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Abstract  
 
Objective: This study aimed to investigate differences in brain networks between healthy children and children with 

attention deficit hyperactivity disorder (ADHD) during an attention test. 
Method: To fulfill this, we constructed weighted directed graphs based on Electroencephalography (EEG) signals of 61 

children with ADHD and 60 healthy children with the same age. Nodes of graphs were 19 EEG electrodes, and the 
edges were phase transfer entropy (PTE) between each pair of electrodes. PTE is a measure for directed connectivity 
that determines the effective relationship between signals in linear and nonlinear coupling. Connectivity graphs of each 
sample were constructed using PTE in the five frequency bands as follows: delta, theta, alpha, beta, and gamma. To 
investigate the differences in connectivity strength of each node after the sparsification process with two values (0.5 and 
0.25), the permutation statistical test was used with the statistical significance level of p<0.01. 
Results: The results indicate stronger inter-regional connectivity in the prefrontal brain regions of the control group 

compared to the ADHD group. However, the strength of inter-regional connectivity in the central regions of the ADHD 
group was higher. A comparison of the prefrontal regions between the two groups revealed that the areas of the Fp1 
electrode (left prefrontal) in healthy individuals play stronger transmission roles. 
Conclusion: Our research can provide new insights into the strength and direction of connectivity in ADHD and healthy 

individuals during an attention task. 
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Attention Deficit Hyperactivity Disorder (ADHD) is 

one of the developmental-behavioral disorders in 

childhood. Individuals with ADHD display some 

functional and cognitive impairments including 

inattention, or excessive activity, and impulsivity. These 

impairments lead to problems in executive function such 

as staying organized, maintaining concentration and 

paying attention, regulating emotions, and remembering 

details (1-3). According to the latest studies of child and 

adolescent psychiatric disorders in Iran, prevalence of 

ADHD in Iran is 4%, which is higher in boys than girls 

(5.2% vs. 2.7%) (4). This value is consistent with 

estimates of prevalence of ADHD in the world (2 to 7% 

with an average of 5%) (5). In children, problems related 

to paying attention may result in poor school 

performance. So, early recognition of ADHD in children 

results in early and effective interventions. 

Studies using Magnetic Resonance Imaging (MRI) 

showed that in children with ADHD there was a general 

reduction of volume in certain brain structures, with a 

proportionally greater decrease in volume of the left-

sided prefrontal cortex (6, 7). Decreased activity in 

different parts of the brain, especially in the frontal lobes 

of the brain, was observed in several studies using 

functional MRI modality in individuals with ADHD 

disorder (8-10). 

Basic research with the Electroencephalogram (EEG) 

showed that ADHD patients had increased absolute 

and/or relative delta and theta power as well as 

decreased absolute and/or relative beta and gamma 

powers in frontal electrodes as compared to healthy 

controls (11-13). Most previous studies have reported 

major differences in brain function in the frontal and 

prefrontal regions between healthy and ADHD groups. 

Accordingly, these regions are especially interconnected 

with brain regions involved with attention, cognition, 

action, and emotion (14, 15). One way to examine 

differences between subjects with brain disorders and 

healthy subjects is by studying functional and effective 

connectivity between brain areas. Effective connectivity 

attempts to extract networks of causal influences of one 

brain region over another region, while functional 

connectivity extracts patterns of statistical dependence 

among regions (16) . 

Some benefits of EEG include high temporal resolution, 

portability, and low cost of data recording, suggesting 

EEG as a proper candidate to study functional and 

effective connectivity of the brain. In EEG studies, 

symmetric measures have been used to determine 

functional connectivity between the brain regions. In this 

regard, Ahmadlou et al. used Synchronization 

Likelihood (SL) and Fuzzy Synchronization Likelihood 

(FSL) to examine the EEG connectivity of ADHD 

patients (17, 18). Mazaheri et al. showed a specific 

deficit as a functional disconnection between frontal and 

occipital cortices in children with ADHD in the attention 

task with correlation index (19). Recently, Kiiski and 

Furlong reported the functional EEG connectivity as a 

neuromarker for adult ADHD symptoms by calculating 

the Weighted Phase Lag Index (WPLI) (20, 21). 

Since the functional connectivity criteria do not 

determine the direction of interactions, effective 

connectivity measures have recently been used to 

examine the interaction between brain signals in children 

with ADHD. One of the newly introduced criteria for 

determining causal interactions between time series (or 

EEG) is transfer entropy (TE), which is defined based on 

the information theory (22). TE does not assume a model 

for input data, thus, it has great ability to determine 

effective relationship between time series in linear and 

nonlinear coupling (23, 24). In 2014, Lobier developed 

TE to Phase Transfer Entropy (PTE), in which the input 

of the TE function is the instantaneous phase time series 

of each signal, rather than the signal time series. Due to 

the use of instantaneous phase of time series, PTE is 

more robust to noise and linear mixing (25). Recently, 

studies were conducted on the causal relationships 

between EEG signals of healthy children and children 

with ADHD based on directed PTE (dPTE) (26, 27). The 

dPTE is the normalized value of the PTE estimate 

introduced by Hillebrand (28). Determining only one 

value as the amount of information transfer between two 

systems is the dPTE limit. As the measures for 

functional and effective connectivity calculate the 

relationship among brain regions, graph theory can be 

used to study brain networks. Notably, a brain graph 

theory network is a mathematical representation of the 

brain architecture that includes a set of nodes and links 

interposed between them. In this regard, nodes represent 

brain regions, while links represent functional or 

effective connections (29-31). 

This study aimed to investigate the differences in the 

strength of connectivity between brain regions in two 

groups of healthy children and children with ADHD 

during task of attention. Thus, we used PTE as a newly 

introduced effective connectivity measure and used the 

graph analysis to construct brain networks and to 

investigate on how the information is transmitted in the 

brain regions of subjects. 

 

Materials and Methods 
 

Subjects  
Since one of the most important disorders in children 

with ADHD occurs in activities that require visual 

attention, in this study, we used EEG data of 61 children 

with ADHD and 60 healthy children (control group) 

aged between 7 and 12 years old in a visual attention 

task (32, 33). The ADHD subjects were evaluated by a 

psychiatrist and received a primary DSM-IV diagnosis 

(34). Moreover, all children in the healthy group were 

evaluated by a psychiatrist to ensure absence of 

psychological disorder, epileptic history, drug abuse, and 

head injury. All subjects voluntarily participated in the 

test and their parents signed informed consent for 

participation in the experiments. This research was 
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approved by the Institutional Review Board (IRB) and 

Ethics Committee of Tehran University of Medical 

Sciences (TUMS). 

EEG recording was performed based on 10-20 standard 

by 19 channels with 128 Hz sampling frequency and 16 

bits resolution. In this test, the subjects were asked to 

pay attention to a set of images on the monitor and to 

count the number of characters in each image. 

Accordingly, Figure 1 shows an example of these 

pictures. The duration of recording was dependent on the 

child’s performance. Data is currently available in 

http://dx.doi.org/10.21227/rzfh-zn36. (35). 
 

 
 

Figure 1. An Example of the Images Shown to 
Children during Signal Recording 

 

EEG Pre-Processing 

After recording these EEG signals, the signal pre-

processing was done using the EEGLAB toolbox 

(version 14.1.1) (36) running on MATLAB 2018a. At 

first, a band-pass FIR filter of 1 Hz to 48 Hz was applied 

to continuous EEG data. Afterward, the preprocessed 

EEG data were decomposed using the Independent 

Component Analysis (ICA). Eye blinks and muscle 

artifacts were identified by ICA, which were then 

removed manually based on their spectra, scalp maps, 

and time courses. Later, EEG data were filtered with FIR 

filter with zero phase shift in five frequency bands, 

including delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), 

beta (13–30 Hz), and gamma (30–45 Hz). Afterward, for 

each subject, the time series were divided into 8-second 

segments. The number of segments for each subject was 

dependent on timing tasks. 
 

Weighted Directed Graph Construction 

The first step in constructing a brain graph is 

determining the nodes and the links between the nodes. 

Since EEG was used in this study, the nodes of each 

graph are equal to the number of electrodes or brain 

channels. Thus, for each graph, 19 nodes were 

considered. The links between every two nodes in the 

graph were calculated using the PTE, as an effective 

connectivity measure. PTE is a measure performed 

based on transfer entropy that uses the instantaneous 

phase time series of time series as the input of the TE 

function. It is noteworthy that TE from a process X to 

process Y is the amount of uncertainty reduced in future 

values of Y by knowing the past values of X and past 

values of Y. The instantaneous phase time-series of the 

signal X (t) as θ (t) in S (t) = A (t) exp(iθ(t)), where S(t) 

is analytics form of X(t). θ (t), can be obtained by the 

Hilbert transform. PTE from X (t) to Y (t) is defined as 

follows: 
 

PTE (X  Y) = I(y(t),x(t)y(t)) = H(y(t),x(t)) – 

H(y(t),y(t),x(t)) + H(y(t),(y(t)) – H(y(t)) 
 

Where H (.,.) is the Shannon entropy that indicates the 

average level of "information" or "uncertainty" inherent 

in the variable's possible outcomes, and I(.,.|.) is the 

conditional mutual information. In Eq (1), δ is prediction 

delay and θx (t′) and θy (t′) are the past states at time 

point t′. 
 

t′ = t− δ 

θx (t′) = θx(t− δ)  

θy (t′) = θy(t −δ) 
 

We used Lobier et al. and similar articles to implement 

and determine entropy parameters (25, 28, 37). The PTE 

between each pair of brain channels was calculated for 

all subjects in each frequency band as well as in each 

segment. Thereafter, the connectivity matrices of each 

subject in each frequency band were averaged along 

with the segments to form a connectivity matrix at the 

end for each person with dimensions of 19*19 in each 

frequency band. Each element of the connectivity matrix 

represented the strength of links between each pair of 

nodes (channels) in the graph’s construction. In this way, 

a weighted directed graph was constructed for each 

subject in each frequency band. 
 

Graph Theory Measures 

The graph theory provides a mathematical framework to 

model the pairwise connectivity between the elements of 

a network. After construction of the connectivity graph 

for each subject, the sparsification process was 

performed with two values for each graph. The purpose 

of the sparsification process was to eliminate spurious 

and weak edges in the graph through thresholding. For 

the first case, the threshold was initially considered to be 

0.5, and thus for each graph, half of the connections 

(edges) that were weaker in terms of PTE value were 

removed. For the second case, the threshold was set at 

0.25 to keep a quarter of the strongest connections in the 

graph of each subject. Then, the graph measure 

extraction step was performed. The measures related to 

connectivity strength in each node were used as the 

extracted feature. Table 1 shows the three measures 

considered in this regard. Notably, graph measures were 

calculated using the Brain connectivity toolbox (BCT) 

(30). 

 

http://dx.doi.org/10.21227/rzfh-zn36.%20%5b35
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Table1. Node Strength Measures Extracted in 
PTE-Based Graph for Each Subject of Healthy 
and Attention Deficit Hyperactivity Disorder 

(ADHD) Groups 
 

Measures Description 

In-strength 
Sum of the weights of inward links 

connected to a node 

Out-strength 
Sum of the weights of outward links 

connected to a node 

Strength 
Sum of the weights of inward and outward 

links connected to a node 
 

Statistical Analysis 

For statistical comparisons, we used a non-parametric 

permutation test between the control and ADHD groups 

in all five frequency bands. This step was performed on 

the value of each measure in each node to evaluate 

abnormal changes in the connectivity strength of the 

ADHD subjects. For each node, we tested the null 

hypothesis that either the measure of this node has not 

changed between the two groups or its measure is 

different between the control group and the subjects with 

ADHD. In between-group comparisons, null 

distributions were created with 5,000 permutations and 

all comparisons were two-tailed. The significance of 

between-group differences (p<0.01) of each measure in 

each node was determined by comparing the original 

value with the obtained null histogram. In all the 

performed analyses, the p-values of pairwise 

comparisons were corrected by the False Discovery Rate 

(FDR) (38). 

 

Results 
The node’s strength (sum of in-strength, out-strength, 

and total strength of a node) was compared between the 

two groups to analyze differences in the link weight of 

brain networks. Since the statistical test was performed 

between the two groups for each frequency band and 

also for each measure in each node (channel), the results 

of the statistical test can be shown on each node. Figures 

2 and 3 show the mean values of each node strength 

feature (according to Table 1) in both groups, in five 

frequency sub-bands in the graph sparsification of 0.5 

and 0.25, respectively. In these figures, the electrodes, 

which the statistical test showed a statistically significant 

difference between the two groups in strength measures, 

were written in the bottom row of each image and 

marked by Pink Square in each frequency band. 

 To evaluate the strength of connectivity in different 

areas of the brain, the electrodes were divided into three 

regions. Region1 consists of electrodes from the frontal 

and prefrontal areas of the brain. The region 2 includes 

electrodes of the central, temporal, and parietal lobes. 

Region 3 also contains O1 and O2 electrodes located at 

the occipital lobe. Thus, the number of electrodes in 

each feature had significant differences counted and 

listed in Table 2. Division of electrodes in three regions 

which is based on the 10-20 electrode system is also 

shown in this table. 

 

Discussion 
We used the PTE to investigate the differences in 

strength of connectivity in brain networks of children 

with ADHD and healthy children during an attention 

task. The PTE used the instantaneous phase of time 

series and TE function to determine the effective 

connectivity between two systems (in this study, a pair 

of EEG signals). A connectivity matrix with Phase TE 

values was constructed for each subject. Thus, the fully 

connected brain graph for each subject was formed by 

19 nodes (equal to the number of electrodes) and edges 

from each node to the other node with a weight equal to 

the Phase TE value. By applying the sparsification 

process, the brain graphs were pruned. In one case, 50% 

of the weak edges (sparsification value = 0.5) and in the 

second, 75% of the weak edges (sparsification value = 

0.25) were removed to keep the stronger edges in the 

brain graphs. After sparsification, in-strength, out-

strength, and total strength measures were extracted for 

each node (electrode) to compare these values between 

the two groups by permutation statistical test . 

PTE is a measure for determining causal relationships 

between pairs of time series that can indicate the 

direction and strength of information transfer between 

two signals. In other articles, directed PTE (dPTE) was 

used to examine differences in connectivity between 

brain regions in healthy children and children with 

ADHD (26) and to classify the two groups (27). Due to 

limitation of dPTE in determining only one value as the 

information transferred between time series, in the 

connectivity matrix (formed by the dPTE), the upper 

part of the triangle and the lower part of the triangle of 

the matrix do not provide more information (39). In our 

paper, using PTE, it was possible to examine two-way 

connectivity between two signals, and the dPTE limit 

was removed. The sparsification process eliminated the 

weak connections, but if the two-way connectivity 

between the two signals are strong, with this method, 

both connections remain in the calculations. 

The results of our statistical tests were shown in Figures 

2 and 3 and the number of electrodes with values of 

measures with statistically significant differences 

between the two groups were indicated in Table 2. From 

these figures, it can be concluded that in all three 

measures and in all frequency bands, except the gamma 

band, values of region 1 (prefrontal and frontal lobe) and 

region 3 (occipital lobe) are higher than the other regions 

in both ADHD and control groups. Neuroscience 

identifies the prefrontal and occipital regions of the brain 

as the centers of attention and visual processing, 

respectively (14, 15, 40). Since all subjects participated 

in a visual cognitive test in this research, the results 

showed that the strength of connectivity in these areas 

was higher than the other areas in both groups. 
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The results of the delta frequency band in the 

sparsification with a value of 0.5 (Figure 2) showed that 

the highest number of electrodes with statistically 

significant differences between the two groups was in 

this frequency band. The results of statistical testing in 

this frequency band showed that each measure (in-

strength, out-strength, and strength) has 5 electrodes in 

which the measure’s value makes a significant 

difference between the two groups. After delta band, 

beta and theta frequency bands had the highest number 

of electrodes with significant differences between the 

two groups in terms of strength features, respectively. In 

the sparsification with 0.25 (Figure 3), statistical tests 

showed that the delta and theta bands had more 

significantly different channels between the two groups 

in the values of node strength measures than the other 

bands. 

The results obtained in this study were consistent in two 

sparsification values in determining the difference in 

function of brain regions between healthy and ADHD 

groups. According to statistical test results for both 

sparsification values (Figure 2, Figure 3, and Table 2), 

our research indicated that the most significant 

differences between the two groups occurred in region 2 

(specially the central region of the brain, including C4, 

Cz, and C3) and then in region 1 (specially Fp1 

electrode in left prefrontal lobe). In the delta, theta, 

alpha, and beta frequency bands, the higher mean of all 

three features in region 2 indicated that children with 

ADHD had stronger intra-regional connections in the 

central regions of the brain than healthy children. The 

results also showed that mean values of all three-nodal 

strength in region 1 were higher in children in the 

healthy group than in the ADHD group. Thus, it can be 

concluded that in the ADHD group, there were weaker 

intra-region connectivity that were eliminated in the 

sparsification process. It was also found that healthy 

children had a stronger intra-regional connection than 

children with ADHD in the prefrontal and frontal areas 

of the brain. 

Our results of the out-strength measure shown in Figure 

2(b) and Figure 3(b) indicated the important role of the 

Fp1 electrode region (left prefrontal) in transmitting 

information in the delta, theta, alpha, and beta frequency 

bands. Statistical testing showed that the areas related to 

this electrode had more power in transmitting 

information in the healthy group compared to the ADHD 

group, which can probably be due to receiving more 

information in the prefrontal and posterior regions. 

Previous studies using various modalities such as fMRI 

and EEG have also reported the decreased function of 

brain networks in the prefrontal and frontal regions 

(often in the beta band) of the brain (6-10, 26) . 

Additionally, due to the higher average strength of 

connectivity in the posterior regions in healthy children, 

it seems like, there is stronger connectivity between the 

prefrontal and posterior regions compared to children 

with ADHD. These results were identified in the delta 

and theta frequency bands. Several previous studies have 

shown functional disconnection of the frontal cortex (or 

anterior region of brain) and visual cortex (or posterior 

region of brain) in children with ADHD during the 

attention test (19). Accordingly, they used cross-

frequency amplitude correlations to investigate 

differences in functional connectivity between the 

studied groups. The result of our research is consistent 

with results of previous studies on stronger connections 

between prefrontal and posterior brain in healthy 

children compared to ADHD patients. 
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Figure 2. Average of Strength Graph Measures (In-Strength (a), Out-Strength (b), and Strength(c) in Five 
Frequency Bands) for ADHD and Healthy Groups with PTE in the Graph Sparsification of 0.50. Pink 
Squares Show Electrodes Indicating A Statistically Significant Difference (p<0.01) between the Two 

Groups. 
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Figure 3. Average of Strength Graph Measures (In-Strength (a), Out-Strength (b), and Strength(c) in Five 
Frequency Bands) for ADHD and Healthy Groups with PTE in the Graph Sparsification of 0.25. Pink 
Squares Show Electrodes Indicating A Statistically Significant Difference (p<0.01) between the Two 

Groups.
 
 
 

 

Table2. Number of Channels with Statistical Significant Differences in Graph Measures between ADHD 
and Healthy Groups 

 

 In Strength Out Strength Strength 

 

 Reg1 Reg2 Reg3 Reg1 Reg2 Reg3 Reg1 Reg2 Reg3 

 * ** * ** * ** * ** * ** * ** * ** * ** * ** 

Delta 1 1 4 2 0 0 2 0 3 5 0 2 1 1 4 4 0 1 

Theta 0 0 3 3 0 1 2 2 3 8 0 1 1 2 3 6 0 1 

Alpha 0 1 1 0 0 0 1 2 2 2 0 0 2 2 2 2 0 0 

Beta 0 0 3 1 1 0 3 1 3 2 0 0 1 1 3 2 0 0 

Gamma 1 0 2 1 0 0 0 1 2 1 0 0 1 1 3 1 0 0 
 

* sparsification value = 0.5  

** sparsification value = 0.25 
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Limitation 
One of the limitations of our study was that the 

strength of brain networks between ADHD types was 

not examined, specifically inattentive, hyperactive-

impulsive, and combination types. By increasing the 

number of subjects in the experiment and using their 

clinical information, the differences in the strength of 

brain networks between the three types of ADHD can 

be investigated. Another limitation of this study was 

the use of 19-channel EEG recordings, while with the 

increase of EEG channels, a more accurate 

representation of brain activity will be provided. 

 

Conclusion 
In this study, using Phase Transfer Entropy (PTE), the 

differences in characteristics of brain graphs of healthy 

children and children with ADHD during an attention 

test were investigated. For this purpose, after recording 

the brain signals of the subjects in both groups, their 

brain connectivity graphs were constructed. The graph 

sparsification process was used to eliminate weak and 

possibly noisy connectivity. One of the features of a 

graph that can explain aspects of brain networks is the 

strength of connectivity. Since the PTE shows the 

strength and direction of connectivity, the strength of 

nodes can be investigated using in-strength, out-strength, 

and total strength measures. The results of statistical 

tests showed that in the prefrontal regions of the brains 

of the control group, there was stronger inter-regional 

connectivity in the delta, theta, alpha, and beta frequency 

bands compared to the ADHD group, while in the same 

frequency bands in the ADHD subjects, the strength of 

inter-regional connectivity in the central regions of the 

brain was higher. A comparison of the prefrontal regions 

of the brain between these two groups revealed that the 

areas of the Fp1 electrode (left prefrontal lobe) in 

healthy individuals play stronger transmission roles 

compared to the rest of the brain. Due to the higher 

average strength of connections in the occipital lobe of 

healthy people in our results, it also seems there are 

stronger connections between the prefrontal regions and 

posterior regions of the brain in healthy children 

compared to patients. Our research can provide new 

insights into the strength and direction of connectivity in 

ADHD and healthy individuals during an attention task. 
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