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Background & Objectives: C-Kit, a receptor tyrosine kinase involved in intracellular 
signaling, has a mutated form that significantly contributes to the development of certain 
cancers. This study aimed to evaluate a series of benzo[a]phenazin-5-ol-tethered tri-
substituted methane derivatives as potential pharmacophores for inhibiting C-Kit kinase.
Materials & Methods: Benzo[a]phenazine-5-ol derivatives were sketched and converted 
into Mol2 files using Marvin software. Their three dimensional (3D) structures were 
generated and saved in PDB format. Molecular docking studies with the C-Kit kinase 
(PDB code 1t46) were performed using AutoDock 4.2. Additionally, the derivatives’ 
physicochemical properties, ADME characteristics, and drug-likeness parameters were 
assessed with the SwissADME online tool.
Results: Molecular docking studies of benzo[a]phenazin-5-ol derivatives (A-L) against 
C-kit kinase revealed that compounds A and C exhibited greater selectivity and stronger 
inhibitory effects than the reference drug, Sunitinib. Ligplot analysis demonstrated that 
compound A formed four hydrogen bonds with Arg791(A), Ile789(A), and His790(A), 
while compound C formed two hydrogen bonds with Ile571(A) and Ile789(A). ADME 
analysis indicated that all compounds, except C, D, and I, are potential P-gp substrates. 
Drug-likeness analysis showed one or two violations of Lipinski’s rule of five.
Conclusion: In summary, molecular docking studies identified compounds A and C as 
promising lead candidates for inhibiting C-kit kinase, demonstrating superior binding 
to the active site compared to Sunitinib. ADME and drug-likeness analysis revealed 
that compound A is a potential P-gp substrate with one violation of Lipinski’s rule of 
five, making it the closest pharmacological match to Sunitinib and a strong candidate for 
further investigation.
Keywords: benzo[a]phenazin-5-ol, molecular docking, C-Kit kinase, Auto Dock 4.2, 
drug-likeness
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Introduction
Phenazine systems represent an important 

class of aza-polycyclic compounds readily 

found in nature, with benzo[a]phenazine being 
a notable derivative. These compounds have 
garnered significant interest due to their role 
as structural subunits in various important 
natural products and their diverse biological 
properties, including antifungal (1), anti-tumor 
(2), trypanocidal (3), and dual inhibitory effects 
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on topoisomerase I and II, making them valuable 
as antitumor agents (4). It is worth noting that 
the literature documents relatively few methods 
for synthesizing benzo[a]phenazin-5-ol-tethered 
tri-substituted methanes (5-11), among which 
hydroxybenzo[a]phenazinepyrazol-5(4H)-one 
derivatives (9) have demonstrated anticancer 
and antimicrobial activities. Tyrosine kinases, 
enzymes that selectively phosphorylate tyrosine 
residues within specific proteins, play a crucial 
role in modifying signaling cascades, thereby 
influencing cell growth, differentiation, 
migration, apoptosis, and death. C-Kit, classified 
as a type III receptor tyrosine kinase (RTK), 
has been implicated in cancer development (12). 
Currently recognized primarily as a stem cell 
factor (SCF), C-Kit is actively involved in critical 
functions within the human body, including 
fertility, homeostasis, and melanogenesis (13, 
14). The deregulation of C-Kit, encompassing 
overexpression and gain-of-function mutations, 
has been identified in various human cancers, 
with leukemia representing the initial cancer 
type associated with activating mutations in 
C-Kit (15). Furthermore, Kit mutations have 
been detected in cancers such as unilateral 
ovarian dysgerminoma (16-18), melanoma (19), 
and others (20-22).

Cancer growth is typically facilitated by the 
activation of mutations or gene amplifications 
in specific serine or tyrosine kinases. Tyrosine 
kinase inhibitors, such as Imatinib, Axitinib, 
Nilotinib, Gefitinib, Sunitinib, and Dasatinib, 
fall into two classes: small molecules targeting 
specific kinases and monoclonal antibodies 
targeting either receptor kinases or their ligands 
(23). In this study, Sunitinib serves as a standard 
drug for comparing its activity with benzo[a]
phenazin-5-ol-tethered tri-substituted methane 
derivatives acting as C-kit inhibitors. Sunitinib 
functions as a multitargeted receptor tyrosine 
kinase inhibitor, targeting Platelet-derived 
growth factor receptors (PDGF-R)-α and β, 
FMS-like tyrosine kinase 3, vascular endothelial 

growth factor receptor (VEGFR)-1, -2, and -3, 
colony-stimulating factor 1 receptor, and glial 
cell-line derived neurotrophic factor receptor 
(24, 25). It is employed in the treatment of renal 
cell carcinoma and gastrointestinal stromal 
tumors (26). Molecular docking, a structure-
based computational method, generates binding 
modes and affinities between ligands and targets 
by predicting their interactions (27, 28). It has 
become an invaluable tool supporting diverse 
areas of drug discovery (29), with applications 
in virtual screening, target fishing, drug side 
effect prediction, polypharmacology, and drug 
repurposing. Computer-assisted computations of 
ADME (Absorption, Distribution, Metabolism, 
and Excretion) properties of drugs are 
increasingly considered as an anticipatory and 
reliable complement to experimental approaches. 
It is crucial to study the ADME properties and 
other drug-likeness characteristics of molecules 
before their use as pharmaceutical aids. ADME 
studies in the early stages of drug discovery can 
help reduce pharmacokinetics-related failures 
during clinical phase trials. The SwissADME 
web tool is an effective resource for predicting 
physicochemical parameters that correlate with 
in vitro, in vivo, and in silico investigations (30). 
The aim of this study is to elucidate the binding 
mode, affinity, and potential inhibitory activity 
of benzo[a]phenazin-5-ol derivatives against 
C-kit kinase through molecular docking and 
prediction of ADME/drug-likeness properties. 
The selection of C-kit kinase for molecular 
docking of benzo[a]phenazin-5-ol derivatives 
as inhibitors is supported by recent research 
demonstrating the anti-tumor activity of these 
compounds, as evidenced in various articles.

Material and Methods
The structures of benzo[a]phenazine-5-ol 

derivatives were sketched, drawn, and their 
Mol2 files generated using Marvin software. 
Subsequently, three dimensional (3D) structures 
were created, and the molecules were converted 
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into PDB format. An appropriate force field was 
applied, followed by optimization using Chimera 
software (version 1.17.1). Ligand structures 
were prepared using AutoDock Tools software 
(version 1.5.6) by incorporating polar hydrogens 
and assigning Kollman charges, then saved in 
PDBQT format. The C-Kit kinase structure 
of interest (PDB code 1t46) was prepared 
by eliminating water molecules and other 
heteroatoms, introducing polar hydrogens, and 
allocating Gasteiger charges to protein atoms. The 
resulting protein structure was saved in PDBQT 
format. Grid box dimensions were adjusted to 
encompass the protein’s binding site, with a grid 
size of 70×70×70 xyz points, grid spacing of 
0.375 Å, and grid center designated at dimensions 
(x, y, and z): 27.696, 26.657, and 39.342. Docking 
was carried out using the Lamarckian Genetic 
Algorithm (LGA), employing a population size of 
150 individuals, a maximum of 2.5 million energy 
evaluations, a maximum of 27,000 generations, a 
mutation rate of 0.02, and a crossover rate of 0.8. 
Docking simulations were executed on a high-
performance computing cluster utilizing multiple 
processors. Each ligand was individually docked 
into the protein structure, and the most promising 
docked runs were selected for further analysis.

Binding energies of the docked compounds 
were determined using the AutoDock scoring 
function, which considers van der Waals 
interactions, hydrogen bonding, and electrostatic 
interactions between the ligand and the protein. 
Clusters were created using a root-mean-
square deviation (RMSD) tolerance of 0.5 Å, 
and subsequent analysis focused on the top 10 
clusters exhibiting notable negative binding 
energies. Ligplot software (version 2.2) was 
employed to visualize the binding modes of 
ligands within these prominent clusters. In silico 
ADME screening and drug-likeness evaluation 
were conducted using the SwissADME web tool, 
developed by the Swiss Institute of Bioinformatics. 
Compounds with high-ranking binding energy 
scores were selected for further screening. Basic 

physicochemical properties, including molecular 
weight (MW), molecular refractivity (MR), 
atom counts, and polar surface area (PSA), were 
calculated using OpenBabel, version 2.3.0 (31). 
Abbott Bioavailability scores were calculated to 
estimate the likelihood of a compound having 
at least 10% oral bioavailability, based on its 
total charge, TPSA, and any deviations from 
Lipinski’s rule of five (30). The solubility (log S)  
of selected ligands was implemented using the 
ESOL model (32, 33).

Results and Discussion 
Molecular docking, as implemented through 

AutoDock 4.2, has emerged as a powerful 
technique for precisely identifying ligand-
binding sites within proteins and elucidating the 
molecular interactions that promote stability in 
protein-ligand complexes. In molecular docking, 
the tasks of pose prediction and binding affinity 
prediction are complementary. Pose prediction 
involves generating a conformation that is 
subsequently evaluated based on the predicted 
binding affinity. Binding affinity characterizes 
the strength of the noncovalent interaction 
between a ligand and its receptor’s binding site, 
with a higher binding affinity indicating a more 
robust and stable interaction, thus suggesting 
an increased likelihood of the ligand effectively 
influencing its biological activity. Docking 
programs generate multiple potential binding 
poses, each associated with a specific binding 
energy score. The optimal model is distinguished 
by the lowest (most negative) binding energy, 
signifying a more advantageous interaction. 
This investigation involved the evaluation of the 
AutoDock binding affinities of benzo[a]phenazin-
5-ol derivatives A-L (Figure 1) (34) to determine 
their potential inhibitory activities on the C-kit 
kinase (Figure 2). The study utilized AutoDock 
4.2 for molecular docking, wherein compounds 
A-L were docked into the C-kit kinase receptor, 
specifically the stem cell factor receptor with 
the PDB code 1t46, as illustrated in Figure 3.  
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To ensure the accuracy of the docking process, 
the bound inhibitor (Sunitinib) was assessed 
based on its proximity to the natively co-
crystallized pose, with a maximum RMSD of 
2.0 Å. Furthermore, the docked compounds were 
required to exhibit binding free energies (ΔGb) 
comparable to the native ligand and establish a 
significant number of hydrogen bonds with key 
amino acid Arg791(A) involved in the interaction 
between the inhibitor and C-kit kinase (1t46) 
(Table 1, Entry 1).

Benzo[a]phenazin-5-ol derivatives exhibited 
satisfactory binding free energies (ΔGb) when 
flexibly docked into the binding site of C-Kit 
kinase (PDB: 1t46) using AutoDock. Their 
binding affinities were comparable to those of the 
originally bound Sunitinib ligand (Table 1). The 
compounds demonstrated favorable binding poses, 
with binding free energies (ΔGb) ranging from -9.3 
to -10.6 kcal/mol. These poses were characterized 
by RMSD values between 0.000 and 2.678 Å and 
involved 1-4 hydrogen bond interactions. Notably, 
the compounds exhibited greater binding affinities 
than Sunitinib, suggesting they may possess 
superior properties compared to the standard drug.

The interaction between receptor C-Kit and 
ligand A was characterized by the formation of 
strong bonds with three specific amino acids 
(Arg791(A), Ile789(A), His790(A)) via the oxygen 
atoms of nitro and hydroxy groups. These bonds 
formed hydrogen interactions within the active 
site of the receptor. The lengths of these hydrogen 
bonds with the receptor were measured at 2.58 
Å, 2.93 Å, 3.14 Å, and 3.17 Å, respectively. It is 
noteworthy that both Sunitinib and compound 
A formed hydrogen bonds with the amino acid 
Arg791(A). Additionally, the calculated binding 
free energy was found to be -10.3 kcal/mol 
(Table 1, Entry 2).

Compound C, exhibiting the lowest 
energy level, established interactions with 
specific amino acids. The oxygen atoms 
of the nitro group formed strong bonds 
with Ile571(A) and Ile789(A) amino acids.  

Figure 1. Structures of benzo[a]phenazin-5-ol 
derivatives A-L.

Figure 2. Structure of the protein C-Kit kinase 
receptor.

Figure 3. Docking of benzo[a]phenazine-5-ol 
derivative with C-Kit kinase.
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The lengths of the hydrogen bonds with the 
receptor were measured at 2.99 Å and 3.07 
Å, respectively, with a binding free energy of 
-10.6 kcal/mol (Table 1, Entry 4). Furthermore, 
compound G effectively aligned within the 
designated region of the C-Kit receptor and 
formed a single hydrogen bond with Ile789(A) 
through the oxygen atom of its hydroxy 
group. The length of this hydrogen bond with 
the receptor was measured at 3.04 Å, with a 
corresponding binding free energy of -10.2 kcal/
mol (Table 1, Entry 8).

It was observed that most of the compounds 
were enveloped by hydrophobic amino acids, 
which occupied a considerable portion of the 
receptor space. This attribute is pivotal for their 
anticancer activity and underscores the potential 
of these benzo[a]phenazin-5-ol derivatives as 
promising candidates for C-kit kinase inhibition.

The RMSD provides valuable insights into 
the structural conformation of a protein and 
serves as an indicator of simulation equilibration. 
Moreover, analyzing the ligand RMSD (fit to 
protein) offers crucial information about the 

stability of the ligand in relation to the protein 
and its binding pocket. In a stable system, end-
of-simulation fluctuations for small globular 
proteins typically range from 0-2 Å, with larger 
deviations indicating significant conformational 
changes. It was observed that the RMSD values 
of compounds A and C converged to a fixed value 
(0.00) towards the end of the simulation, indicating 
a stable conformation of the protein. The Ligplot 
results for Sunitinib and compounds A, C, D, 
and G are depicted in Figure 4. Furthermore, 
the docking results of all compounds were 
compared with those of a co-crystallized ligand 
and a standard inhibitor using ADME screening. 
This comparison likely offers valuable insights 
into the binding affinity and interactions of the 
hit compounds with the C-Kit kinase protein, 
relative to the known ligand Sunitinib.

The physicochemical properties of 
compounds A-L are detailed in Table 2. The 
drug-like properties of the compounds were 
evaluated according to Lipinski’s rule of five, 
which includes criteria such as a molecular mass 
of less than 500 Da, no more than 5 hydrogen 

Table 1. Binding free energies (ΔGb), RMSD values, binding interactions and hydrogen bonds length of Sunitinib and 
new benzo[a]phenazine-5-ols docked into C-Kit kinase (PDB: 1t46).

Entry Compound
Binding free 

energy  
(kcal/mol)

RMSD value
Binding Interaction

(Amino acid 
residue)

Hydrogen bond 
length (Å)

1 Sunitinib -6.9 4.714 Arg791(A) 3.10

2 A -10.3 0.00
IIe789(A)
Arg791(A)
His790(A)

3.14
3.17 and 2.93

2.58
3 B -10.3 2.428 - -

4 C -10.6 0.00 IIe789(A)
IIe571(A)

3.07
2.99

5 D -10.5 2.678 - -
6 E -10.2 0.00 - -
7 F -10.3 0.00 - -
8 G -10.2 2.665 IIe789(A) 3.04
9 H -10.2 0.00 - -
10 I -10.1 0.00 - -
11 J -10.1 0.989 - -
12 K -9.3 0.00 - -
13 L -9.4 0.00 - -

RMSD: Root Mean Square Deviation
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bond donors, no more than 10 hydrogen bond 
acceptors, and an octanol-water partition 
coefficient of less than 5. The computed ADMET 
properties (gastrointestinal (GI) absorption; 
blood-brain barrier (BBB) permeation; inhibition 
of the cytochrome P450 system; permeability 
glycoprotein (P-gp) substrate) of the compounds 
are presented in Table 3. According to the results, 
all compounds exhibited low gastrointestinal 
absorption. All compounds, except for C, D, and 
I, were identified as potential substrates of P-gp. 
None of the compounds were predicted to inhibit 
cytochrome P450 (CYP) isoforms, indicating 
no potential inhibitory activity against these 

enzymes. Additionally, compounds A, C, I, 
and K each showed one violation of the Lipinski 
drug-likeness filters, while the other compounds 
exhibited two violations.

ADME screening helps identify compounds 
with unfavorable pharmacokinetic properties, 
thereby narrowing down the selection to more 
promising candidates. Our assay included these 
compounds to evaluate their potential as C-Kit 
kinase inhibitors through in silico studies. As 
a result, it was determined that compound A 
has the most pharmacological similarity with 
the Sunitinib drug and can be considered for 
further studies.

Figure 4. The ligplot results for: (I) Sunitinib 1-H bond with Arg791(A); (II) A forming 4-H bond with Arg791(A), 
IIe789(A), His790(A); (III) C forming 2-H bond with IIe571(A) and IIe789(A); (IV) D forming hydrophobic 

interactions; (V) G forming 1-H bond with IIe789(A).
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Table 2. The physicochemical properties of compounds A-L and Sunitinib calculated with the SwissADME database.

Ligands MW (g/
mol) nHA nAHA F.Csp3 nRB nHBA nHBD MR TPSA 

(A2)
Log s 

(ESOL)

Sunitinib 398.47 29 11 0.36 8 4 3 116.31 77.23 -3.72
Soluble

A 541.51 41 34 0.03 4 8 2 157.4 142.27 -7.38
B 541.51 41 34 0.03 4 8 2 157.4 142.27 -7.38
C 541.51 41 34 0.03 4 8 2 157.4 142.27 -7.38
D 530.96 39 34 0.03 3 6 2 153.59 96.45 -7.92
E 530.96 39 34 0.03 3 6 2 153.59 96.45 -7.92
F 530.96 39 34 0.03 3 6 2 153.59 96.45 -7.92
G 514.50 39 34 0.03 3 7 2 148.54 96.45 -7.48
H 514.50 39 34 0.03 3 7 2 148.54 96.45 -7.48
I 540.52 41 34 0.03 4 8 3 155.54 133.75 -7.19
J 575.41 39 34 0.03 3 6 2 156.28 96.45 -8.23
K 526.54 40 34 0.06 4 7 2 155.07 105.68 -7.39

MW: molecular weight; nHA: no. of heavy atom; nAHA: no. of arom. heavy atom; F.Csp3: no. of sp3 hybridized 
carbon out of total carbon count; nRB: no. of rotatable bonds; nHBA: no. of H-bond acceptors; nHBD: no. of H-bond 

donors, MR: molar refractivity; TPSA: topological polar surface area; ESOL: Estimated SOLubility.

Table 3. The bioavailability scores and pharmacokinetics of compounds A-L and Sunitinib calculated with 
SwissADME database.

Li-
gands

GI 
absorp-

tion

BBB 
perme-

ant

P-gp-
inhibi-

tor

CY-
P1A2 

inhibi-
tor

CY-
P2C19 
inhibi-

tor

CY-
P2C9 

inhibi-
tor

CY-
P2D6 

inhibi-
tor

CY-
P3A4 

inhibi-
tor

Log Kp 
(skin 

permeation) 
cm/s

Drug
likeness
Lipinski

Suni-
tinib High Yes Yes No Yes No Yes Yes -6.86 Yes; 0 violation

A Low No Yes No No No No No -5.28 Yes; 1 violation
B Low No Yes No No No No No -5.28 Yes; 1 violation
C Low No No No No No No No -5.28 Yes; 1 violation

D Low No No No No No No No -4.65 No; 2 violations; 
MLOGP>4.15

E Low No Yes No No No No No -4.65 No; 2 violations; 
MLOGP>4.15

F Low No Yes No No No No No -4.65 No; 2 violations; 
MLOGP>4.15

G Low No Yes No No No No No -4.92 No; 2 violations; 
MLOGP>4.15

H Low No Yes No No No No No -4.92 No; 2 violations; 
MLOGP>4.15

I Low No No No No No No No -5.49 Yes; 1 violation; 
MW>500

J Low No Yes No No No No No -4.88 No; 2 violations; 
MLOGP>4.15

K Low No Yes No No No No No -5.09 Yes; 1 violation
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Conclusions
This study aimed to explore the potential 

anticancer activities of various benzo[a]phenazin-
5-ol derivatives through computational analysis, 
with a particular focus on their interactions 
with the C-kit kinase receptor. The AutoDock 
4.2 study was performed to optimize the lead 
compounds. Upon molecular docking with the 
1t46.PDB protein target, investigations revealed 
that compounds A, C, and G interacted with 
the C-Kit kinase through hydrogen bonds, 
whereas the remaining compounds interacted 
primarily through hydrophobic bonds. Notably, 
compounds A and C demonstrated the highest 
C-kit kinase inhibitory effects. The interaction 
energy analysis revealed that compounds A and 
C had significantly lower energy values compared 
to the Sunitinib ligand, indicating stronger 
binding affinities. Furthermore, the hydrogen 
bond lengths between compounds A, C, and 
amino acids were approximately 2.58-3.17 Å. The 
RMSD values for compounds A and C stabilized 
around 0.00, indicating a consistent protein 
conformation. According to the SwissADME 
results, while compound A outlined differences 
in pharmacokinetic properties compared to the 
Sunitinib drug, it adheres well to Lipinski’s 
rules, suggesting good potential for absorption 
and distribution in the body. Thus, compound A 
appears to be a promising candidate for future drug 
design studies. Further research on its biological 
effects and mechanism of action is recommended 
to better understanding of its therapeutic potential.
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