## **Original Article**

# Public Perceptions of Risk Factors for Zoonotic Cutaneous Leishmaniasis in an Endemic Area: A Case-Control Study in the Mehran District, Ilam Province, Southwestern Iran (2022–2023)

Ali Jalilian<sup>1</sup>, Seyedeh Zahra Parkhideh<sup>2</sup>, Alireza Zahraei-Ramazani<sup>1</sup>, Ali-Ashraf Aivazi<sup>3</sup>, Reza Pakzad<sup>4</sup>, Morteza Akbari<sup>3</sup>, Asadollah Jalali-Galousang<sup>3</sup>, Nasrin Rezaei<sup>5</sup>, Sayena Rafizadeh<sup>6</sup>, \*Yavar Rassi<sup>1,7</sup>

<sup>1</sup>Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

<sup>2</sup>Department of Medical Entomology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

<sup>3</sup>Department of Vector Biology and Control, School of Health, Ilam University of Medical Sciences, Ilam, Iran

<sup>4</sup>Department of Epidemiology, Faculty of Health, Ilam University of Medical Sciences, Ilam, Iran

<sup>5</sup>Health Center of Mehran, Ilam University of Medical Sciences, Ilam, Iran

<sup>6</sup>Ministry of Health and Medical Education, Tehran, Iran

<sup>7</sup>Arthropod-Borne Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran

\*Corresponding author: Dr Yavar Rassi, E-mail: rassiy@tums.ac.ir

(Received 28 Sep 2024; accepted 25 Jan 2025)

#### Abstract

**Background:** Zoonotic cutaneous leishmaniasis (ZCL) is one of the most prevalent vector-borne diseases. The understanding of the knowledge, attitudes, and practices regarding ZCL in Iran has not been thoroughly examined. This investigation focused on the risk factors for ZCL within an endemic region in the Mehran District of Ilam Province.

**Methods:** This case-control study was conducted from 2022 to 2023. Cases (n=372) were selected using the incident case approach from the Centers for Disease Control (CDC). Similarly, 372 controls were chosen through cluster random sampling from the general population. To measure exposure to various risk factors, a validated, research-developed questionnaire was utilized. Binary logistic regression modelling was employed to assess the association between the development of leishmaniasis and several risk factors. A p-value of 0.05 was set as the threshold for statistical significance.

**Results:** Living near rodent nests or holes (Odds Ratio: 6.51), having bathroom and toilet located outside the house (OR: 5.88), residing close to farms or gardens (OR: 8.26) or specific plants (OR: 6.22), observing a rodent near one's home (OR: 2.66), and the accumulation of building debris near residential areas (OR: 13.03) significantly increased risk of developing cutaneous leishmaniasis. In contrast, the use of insecticides (OR: 0.03) and lotions or other insect repellents (OR: 0.31) significantly decreased the risk of this disease.

**Conclusion:** The development of ZCL in the Mehran district, Ilam province, southwest Iran, is hindered by inadequate health education and public awareness regarding the disease, as well as insufficient adherence to Iran's care guidelines.

**Keywords:** Sand fly; Leishmaniasis; Risk factors; Environmental; Behavioral

#### Introduction

A vector-borne illness called leishmaniasis is spread to humans and other animals by the bites of infected female sand flies (1). Leishmaniasis is classified into 3 main forms: cutaneous (ACL and ZCL), mucocutaneous, and visceral (3–5). There have been reports of leishmaniasis in Iran, both cutaneous and visceral. It

is estimated that between 700,000 to 1 million new cases of leishmaniasis occur annually worldwide (2). Visceral leishmaniasis (VL), also known as kala-azar, is fatal if left untreated in over 95% of cases, and there are between 20,000 to 40,000 documented deaths from this form of disease each year worldwide. In Iran,

http://jad.tums.ac.ir Published Online: March 31, 2025 Phlebotomus papatasi and Leishmania major are the main vectors and causative agents of ZCL, respectively (3–9). Phlebotomus caucasicus, Ph. mongolensis, Ph. andrejevi, Ph. alexandri, and Ph. ansari are the other sand flies that are considered to be secondary or probable vectors of Leishmania among reservoir rodents (10–13).

One of the primary methods for vector control is the residual spraying of various insecticides, which the WHO recommends in regions associated with human cases; however, this method has not proven to be entirely successful (14, 15).

The most significant risk factors for the increase in leishmaniasis incidence and prevalence are those that are man-made and have been discussed in this study. Environmental factors, socioeconomic status, demography, and human behaviour pose major risks for human leishmaniasis (16). Additionally, an increase in certain risk factors, such as widespread migration, deforestation, urbanization, and immunosuppression, is unquestionably man-made and is primarily responsible for the rise in leishmaniasis occurrence globally. Human exposure to infected sand flies may increase as a result of changes in the environment and population movements, which are likely to alter the number, range, and density of vectors and reservoirs (16). Leishmaniasis typically only occurs in poverty-stricken areas with poor access to healthcare (17). The majority of leishmaniasis cases have been reported in individuals whose homes are situated close to garbage dumps (16). Leishmaniasis cases can be decreased by adopting sleeping practices such as sleeping indoors, utilizing nets and mosquito nets, and spraying (16). According to Kassiri et al. (18), men are more likely than women to contract leishmaniasis. This difference in incidence may be caused by men working outside and coming into contact with vectors of the disease. Another study carried out in the province of Esfahan discovered a strong correlation between leishmaniasis transmission and economic status (19). Some

studies conducted in Iran show poor levels of knowledge, attitudes, and practices (KAP) towards leishmaniasis. According to a survey conducted in Abuzid Abad, Kashan City, Esfahan Province, 59.8% of female students had a good knowledge about the life cycle and prevention of leishmaniasis (20). In a survey carried out in the central Iranian district of Esfahan, it was shown that while over 90% of participants knew well about the disease's symptoms, only 28.6% were aware of its vector (21). A further study conducted in Yazd, which is close to the province of Esfahan, found that approximately 21% of the cases were wellinformed about the leishmaniasis vector (22). More than half of respondents to a KAP survey on visceral leishmaniasis in Sudan (Kalaazar) believed the disease was less dangerous than malaria, with 95.6% of respondents knowing about the disease. Regarding breeding sites and biting times, respondents also possessed very little knowledge (23). According to a study conducted in Colombia, almost 35% of the cases believed that sand flies served as the leishmaniasis vector (24). According to the findings of a survey conducted in Nepal, 1-2.2 percent of participants agreed that sand flies were the source of Kala-azar (25). According to a study conducted in the Musian district in Ilam Province, a suitable health education course for family members, particularly students and health volunteers, should be prepared and organised to help them better understand the disease's main factors, modes of transmission, and prevention to control and reduce the prevalence of zoonotic cutaneous leishmaniasis (26).

This research represents the first investigation into the environmental and behavioral risk factors associated with zoonotic cutaneous leishmaniasis in the Mehran District, an endemic area in Ilam Province, southwestern Iran. Health officials can more effectively control the disease in the region by raising public awareness of its risk factors. It is important to note that the Mehran District is one of the primary ZCL foci, where the main reservoir host

(Tatera indica) and vector (Ph. papatasi) are well-established (27, 28). This province has the highest rates of yearly incidence of cutaneous leishmaniasis, according to data released in 2010–14, as a result of a rise in cases in recent years. With 30,000 residents and a distance of 85 km from the province's centre, Mehran City is one of the most significant endemic areas for cutaneous leishmaniasis, and it is responsible for the majority of the disease's annual cases in the province. According to reports, between 2016 to 2021, the disease's incidence rate in Mehran City was 1933, 1316, 437, 220, 450, and 146 cases per 100,000 inhabitants, respectively. It appears that fewer people are visiting healthcare centres and reporting cases of this disease as a result of the COVID-19 outbreak. It is hoped that the findings of this investigation will aid in the decrease and management of cutaneous leishmaniasis in Ilam Province.

#### **Materials and Methods**

#### Study design and location

This case-control study was conducted in Mehran City, located in the western region of Ilam Province (Fig. 1). At an elevation of 155 meters, Mehran is situated at 33°7′15″ N latitude and 42°9′45″ E longitude. Summer temperatures reach beyond 50 °C, and there is roughly 250 mm of rainfall on average per year. The city is about 12 km from the boundary line between Iran and Iraq. The location, climate, and shared border with Iraq have significantly influenced the epidemiology of the disease in Mehran (29).

#### Sample size

Based on a study by Lehlewa et al. (30), the prevalence of sleeping indoors- a known risk factor for leishmaniasis- was 73.1% in the case group and 84.8% in the control group. Using the formula below, with a type I error of 0.05 and power of 80%, the sample size for each group was determined to be 372 individuals.

$$n = 2 * \frac{(z_{\alpha} + z_{\beta})^{2} * [(p_{1} * q_{1}) + (p_{2} * q_{2})]}{(p_{1} - p_{2})^{2}}$$

$$= 2 * \frac{(1.96 + 0.84)^{2} * [(0.731 * 0.269) + (0.848 * 0.152)]}{(0.731 - 0.848)^{2}} = 372$$

#### Case definition and its selection

Individuals with cutaneous leishmaniasis, confirmed by either a physician or a reference laboratory, were classified as cases. The incident case approach was used for case selection. After the study team was established at the study location, all newly reported cases to the Centers for Disease Control (CDC) were included as cases for this study.

#### Control definition and its selection

The control group consisted of healthy individuals with no history of leishmaniasis. To select the control group, a sample from the general population of Mehran City was selected randomly. First, the city was divided into several distinct areas based on the number of available health centres. Then, the population size of each distinct was determined, and the number of samples that should have been selected from each distinct was determined by a proportional-to-size approach. A clustering map for each distinct was created, and several clusters were selected at random. The sampling team was then dispatched to the southeast corner of the chosen cluster and moved in a clockwise direction, inviting households in that cluster to participate in the study as the control group. Throughout this process, the study's objectives were explained, and informed consent was obtained from the participants.

#### Inclusion and exclusion criteria

The study's inclusion criteria required participants to be capable of responding to questionnaires, possess basic literacy skills, and reside in an endemic area. Individuals with mental or cognitive disorders, as well as those temporarily residing in the area, were excluded from the study.

# Exposure measurement of and questionnaire development

To assess the exposure to risk factors associated with Cutaneous Leishmaniasis, a research-made questionnaire was developed. This process began with a comprehensive systematic review, utilizing relevant MeSH terms such as "Risk Factor\*", "Cutaneous Leishmaniasis," "Oriental Sore," "Observational Studies," "Case-Control," and "Old World Leishmaniasis." The review included searches in international databases, including Scopus, Medline/ PubMed, and Web of Science. The articles retrieved from these databases underwent a detailed three-phase screening process, which included reviewing the title, abstract, and full text. After this screening, the reviewers compiled a list of all identified risk factors for leishmaniasis. Related or similar risk factors were then merged or classified into unique items to simplify the analysis. Then, the generated questionnaire was divided into two sections, including environmental and behavioural risk factors.

To verify the validity and reliability of the research questionnaire, three experts in parasitology, medical entomology, and research methodology were selected and asked to provide feedback regarding the questionnaire's appropriateness, clarity, and comprehensiveness.

#### Questionnaire content validity indices

#### **Inter-Rater agreement**

Using a conservative approach, the total number of questions rated as either "completely favourable" or "favourable" (out of four available options: completely favourable, favourable, somewhat favourable, and unfavourable) was calculated. This total was then divided by the overall number of questions to determine the agreement index. An overall agreement index between 70% and 80% was considered acceptable.

#### Relevancy

The relevancy index was calculated for each question in the entire questionnaire. Relevancy was determined in four levels: 1) Unfavorable:

The question content is unrelated to the required content; 2) Somewhat favourable: The question needs major revision to better represent the content characteristics; 3) Favourable: The question requires minor revision to better represent the content characteristics; and 4) Completely favourable: The question is fully relevant to the desired topic.

#### Clarity

The clarity index for each question was evaluated on four levels: 1) Unfavorable: The wording of the question is unclear and fails to effectively convey the intended concept; 2) Somewhat favourable: The question requires significant revision to communicate the appropriate concept; 3) Favorable: The question needs only minor revisions to effectively convey the intended concept; 4) Completely favourable: The wording of the question clearly and effectively communicates its meaning.

#### Comprehensiveness

Comprehensiveness was evaluated to determine whether the questionnaire adequately covered all topics related to the subject. This evaluation was conducted for the entire questionnaire and categorized into four levels: 1) Incomplete: The current questions do not cover all necessary topics; 2) Relatively comprehensive: Major revisions are needed to obtain suitable comprehensiveness; 3) Comprehensive: Minor revisions are needed to obtain suitable comprehensiveness; 4) Completely comprehensive: All relevant topics are adequately covered by the current questions.

#### **Determining content validity indices**

The appropriateness and clarity indices were calculated at two levels: for each question and the entire questionnaire. In addition, the comprehensiveness index was calculated only for the whole questionnaire. To measure content validity, the Content Validity Index (CVI) and Content Validity Ratio (CVR) were employed.

#### Reliability

The reliability of the questionnaire was assessed using Cronbach's alpha and intra-class correlation (ICC).

#### Content validity and reliability

In this study, the CVI and CVR were 89% and 91%, respectively. Furthermore, the ICC was 88% and Cronbach's alpha was 82%, indicating acceptable levels of validity and reliability.

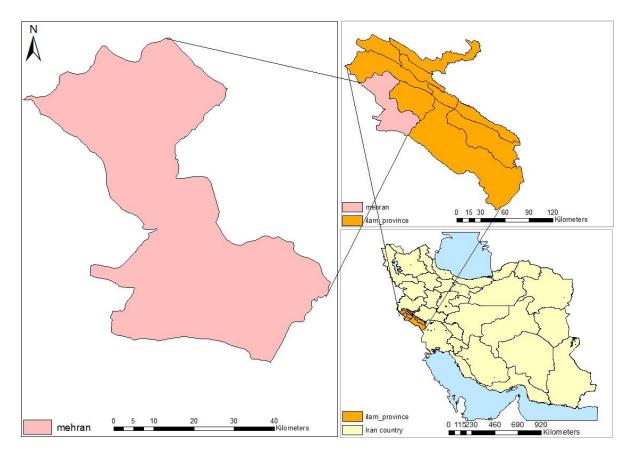
#### Statistical analysis

SPSS version 16.0 was used to analyze the data. Numbers and percentages were used to represent qualitative data, and mean and standard deviation (SD) were used to describe quantitative data. The chi-square and Fisher exact tests were used to compare data. A binary logistic regression model was used to assess the association between several risk factors with leishmaniasis by calculating the odds ratio (OR) and 95% confidence interval (CI). The significance level was considered at 5%.

#### **Results**

The demographic characteristics of the study groups are presented in Table 1. Women comprised 66.7% of the case group and 62.9% of the control group (p= 0.283). Also, 60.5% in the control group and 59.4% in the case group were married (p= 0.765). The other findings indicated that there was no difference in job status (p= 0.093) or education (p= 0.847) between the two study groups. Table 1 indicates the distribution of the other demographic characteristics.

Table 2 shows the distribution of behavioural and environmental risk factors in the case and control groups. As shown in Table 2, living near rodent nests or holes and crevices increased the risk of getting the disease (OR: 6.51; 95% CI: 61 to 9.20).


Moreover, the odds of getting the disease increased by 5.88 times (95% CI: 4.26 to 8.07)

when a bathroom and toilet are located outside the house. Additionally, the odds of developing cutaneous leishmaniasis were increased by 8.26 (95% CI: 5.81 to 11.74) and 6.22 (95% CI: 4.49 to 8.61), respectively, by residing near farms or gardens or in areas with special plants. Observing a rodent near one's home increases leishmaniasis odds by 2.66 times (95% CI: 1.97 to 3.60) compared to those who have never seen a rodent. Moreover, there was a significant association between the development of cutaneous leishmaniasis with the accumulation of building debris near residential areas (OR: 13.03; 95% CI: 8.63 to 19.70) and the tendency to sleep outside during the coldest times of the year (OR: 10.55; 95% CI: 7.48 to 14.86).

When sleeping outside the house, the use of insecticides (OR: 0.03; 95% CI: 0.02 to 0.05) and lotions or other insect repellents (OR: 0.31; 95% CI: 0.23 to 0.43) decreased the odds of cutaneous leishmaniasis. Also, using insecticide spray or insect repellent while sleeping inside the house decreased the odds of cutaneous leishmaniasis (OR: 0.04; 95% CI: 0.03 to 0.07). The situation of the risk variables is presented in Table 2.

**Table 1.** Demographic characteristics of participants in the case and control groups in Mehran City, Ilam Province, southwest of Iran (2023–2024)

| Variable                                                                   | Control        | Case (n=372) | p-value  |  |
|----------------------------------------------------------------------------|----------------|--------------|----------|--|
|                                                                            | (n=372)        | , ,          | -        |  |
| Gender                                                                     |                |              | 0.283    |  |
| Male                                                                       | 138 (37.1%)    | 124 (33.3%)  |          |  |
| Female                                                                     | 234 (62.9%)    | 248 (66.7%)  |          |  |
| Marital status                                                             |                |              | 0.765    |  |
| Single                                                                     | 147 (39.5%)    | 151 (40.6%)  |          |  |
| Married                                                                    | 225 (60.5%)    | 221 (59.4%)  |          |  |
| Occupation                                                                 |                |              | 0.093    |  |
| Self-employed                                                              | 84 (22.6%)     | 69 (18.5%)   |          |  |
| Unemployed                                                                 | 62 (16.7%)     | 72 (19.4%)   |          |  |
| Employee                                                                   | 105 (28.2%)    | 82 (22.0%)   |          |  |
| Housewife                                                                  | 106 (28.5%)    | 131 (35.2%)  |          |  |
| Farmer                                                                     | 15 (4.0%)      | 18 (4.8%)    |          |  |
| Education                                                                  |                |              | 0.847    |  |
| <diploma< td=""><td>66 (17.7%)</td><td>72 (19.4%)</td><td></td></diploma<> | 66 (17.7%)     | 72 (19.4%)   |          |  |
| Diploma and bachelor                                                       | 288 (77.4%)    | 283 (76.1%)  |          |  |
| >Master                                                                    | 18 (4.8%)      | 17 (4.6%)    |          |  |
| Age (years)                                                                | $33.73\pm9.22$ | 33.53±10.29  | 0.669    |  |
| <b>Duration of residence (years)</b>                                       | 17.77±11.19    | 17.69±11.35  | 0.925    |  |
| Household size (persons)                                                   | $4.05\pm1.42$  | 4.56±1.57    | < 0.001* |  |



**Fig. 1.** Geographical map of the study site in Mehran City, Ilam Province, southwest of Iran, a known endemic area for cutaneous leishmaniasis

#### J Arthropod-Borne Dis, March 2025, 19(1): 39-50

https://doi.org/10.18502/jad.v19i1.19994

Table 2. Distribution of risk factors for cutaneous leishmaniasis in the case and control groups, in Mehran City, Ilam Province, southwest of Iran(2023–2024)

| Risk factor<br>type | Variables                                                                                                                                                                                 |                           | Control (n=372)                       | Case (n=372)                           | OR (95% CI)                                         |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------|----------------------------------------|-----------------------------------------------------|
| Environmental       | Are you a native of Mehran city?                                                                                                                                                          | No<br>Yes                 | 66 (17.7)<br>306 (82.3)               | 72 (19.4)<br>299 (80.6)                | Reference<br>0.86 (0.62–1.30)                       |
| Environmental       | Do you own cattle or other domestic animals in your home, such as dogs, cats, lambs, or goats?                                                                                            | No                        | 283 (76.1)                            | 260 (69.9)                             | Reference                                           |
| Environmental       | Does your home's yard have any rodent nests or holes and crevices?                                                                                                                        | Yes<br>No<br>Yes          | 89 (23.9)<br>313 (84.1)<br>59 (15.9)  | 112 (30.1)<br>167 (44.9)<br>205 (55.1) | 1.37 (0.99–1.90)<br>Reference<br>6.51 (4.61–9.20)*  |
| Environmental       | Are the house's toilet and bathroom used outside (in the yard, etc.) or inside?                                                                                                           | Inside<br>Outside<br>Both | 261 (70.2)<br>111 (29.8)<br>0 (0)     | 99 (26.6)<br>247 (66.4)<br>26 (7)      | Reference 5.88 (4.26–8.07)*                         |
| Environmental       | Is the kitchen outside the home or inside?                                                                                                                                                | Outside<br>Inside         | 359 (96.5)<br>13 (3.5)                | 355 (95.4)<br>17 (4.6)                 | Reference<br>1.32 (0.63–2.76)                       |
| Environmental       | Are there any gardens or farms close to where you live?                                                                                                                                   | No<br>Yes                 | 316 (84.9)<br>56 (15.1)               | 151 (40.6)<br>221 (59.4)               | Reference<br>8.26 (5.81–11.74)*                     |
| Environmental       | Are there any special plants (trees, bushes, weeds, etc.) in the area around your home?                                                                                                   | No                        | 293 (78.8)                            | 139 (37.4)                             | Reference                                           |
| Environmental       | Have you ever seen any rodents around your house?                                                                                                                                         | Yes<br>No<br>Yes          | 79 (21.2)<br>263 (70.7)<br>109 (29.3) | 233 (62.6)<br>177 (47.6)<br>195 (52.4) | 6.22 (4.49–8.61)*<br>Reference<br>2.66 (1.97–3.60)* |
| Environmental       | Is there a buildup of mud mounds, animal waste, or construction debris (stones, bricks, dirt, etc.) in the vicinity of your home?                                                         | No<br>Yes                 | 339 (91.1)<br>33 (8.9)                | 164 (44.1)<br>208 (55.9)               | Reference<br>13.03 (8.63–19.70)*                    |
| Environmental       | Are there moist and shady places inside or near the house? (Bird's nest, barn, barrel storage, firewood, etc.) Are there dirt or mud hills?                                               | No<br>Yes                 | 231 (62.1)<br>141 (37.9)              | 103 (27.7)<br>269 (72.3)               | Reference<br>4.30 (3.14–5.83)*                      |
| Behavioral          | During the coldest times of the year, do you take rests or sleep outside in your yard, terrace, hedge, etc.?                                                                              | No<br>Yes                 | 264 (71)<br>108 (29)                  | 70 (18.8)<br>302 (81.2)                | Reference<br>10.55 (7.48–14.86)*                    |
| Behavioral          | Do you use a mosquito net when sleeping outside?                                                                                                                                          | No<br>Yes                 | 60 (16.1)<br>312 (83.9)               | 320 (86)<br>52 (14)                    | Reference 0.03 (0.02–0.05)*                         |
| Behavioral          | When you sleep indoors or in enclosed spaces, do you use a mosquito net?                                                                                                                  | No<br>Yes                 | 190 (51.1)<br>182 (48.9)              | 286 (76.9)<br>86 (23.1)                | Reference 0.31 (0.23–0.43)*                         |
| Behavioral          | Do you use sprays, lotions, or other insect repellents when sleeping outdoors and in open places without a roof?                                                                          | No<br>Yes                 | 151 (40.6)<br>221 (59.4)              | 294 (79)<br>78 (21)                    | Reference 0.18 (0.13–0.25)*                         |
| Behavioral          | If you sleep indoors (closed and covered), do you use insecticide spray or insect repellent?                                                                                              | No<br>Yes                 | 142 (38.2)<br>230 (61.8)              | 348 (93.5)<br>24 (6.5)                 | Reference 0.04 (0.03–0.07)*                         |
| Behavioral          | During the cooler months, are the windows and doors open?                                                                                                                                 | No<br>Yes                 | 49 (13.2)<br>323 (86.8)               | 44 (11.8)<br>328 (88.2)                | Reference<br>1.13 (0.73–1.75)                       |
| Behavioral          | Does Windows include an installed net?                                                                                                                                                    | No<br>Yes                 | 40 (10.8)<br>332 (89.2)               | 294 (79)<br>78 (21)                    | Reference 0.03 (0.02–0.05)*                         |
| Behavioral          | Are there nets or curtains at the entrance doors?                                                                                                                                         | No<br>Yes                 | 71 (19.1)<br>301 (80.9)               | 281 (75.5)<br>91 (24.5)                | Reference 0.08 (0.05–0.11)*                         |
| Behavioral          | Do your clothes cover you when you sleep? (Appropriate pants and long-sleeved clothing)                                                                                                   | No<br>Yes                 | 209 (56.2)<br>163 (43.8)              | 264 (71)<br>108 (29)                   | Reference<br>0.53 (0.39–0.71)*                      |
| Behavioral          | Do your clothes cover you when you sleep? (appropriate pants When you leave the house during sand fly bites (evening to sunrise), do you wear proper clothes that cover your entire body? | No<br>Yes                 | 131 (35.2)<br>241 (64.8)              | 242 (65.1)<br>130 (34.9)               | Reference<br>0.29 (0.22–0.39)*                      |
| Behavioral          | Has poison been sprayed on the internal walls of the house during the last year? (by the head of the household or the medical staff)                                                      | No<br>Yes                 | 241 (64.8)<br>343 (92.2)<br>29 (7.8)  | 341 (91.7)<br>31 (8.3)                 | Reference<br>1.07 (0.63–1.82)                       |
| *: Significant at ( | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                     | 1 68                      | 49 (1.8)                              | 31 (8.3)                               | 1.07 (0.05–1.82)                                    |

Data represented by number (percent).

OR: odds ratio

#### **Discussion**

This is the first attempt to clarify the knowledge, attitudes, and practices (KAP) related to CL disease in the southwest Iranian region of the Mehran District, Ilam Province. Although the disease has long been endemic in this area, people's knowledge of both the disease and its vector was poor (3). Regarding cutaneous leishmaniasis, almost 76.6% of responders lacked sufficient knowledge. Only 23.38% of the respondents recognised enough about the cases under investigation to be considered informed, and they were aware the disease was a severe and endemic condition in the region (Mehran District). Of the participants in this group, 46.6% were aware that the disease was transmitted by sand fly bites, and 8.6% had received training. Just 15% of this group understood how to prevent the disease, but 74.1% of them were also aware of its symptoms. Nonetheless, 70.9% of those in the control group, those without the illness, knew that the disease was important and indigenous to the district of Mehran. According to a study conducted in Esfahan, 97.9% of people in the area were informed about CL, but only 28.6% of those questioned were familiar with sand flies (21). In a different survey conducted in Kashan, 55.9% of the residents were aware of CL, which is comparable to the findings of our study (20). In the study of Mazloumi (22), it was found that only 21.2% of individuals believed sand flies were a vector of the disease. It is essential to increase awareness by providing direct, in-person training to mothers, teachers, and students, as these individuals play a major role in influencing the behaviour of young people (21). In summary, enhanced understanding will lead to the advancement of students' attitudes and behaviours, particularly those that prevent leishmaniasis (21). According to the Vahabi et al. study, 47.9% of people were aware of cutaneous leishmaniasis. 37.3 % of respondents were unaware that sand flies were the disease's vector, compared to 39.5%

who were aware of this fact (26). All of these findings demonstrate how important it is to provide enough knowledge on cutaneous leishmaniasis and the variables influencing it in disease-endemic areas. More than 76% of the population in a Saudi Arabian study by Amin et al. (31) was aware that cutaneous leishmaniasis is an infectious disease, and there was good knowledge about the disease's clinical features. However, there was very little information available regarding the disease's vector, route of transmission, risk factors, and preventative measures. Living close to rodents' burrows was a major risk factor for CL infection, which is what all people at risk (affected by this disease) have in common. This was established in our study by asking two questions, such as: "Are there rodent burrows in your yard?" as well. Has there ever been rodent activity close to your home?

In the study of Vahabi et al. (26), there was a statistically significant link between awareness and sex, married status, and education level, and attitude and education level. Males scored considerably higher on knowledge, family income, age, and history of cutaneous leishmaniasis in the Amin et al. study (31). In ZCL, control strategies should concentrate on rodents as the main reservoirs and Ph. papatasi as the main vector. The high-risk populations need to be made more aware (33). Inadequate waste management in the outer regions of communities in endemic zones for ZCL is creating the perfect environment for Ph. papatasi populations to reproduce and rest, which increases the risk of ZCL. Our entomological research led us to the conclusion that an integrated vector management program should include waste management, and educating people to oppose garbage pickup near villages to reduce the risk of ZCL transmission (34). By implementing control measures appropriate to each eco-epidemiological entity, maintaining continuity, modifying these strategies in response to every

new environmental change, and refining them through targeted research, some risk factors can be reduced. But all parties concerned must make a significant financial and political commitment to this. The prevention and control of key risk factors also depend on effective multidisciplinary cooperation between the health sector and other governmental domains, including education, agriculture, water, forestry, and other natural resources (35). When asked whether they had ever treated their door or window nets in the house with insecticides, only 42.7% of the respondents in the Abdulsalam and Malik (36) study answered positively; the majority answered negatively. In a different study carried out in the Amhara State of Northwest Ethiopia, the majority of the households (more than 90%) had been sprayed with insecticides both indoors and outdoors as a preventive measure (34). Nonetheless, the 2009-2010 malaria prevention and control program conducted in the study area may have had a direct impact on the outstanding level of behaviours seen there (37, 38). Although only 30.9% of respondents used nets to protect themselves, Hosseini et al.'s survey revealed that 70.3% of respondents employed fine nets for windows. Another study carried out in Esfarayen City, Iran, found no significant statistical relationship between the investigated components and other variables, including age, sex, or education level, and between the occupation and knowledge and attitude, as well as the place of residence and the attitude and performance of health professionals (38).

#### Conclusion

The research identified key risk factors for leishmaniasis in the Mehran District, Ilam Province, revealing that the majority of infected individuals reside in areas where the disease's vectors and reservoirs thrive. These individuals face a considerably higher risk of infection due to limited knowledge about disease transmission and preventive measures, such as the

use of insecticide-treated nets, environmental modifications, and insect repellents. Addressing these knowledge gaps and implementing targeted control strategies are essential for reducing the burden of cutaneous leishmaniasis in this endemic region.

## Acknowledgements

This study was financially supported by the Tehran University of Medical Sciences, Grant No. 65514.

#### **Ethical considerations**

Our project was approved by the Tehran University of Medical Sciences (IR. TUMS. SPH. AEC. 1402.017).

#### **Conflict of interest statement**

The authors declare that there is no conflict of interest.

#### References

- 1. World Health Organization (2012) A human rights-based approach to neglected tropical diseases.
- 2. World Health Organization (2023) Available at: https://www.who.int/newsroom/fact-sheets/detail/leishmaniasis.
- 3. Yaghoobi-Ershadi M (2012) Phlebotomine sand flies (Diptera: Psychodidae) in Iran and their role in *Leishmania* transmission. J Arthropod Borne Dis. 6(1): 1–17.
- 4. Yaghoobi-Ershadi MR, Akhavan AA, Mohebali M (1996) *Meriones libycus* and *Rhombomys opimus* (Rodentia: Gerbillidae) are the main reservoir hosts in a new focus of zoonotic cutaneous leishmaniasis in Iran. Trans R Soc Trop Med Hyg. 90(5): 503–504.

- Nadim A, Tahvildari Bidruni G (1977) Epidemiology of cutaneous leishmaniasis in Iran: B. Khorassan. Part VI: Cutaneous leishmaniasis in Neishabur, Iran. Bull Soc Pathol Exot Filiales. 70(2): 171–177.
- 6. Jafari R, Abdoli H, Arandian MH, Shareghi N, Ghanei M, Jalali-Zand N, Nekoeian S, Veysi A, Montazeri A, Ghasemi A, Ramazanpour J, Fadaei R, Akhavan AA (2020) Emerging of cutaneous leishmaniais due to *Leishmania major* in a new focus in Esfahan Province, Central Iran. J Arthropod Borne Dis. 14(2): 134–143.
- Yaghoobi-Ershadi MR, Javadian E, Tahvildare-Bidruni GH (1995) Leishmania major MON-26 isolated from naturally infected *Phlebotomus papatasi* (Diptera: Psychodidae) in Isfahan Province, Iran. Acta Trop. 59(4): 279–282.
- 8. Maleki-Ravasan N, Oshaghi MA, Afshar D, Arandian MH, Hajikhani S, Akhavan AA, Yakhchali B, Shirazi MH, Rassi Y, Jafari R, Aminian K, Fazeli-Varzaneh RA, Durvasula R (2015) Aerobic bacterial flora of biotic and abiotic compartments of a hyperendemic zoonotic cutaneous leishmaniasis (ZCL) focus. Parasit Vectors. 8: 63.
- 9. Nezamzadeh-Ezhiyeh H, Mirhendi H, Jafari R, Veysi A, Rassi Y, Oshaghi MA, Arandian MH, Abdoli H, Bahrami S, Zahraei Ramazani AR, Fadaei R, Ramazanpoor J, Farsi M, Aminian K, Saeidi Z, Yaghoobi-Ershadi MR, Akhavan AA (2021) An eco-epidemiological study on zoonotic cutaneous leishmaniasis in central Iran. Iran J Public Health. 50(2): 350–359.
- 10. Zivdari M, Hejazi SH, Mirhendi SH, Jafari R, Rastegar HA, Abtahi SM (2018) Molecular identification of *Leishmania* parasites in sand flies (Diptera, Psychodidae) of an endemic foci in Poldokhtar, Iran. Adv Biomed Res. 7: 124–129.
- 11. Moradi-Asl E, Rassi Y, Hanafi-Bojd AA, Saghafipour (2019) A Spatial distribu-

- tion and infection rate of leishmaniasis vectors (Diptera: Psychodidae) in Ardabil Province, northwest of Iran. Asian Pac J Trop Biomed. 9(5): 181–187.
- 12. Mokhtari M, Miri M, Nikoonahad A, Jalilian A, Naserifar R, Ghaffari HR, Kazembeigi F (2016) Cutaneous leishmaniasis prevalence and morbidity based on environmental factors in Ilam, Iran: Spatial analysis and land use regression models. Acta Trop. 163: 90–97.
- 13. Zahraei-Ramazani A, Kumar D, Mirhendi H, Sundar S, Mishra R, Moin-Vaziri V, Soleimani H, Shirzadi MR, Jafari R, Hanafi-Bojd AA, Shahraky SH (2015) Morphological and genotypic variations among the species of the subgenus *Adlerius* (Diptera: Psychodidae, Phlebotomus) in Iran. J Arthropod Borne Dis. 9 (1): 84–97.
- 14. El-Sadawy HA, Ramadan MY, Abdel Megeed KN, Ali HH, El Sattar SA, Elakabawy LM (2020) Biological control of *Phlebotomus papatasi* larvae by using entomopathogenic nematodes and its symbiotic bacterial toxins. Trop Biomed. 37 (2): 288–302.
- 15. Rassi Y, Asadollahi H, Abai MR, Kayedi MH, Vatandoost H (2020) Efficiency of two capture methods providing live sand flies and assessment the susceptibility status of *Phlebotomus papatasi* (Diptera: Psychodidae) in the foci of cutaneous leishmaniasis, Lorestan Province, Western Iran. J Arthropod Borne Dis. 14(4): 408–415.
- 16. Oryan A, Akbari M (2016) Worldwide risk factors in leishmaniasis. Asian Pac J Trop Med. 9(10): 925–932.
- 17. Kassi M, Afghan AK, Rehman R, Kasi PM (2008) Marring leishmaniasis: the stigmatization and the impact of cutaneous leishmaniasis in Pakistan and Afghanistan. PLoS Negl Trop Dis. 2(10): e259.
- 18. Kassiri H, Shemshad K, Lotfi M, Shemshad M (2013) Relationship trend analysis of cutaneous leishmaniasis prevalence and

- climatological variables in Shush county, south-west of Iran (2003–2007). Acad J Entomol. 6(2): 79–84.
- 19. Nilforoushzadeh MA, Hosseini SM, Heidari A, Bidabadi LS, Siadat AH (2014) Domestic and peridomestic risk factors associated with transmission of cutaneous leishmaniasis in three hypo endemic, endemic, and hyper endemic areas: A randomized epidemiological study. J Res Med Sci. 19(10): 928–932.
- 20. Dehghani Tafti MH, Forghani H, Baghiani Moghadam MH, Khani P, Noorbala MT, Mohammadi S (2011) A survey on effect of health education on health volunteer performance and knowledge in prevention of cutaneous leishmaniasis in Yazd. JPAD. 21: 27–32.
- 21. Saberi S, Zamani AR, Moatamedi N (2012) Evaluation of students' knowledge, attitude and practice in relation to preventive strategies against leishmaniasis in the hyperendemic region of Shahid Babaie Airbase. J Isfahan Med Sch. (173) Special Issue (Skin Diseases and Leishmaniasis): 2962–2970.
- 22. Mazloumi S (2008) Knowledge, attitude and performance of mothers toward cutaneous leishmaniasisin in Yazd endemic areas. [Thesis].
- 23. Hassan M, Banaga AO, Ehab AM, Bakri F, Nour YM (2012) Assessment of knowledge, attitude and practice about sand fly and visceral leishmaniasis control activities in rural areas of Gedarif State, Sudan in May 2008. Al-Neelain Med J. 2: 4.
- 24. Pardo RH, Carvajal A, Ferro C, Davies CR (2006) Effect of knowledge and economic status on sand fly control activities by householders at risk of cutaneous leishmaniasis in the subandean region of Huila department, Colombia. Biomedica 26 (Suppl 1): 167–179.
- 25. Koirala S, Parija SC, Karki P, Das ML (1998) Knowledge, attitudes, and prac-

- tices about kalaazar and its sand fly vector in rural communities control of Nepal. Bull World Health Organ 76(5): 485–490.
- 26. Vahabi A, Rassi Y, Oshaghi MA, Vahabi B, Rafizadeh S (2013) First survey on knowledge, attitude and practice about cutaneous leishmaniasis among dwellers of Musian District, Dehloran County, Southwestern [sic] of Iran, 2011. Life Sci J. 10(12): 864–868 (Persian).
- 27. Javadian E, Dehestani M, Nadim A, Rassi Y, Tahvildar-Bidruni GH, Seyedi-Rashti MA, Shadmehr A (1998) Confirmation of *Tatera indica* (Rodentia: Gerbilldae) as the main reservoir host of zoonotic cutaneous leishmaniasis in the west of Iran. Iran J Public Health. 27(1-2): 55–60.
- 28. Moradi M, Rassi Y, Abai MR, Zahraei Ramazani A, Mohebali M, Rafizadeh S (2018) Some epidemiological aspects of cutaneous leishmaniasis with emphasis on vectors and reservoirs of disease in the borderline of Iran and Iraq. J Parasit Dis. 42(2): 243–251.
- 29. Haddad MHF, Ghasemi E, Maraghi S, Tavala M (2016) Identification of *Leishmania* species isolated from human cutaneous leishmaniasis in Mehran, Western Iran using nested PCR. Iran J Pathol. 11(1): 65.
- 30. Lehlewa AM, Khaleel HA, Lami F, Hasan SA, Malick HA, Mohammed RH, Abdulmottaleb QA (2021) Impact of modifiable risk factors on the occurrence of cutaneous leishmaniasis in Diyala, Iraq: case-control study. JMIR. 2(3): e28255.
- 31. Amin TT, Kaliyadan F, Al-Ajyan MI, Al-Arfaj AK, Al-mujhim MA, Al-Harbi SJ, Al- Mohammed HI (2012) Public awareness and attitudes towards cutaneous leishmaniasis in an endemic region in Saudi Arabia. JEADV. 26(12)1544–1551.
- 32. Wilson C, Tisdell C (2001) Why farmers continue to use pesticides despite envi-

- ronmental, health and sustainability costs. Ecol Econ. 39(3): 449–462.
- 33. Chelbi I, Mathlouthi O, Zhioua S, Fares W, Boujaama A, Cherni S, Walid Barhoumi W, Dachraoui kh, Derbali M, Abbass M, Zhioua E (2021) The impact of illegal waste sites on the transmission of zoonotic cutaneous leishmaniasis in Central Tunisia. Int J Environ Res Public Health. 18(1): 66.
- 34. López-Perea N, Sordo L, Gadisa E, Cruz I, Hailu T, Moreno J, Aseffa A, Cañavate C, Custodio E (2014) Knowledge, attitudes and practices related to visceral leishmaniasis in rural communities of Amhara State: a longitudinal study in northwest Ethiopia. PLoS Negl Trop Dis. 8 (4): 2799.
- 35. Desjeux P (2001) The increase in risk factors for leishmaniasis worldwide. Trans R SocTrop Med Hyg. 95(3): 239–243.
- 36. Abdulsalam FI, Malik T (2022) Knowledge, attitudes, practices and its associated risk factors related to cutaneous leishmaniasis in Ilam Province of Iran. GMS. 3(1): 001–014.
- 37. Rostami MN, Saghafipour A, Vesali E (2013) A newly emerged cutaneous leishmaniasis focus in central Iran. IJID. 17 (12): 1198–1206.
- 38. Hosseini S, Ahmadpour M, Shirabadi R, Arzamani K, Rajabzadeh R (2016) The knowledge, attitude and practice of "Health-Go betweenes" Esfarayen country about cutaneousleishmaniasis disease in 2013. JNKUMS. 7(4): 735–743 (Persian).