control)× 100] 
 

Statistical analyses 

Percentage mortality data of the topical ap-

plication and fumigant assay were corrected by 

using Abbott formula (27), and data were in-

putted to the POLO-Plus software for analysis 

(28). Median inhibitory concentration (IC50) val-

ues were determined by probit analysis between 

the inhibition percentages against the insecticide 

concentrations (29). The AChE enzyme activi-

ties were subjected to ANOVA, and differences 

among means were compared by the LSD test  

(P< 0.05) using SAS 9.4 software (30).  

 
Results 
 

Topical and fumigation bioassays 

The LD50 values of dichlorvos in the Isfa-

han, Mobarake, and Koohrang populations by 

the topical application were estimated 515.29, 

385.22, and 4.80μg/fly, respectively. The 

Koohrang population exhibited the lowest 

LD50 value and was used as the reference strain 

to evaluate the resistance ratios (RR). There-

fore, high RR values were observed in Mo-

barake (80.25-fold) and Isfahan (107.30- fold) 

populations (Table 1). 

The fumigation assay of the dichlorvos in-

secticide on female house flies on different pop-

ulations was performed, and the LD50 values 

against dichlorvos in the Isfahan, Mobarake, 

and Koohrang populations were 1.34, 1.00, and 

0.03 (μL/L), respectively (Table 2). Fumigant 

bioassay revealed high resistance levels to 

dichlorvos in Mobarake and Isfahan popula-

tions, 33- and 43-fold, respectively. 

 
Acetylcholinesterase activity and inhibition 

by dichlorvos  

The activity of AChE was highest in the 

Mobarakh population (155.65±2.83nmol/min/ 

mg Protein) and Isfahan population (234.79± 

7.07nmol/min/mg protein). It was lowest in the 

Koohrang population (79.25±2.28nmol/min/mg 

protein) (Table 3). The AChE activities in the 

Mobarakh and Isfahan populations were signif-

icantly higher than that of the Koohrang popu-

lation (P< 0.05). Sensitivities of three AChEs to 

dichlorvos as an inhibitor were also determined. 

The estimated IC50 values by series of dichlorvos 

concentrations showed the insensitivity of AChE 

to the insecticide in the resistant populations. Ac-

etylcholinesterase of the Koohrang population 

was the most sensitive, and AChEs of Mo-

barakh and Isfahan populations showed insen-

sitivity to dichlorvos (Table 3). 
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Table 1. Contact toxicity of dichlorvos insecticide on the field populations of house flies 
 

Insecticide populations n LD50 (μg/fly) 

(95% FL) Slope±SE Chi- square Df RR 

dichlorvos 

Koohrang 360 4.80 (4–5.8) 1.885±0.173 0.72 4 - 

Mobarake 322 385.22 (296–502) 1.337+-0.156 0.8 4 80.25 

Isfahan 300 515.29 (387–710) 1.242±0.161 0.078 4 107.3 

 
n: number of flies used in bioassays 

FL: fiducial limits 

DF: degrees of freedom 

RR: LD50 of Mobarake or Isfahan/ LD50 of Koohrang 

 
Table 2. Fumigant toxicity of dichlorvos on the field populations of house flies 

 

Insecticide populations n1 LD50
 (μL/L) 

(95% FL) Slope±SE Chi-square Df RR 

dichlorvos 

Koohrang 360 0.03 (0.029–0.044) 1.651±0.167 0.845 4 - 

Mobarake 360 1.00 (0.87–1.3) 1.565±0.158 0.174 4 33 

Isfahan 360 1.3 (1–1.6) 1.479±0.154 0.229 4 43 

 

n: number of flies used in bioassays 

FL: fiducial limits 

DF: degrees of freedom 

RR: LD50 of Mobarake or Isfahan/ LD50 of the Koohrang population 

 
Table 3. Mean AChE activity (nmol/min/mg protein) and its inhibition by dichlorvos 

 

populations AChE RatioA IC50 (M) RatioB 

Koohrang 79.25±2.28c - 3.14×10 -7±1.56 - 

Mobarake 155.65±2.83b 1.96 2.32×10 -4±5.78 741.93 

Isfahan 234.79±7.07a 2.96 1.08×10 -4±2.33 343.94 

 

A: ratio of enzyme activity in the resistant population/ enzyme activity in the susceptible population 

B: ratio of IC50 in the resistant population/ IC50 in the susceptible population 
a, b, c significantly different by applying LSD (P< 0.05) 

 
Discussion 
 

Dichlorvos is one of the most common in-

secticides used for house fly control in cattle 

farms of Isfahan Province. Therefore, moni-

toring of susceptibility of the fly to dichlorvos 

is necessary for managing programs of M. do- 

 

 
mestica. To our knowledge, no information is 

available on the resistance status of house flies 

of Iranian cattle farms. In the present study, lev-

els of resistance to dichlorvos were determined 

through both topical and fumigation applica-
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tion methods in different field-collected pop-

ulations.  

Because of a known reference strain was 

not available, in this study the most suscepti-

ble strain, i.e. the Koohrang population, was con-

sidered as the reference strain. Although this 

strain possibly was not fully susceptible, field 

populations showed significantly high resistance 

ratios, justifying the resistance mechanisms. Ac-

cording to the results, high RR values to di-

chlorvos were observed in both cattle farm pop-

ulations of Mobarake and Isfahan, ranging from 

33- to 107.30-fold. The RR values in topical bi-

oassay were estimated higher than fumigant 

bioassay in the resistance populations of the 

house fly. It could be associated with the cu-

ticular penetration factor involved in the re-

sistance that can decrease insecticide pene-

tration (31, 32). Several studies have already 

documented house fly resistance to dichlorvos 

and other OPs. Wang et al. (35) reported a 14- 

to 28-fold resistance to dichlorvos. Moderate 

levels of resistance have also been reported 

from the house fly population in Argentina (33) 

and Denmark (34). Resistance to dichlorvos has 

also been found in other medically important 

Diptera, such as Aedes aegypti (35). Also, low 

RR value to temephos was observed in Anoph-

eles stephensi in the Chabahar sea of Iran (36). 

Furthermore, OPs resistance has been investi-

gated in crop pests. High levels of resistance 

to OPs insecticides were reported in Spodop-

tera litura (229-fold) (37) and Tetranychus ur-

ticae (4164 -fold) (38).  

The main mechanism of OPs resistance is 

altered AChE, which led to enzyme insensi-

tivity to inhibition by insecticides. Also, 2- to 

5- fold increases in the activity of AChE were 

associated with OPs resistance in Drosophila 

melanogaster and M. domestica, respectively. 

The higher AChE activity in strains with al-

tered AChE could be directly contributed to OPs 

resistance or compensate for decrease AChE hy-

drolysis (11, 39). Soltani et al. (43) have report-

ed the altered AChE in Anopheles stephensi in 

the south of Iran, which causes resistance to 

temephos insecticide. In this study also an in-

crease in AChE activity was observed in re-

sistant populations of Mobarake (1.96-fold) 

and Isfahan (2.96-  fold).  

Walsh et al. (21) have reported a higher 

than 500-fold insensitively of AChE to dichlor-

vos in house fly resistant populations. Moreo-

ver, it has reported that resistance to OPs in 

Schizaphis graminum contributed to increased 

AChE activity through elevated expression of 

the AChE gene (40) and AChE insensitivity 

(41). Based on the biochemical assays on the 

AChE inhibition by dichlorvos and obtained 

IC50 values, target-site modification is possi-

bly involved in resistance to dichlorvos in house 

fly populations. The AChE of the Koohrang 

population was most sensitive, while AChE of 

Mobarake and Isfahan populations showed 

741.93- and 343.94- fold insensitivity to di-

chlorvos. Several point mutations in the AChE 

gene can confer enzyme insensitivity to inhi-

bition by OPs insecticides (38, 42-44). 

Metabolic detoxification has been demon-

strated to be a key OPs resistance mechanism 

in the house fly, which is mediated by cyto-

chrome P450 monooxygenases (P450s), the 

glutathione S-transferases (GSTs) and the car-

boxylesterases (CarEs) (45, 46). Ahmadi et al. 

(5) determined detoxification enzyme activi-

ties in Koohrang, Mobarake, and Isfahan pop-

ulations and reported significantly lower ac-

tivities of P450s, GSTs, and CarEs in the 

Koohrang population than that of Mobarake 

and Isfahan populations. P450s have been im-

plicated to play major role in conferring OPs 

resistance in house fly strains. For example, 

OPs resistance in the Rutgers strain has been 

linked to the overexpression of P450s (47). 

Thus, enhanced activity of P450s in Mobar-

ake and Isfahan populations (more than 2.2 

folds) possibly contribute to dichlorvos re-

sistance. In house flies, enhanced production 

of CarEs has been implicated as contributing 

to resistance to OPs and other insecticides 

(48). In the ALHF house fly strain, OPs re-

sistance have been found due to increased ac-
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tivities of CarE (49). The CarE activity in the 

OPs resistant strains of Mobarake and Isfahan 

was reported significantly higher than that of 

Koohrang population (3.7- and 2.01-fold, re-

spectively). OPs resistance in house flies has 

been also linked to increased activities of GSTs 

(45). Previously, 4.9 and 5.2- fold higher ac-

tivities of GSTs were found in Mobarake and 

Isfahan populations compared to the Koohrang 

population (5). It seems that enhanced detox-

ification by P450s, GSTs, and CarEs is an im-

portant mechanism of dichlorvos resistance in 

Mobarake and Isfahan populations. The en-

hanced detoxification could also be responsi-

ble for cross-resistance to other insecticides in 

house fly populations (50). 

Insecticide resistance can increase costs and 

doses of insecticides in the house fly control, 

as well as decrease inefficiency of control (18). 

It also has environmental pollution problems 

and human health risks and negatively effects 

the non-target organisms (51).  

 
Conclusion 
 

The present study revealed high levels of 

dichlorvos resistance in house fly populations. 

AChE insensitivity and enhanced metabolic 

detoxification identified as the conferring mech-

anisms. However, the molecular mechanisms 

involved in AChE insensitivity and enzyme 

detoxification remain uncharacterized. Further 

studies in Iranian cattle farms are needed to 

confirm these findings and to design manage-

ment strategies to delay the development of 

insecticide resistance in house fly populations. 
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