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Abstract  
 
Objective: Schizophrenia is a complex neurodevelopmental illness that is associated with different deficits in the 

cerebral cortex and neural networks, resulting in irregularity of brain waves. Various neuropathological hypotheses have 
been proposed for this irregularity that we intend to examine in this computational study. 
Method: We used a mathematical model of a neuronal population based on cellular automata to examine two 

hypotheses about the neuropathology of schizophrenia: first, reducing neuronal stimulation thresholds to increase 
neuronal excitability; and second, increasing the percentage of excitatory neurons and decreasing the percentage of 
inhibitory neurons to increase the excitation to inhibition ratio in the neuronal population. Then, we compare the 
complexity of the output signals produced by the model in both cases with real healthy resting-state 
electroencephalogram (EEG) signals using the Lempel-Ziv complexity measure and see if these changes alter (increase 
or decrease) the complexity of the neuronal population dynamics.  
Results: By lowering the neuronal stimulation threshold (i.e., the first hypothesis), no significant change in the pattern 

and amplitude of the network complexity was observed, and the model complexity was very similar to the complexity of 
real EEG signals (P > 0.05). However, increasing the excitation to inhibition ratio (i.e., the second hypothesis) led to 
significant changes in the complexity pattern of the designed network (P < 0.05). More interestingly, in this case, the 
complexity of the output signals of the model increased significantly compared to real healthy EEGs (P = 0.002) and the 
model output of the unchanged condition (P = 0.028) and the first hypothesis (P = 0.001). 
Conclusion: Our computational model suggests that imbalances in the excitation to inhibition ratio in the neural network 

are probably the source of abnormal neuronal firing patterns and thus the cause of increased complexity of brain 
electrical activity in schizophrenia. 
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Schizophrenia is a severe and chronic psychiatric 

illness that disrupts patients’ life at different 

neurobiological, cognitive, emotional and social levels. 

Although the onset of schizophrenia often occurs in 

early adulthood, it has been shown that some traits and 

symptoms, including cognitive and social impairments, 

are already manifest in childhood (1, 2). Several studies 

have pointed out genetic, neurobiological, 

environmental, social and psychological factors as main 

contributory processes (3, 4). Meanwhile, many 

neuroscience studies have focused on neurobiological 

and neurophysiological factors as abnormal underlying 

processes. These studies suggest that changes in synapse 

reorganization and abnormal patterns of neuronal firing 

are important neurobiological contributory factors, 

reflecting abnormal neurophysiological activity and 

irregular brain signals in schizophrenia (5-7). In this 

regard, researchers in the field of computational 

neuroscience, considering the concept of time-dependent 

disorders and dynamical diseases, have utilized chaotic 

approaches to study patterns of neural activity in 

schizophrenia (8, 9). Electroencephalogram 

(EEG)/Magnetoencephalogram (MEG) studies have 

used nonlinear and chaotic methods to estimate the 

complexity patterns of brain electrical activity and to 

investigate the brain dynamics in schizophrenia due to 

(i) the nonlinear properties of dynamical neural systems, 

(ii) dynamical nature of schizophrenia symptoms and 

their severity, reflecting a disturbance in underlying 

nonlinear processes as state switches in the cortical 

system, and (iii) deficits in stability, self-organization 

and hierarchical processes of brain system in 

schizophrenia (10-15). 

Fernandez et al. (7), in a comprehensive review, 

concluded that young, drug-naïve patients with positive 

symptoms (i.e., paranoia and hallucinations) are 

expected to show increased complexity in MEG and 

EEG signals, probably resulting from abnormal firing 

patterns in neuronal activity in the critical brain areas. 

Neurons are supposed to be the computational parts of 

brain function that release a neurotransmitter into the 

synaptic space due to the action potentials. Any 

disturbance in this neuronal environment can lead to 

abnormal firing patterns, resulting in impaired brain 

activity and subsequent high-level behaviors (16). 

Postmortem brain studies in schizophrenia have shown 

that there is an imbalance in the excitation to inhibition 

ratio due to impairments in the levels of glutamate, as an 

excitatory neurotransmitter, and N-Methyl-D-aspartate 

receptor (NMDA-R) signaling, resulting in the raised 

excitability of pyramidal neurons (17, 18). On the other 

hand, a variety of impairments in the inhibitory 

neurotransmitter Gamma-Aminobutyric Acid (GABA) 

have been observed in postmortem schizophrenia brain 

researches, which has demonstrated that schizophrenia is 

closely related to decreased inhibitory neurotransmission 

(19). Each of these deficits and impairments can be 

associated with abnormal firing patterns and increased 

complexity of brain dynamics involved in schizophrenia. 

In this computational study, we intended to use a 

mathematical model of a neuronal population to 

investigate each of these impairments and their effect on 

brain dynamics. This model, recently developed by our 

research team (20), is based on cellular automata and 

uses simple laws of electrical events, called action 

potentials, and the inherent properties of neurons and the 

interactions between them, and is well able to simulate 

real EEG signals. Therefore, we use this model to 

examine two hypotheses about the neuropathology of 

schizophrenia: first, reducing neuronal stimulation 

thresholds to increase neuronal excitability; and second, 

increasing the excitation to inhibition ratio by increasing 

the percentage of excitatory neurons and decreasing the 

percentage of inhibitory neurons in the neuronal 

population. Then, we compare the complexity of the 

output signals produced by the model in both cases with 

real healthy EEG signals and see if these changes alter 

(increase or decrease) the complexity of the neuronal 

population dynamics. 

 

Materials and Methods 
To test the mentioned hypotheses, we used a model 

recently developed and published by our research team 

that has been shown to be able to simulate recorded 

electrical signals from a healthy human brain. Details on 

this model can be found in (20), but we will briefly 

describe it here. This model is based on cellular 

automata and is designed using the Python programming 

language and follows simple rules based on the intrinsic 

properties of neurons and the properties of action 

potentials. These rules are as follows: 

(a) Define a 40 × 40 network, 

(b) Define the initial state for each neuron in the network 

randomly from the four states of resting, firing, 

hyperpolarization and refractory, which are different 

parts of an action potential, 

(c) Define the number of neighborhoods or synapses for 

each neuron as the minimum number of synapses 

(Nmin) to the maximum number of synapses (Nmax), 

(d) If the sum of input synapses from the neighbor 

neurons is greater than a resting threshold (Trest), then 

a resting cell in the network is activated, 

(e) After activation, the cell should go through firing, 

hyperpolarization and refractory states in order and 

then go back to its resting state, 

(f) In the firing and hyperpolarization states, a neuron 

will never produce the next action potential, 

(g) In the refractory state, the neuron may be activated if 

the sum of input synapses from its neighbors is 

greater than a relative threshold (Trelative), where 

Trelative > Trest, 

(h) The output time series is the sum of the effects of 

each neuron in the network. 

Based on the results of the previous study, we define 

initial states for neurons as Nfiring = 40%, Nrefractory = 
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35%, Nrest = 20% and Nhyperpolarization = 5%. Furthermore, 

20 percent of the network neurons were considered as 

inhibitory neurons and the remaining 80 percent as 

excitatory neurons. Also, we set Nmin = 14, Nmax = 60, 

Trest = 8 and Trelative = 12. 

As described, some important features of a neuronal 

network are embedded in this cellular automata model. 

Our published results on the model proved that this 

model can produce various dynamics, from limit-cycle 

to chaotic dynamics, just like the different dynamics and 

behaviors seen from a real neuron population in the 

human brain at different conditions. Moreover, output 

time series from the model showed a high-dimensional 

chaotic behavior similar to a healthy brain. Quantitative 

and qualitative comparisons of the model output time 

series and the real EEG data in both nonlinear and linear 

domains proved the ability of this mathematical model to 

simulate the real EEG signals. Therefore, this 

computational model is useful and can be utilized to 

investigate healthy and pathological neural populations 

and gain insight into their various functional 

mechanisms. As a result, we used this model to test 

existing hypotheses about the neuropathology of 

schizophrenia. For the first hypothesis, we reduced Trest 

and Trelative to increase the excitability of neurons; and 

for the second one, we changed the percentage of 

excitatory and inhibitory neurons in the network. 
 

Real EEG data 

In this work, EEG data available on the PhysioNet 

website was used to qualitatively and quantitatively 

compare simulated signals in different conditions with 

real signals. This database contains 72 EEG signals from 

healthy adults at rest and during cognitive tasks. EEG 

signals were recorded using the Neurocom EEG device 

based on the 10-20 international standard protocol and 

through Ag/AgCl electrodes. Earlobes were used as 

references in signal recording. In the pre-processing 

stage of these signals, a notch filter (50 Hz) and a low-

pass filter with a cutoff frequency of 30 Hz were used. In 

addition, independent component analysis was used to 

reduce signal artifacts. Therefore, a clean 60-second 

EEG signal fragment was provided for each individual in 

this database (21). Here, the O1 channel of 20 resting-

state signals from this database was used for further 

comparison purposes . 
 

Complexity measures 

There are various techniques from multiple conceptual 

approaches to measure complexity (22). In this work, we 

used maximum lyapunov exponent (MLE) and the 

embedding dimension to compare nonlinear 

characteristics and complexity patterns of the real and 

simulated EEGs qualitatively. Lyapunov exponents are 

considered as dynamical measures of attractor 

complexity. They reveal the exponential convergence or 

divergence of adjacent trajectories of the attractor 

present in the phase space. MLE is interpreted as a 

measure of dynamic complexity because it indicates 

dependence on initial conditions. A dynamical system or 

time series is determined according to the rate of 

expansion of the differences between successive 

samples. Larger MLE values demonstrate more complex 

patterns in a dynamical system (23, 24). Moreover, the 

embedding dimension is an important parameter for 

reconstructing the state space of dynamic systems. In 

short, in order to reconstruct the state space, the state 

vectors are replaced by delay vectors, and the number of 

components in these vectors is the embedding 

dimension. In this work, we used the well-known Cao 

algorithm to estimate the embedding dimension (25). 

Furthermore, Lempel-Ziv complexity was calculated to 

quantitatively measure the complexity of the healthy 

EEG signal and the model output time series. It uses the 

concepts of producibility, reproducibility and exhaustive 

history of a sequence to estimate the complexity of a 

time series. For more information and details on these 

methods for estimating the complexity of EEG signals, 

you can refer to (7, 22, 23). 
 

Statistical analysis 

First, the Shapiro-Wilk test was used to determine the 

data distribution. This test showed that the data has a 

normal distribution (P > 0.05). Therefore, parametric 

tests should be used to determine statistically significant 

differences between features and indices extracted from 

real and simulated signals in different conditions. As a 

result, in this study, analysis of variance (ANOVA) and 

independent t tests were used as parametric statistical 

tests to compare means. All statistical analyzes were 

performed using the SPSS software (version 21) and P < 

0.05 was considered as a significant criterion. 

 

Results 
We, first, qualitatively examined and compared the 

complexity of real healthy EEG signals and the model 

output time series (simulated EEG) for the mentioned 

parameters using MLE and the embedding dimension. 

As shown in Figure 1 (top row), the complexity of the 

signals generated by the model is very similar in pattern 

and amplitude to the complexity of real healthy EEG 

signals. In the Cao algorithm, two functions are used to 

estimate the embedding dimension of a time series: E1(d) 

and E2(d). When d is greater than or equal to the 

embedding dimension (i.e., close to 1), E1(d) does not 

change. On the other hand, E2(d) is used to distinguish 

deterministic signals from chaotic signals. For 

deterministic signals, E2(d) is equal to 1 for some 

dimension, while for chaotic signals, E2(d) is equal to 1 

for almost all values of d. Therefore, as proved in our 

previous article, this model is well able to simulate the 

dynamics of the human brain's electrical activity and real 

EEG signals. 
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Figure 1. Maximum Lyapunov Exponent (Top Row) and Embedding Dimension (Below Row) Diagrams 
Calculated for a Real EEG Signal (Blue) and a Simulated EEG Signal Generated by the Cellular 

Automata Model (Green) 
 

Next, to test the hypotheses under consideration, we 

made changes to the value of the model parameters and 

again compared the complexity of the time series 

generated by the model in different conditions with the 

complexity of the real EEG signals. To test the first 

hypothesis, we adjusted the Trest = 6 and Trelative = 10 

values to lower the excitation threshold of the network 

neurons and increase the excitability of the neurons. 

Experiments showed that lower values of these 

parameters lead to loss of network dynamics. To test the 

second hypothesis, we increased the percentage of 

excitatory neurons to 85% and reduced the percentage of 

inhibitory neurons to 15% to increase the excitation to 

inhibition ratio in the neural network. These percentages 

were chosen considering maintaining optimal network 

dynamics to generate simulated EEG signals after 

several trials. Finally, we analyzed 20 real healthy 

EEGs, 20 simulated EEGs for the first hypothesis, 20 

simulated EEGs for the second hypothesis, and 20 

baseline simulated EEGs (with initial parameter values 

as the unchanged condition) and extracted their 

complexity feature using the Lempel-Ziv measure. Table 

1 shows the complexity values of the healthy EEG 

signals and model outputs with and without applied 

changes (unchanged condition, first hypothesis and 

second hypothesis). As you can see, by lowering the 

neuronal stimulation threshold (i.e., the first hypothesis), 

there was no significant change in the pattern and 

amplitude of the network complexity, and the model 

complexity is very similar to the complexity of a healthy 

EEG signal (P > 0.05). However, increasing the 

excitation to inhibition ratio (i.e., the second hypothesis) 

led to significant changes in the complexity pattern of 

the designed network (P < 0.05). More interestingly, in 

this case, the complexity of the output signals of the 

model significantly increased compared to real healthy 

EEGs (P = 0.002) and the model output of the 

unchanged condition (P = 0.028) and the first hypothesis 

(P = 0.001). 
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Table 1. Comparison of the Complexity of Real Healthy EEG Signals, the Simulated Signals Produced 
by the Cellular Automata Model with Initial Parameter Values (Unchanged Condition), with Decreased 
Neuronal Stimulation Thresholds (First Hypothesis) and with Increased Excitation to Inhibition Ratio 

(Second Hypothesis) Using the Lempel-Ziv Measure 
 

(I) Label (J) Label Mean Difference (I-J) Std. Error Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 

Real Healthy EEG 

First Hypothesis 0.00385 0.01354 1.000 -0.0296 0.0372 

Second Hypothesis -0.04794* 0.01354 0.002 -0.0813 -0.0145 

Unchanged Condition 0.00309 0.01745 1.000 -0.0443 0.0505 

First Hypothesis 

Healthy EEG -0.00385 0.01354 1.000 -0.0372 0.0296 

Second Hypothesis -0.05178* 0.01354 0.001 -0.0852 -0.0184 

Unchanged Condition -0.01751 0.01745 1.000 -0.0649 0.0299 

Second 
Hypothesis 

Healthy EEG 0.04794* 0.01354 0.002 0.0145 0.0813 

First Hypothesis 0.05178* 0.01354 0.001 0.0184 0.0852 

Unchanged Condition 0.05103* 0.01745 0.028 0.0036 0.0984 

Unchanged 
Condition 

Healthy EEG -0.00309 0.01745 1.000 -0.0505 0.0443 

First Hypothesis 0.01751 0.01745 1.000 -0.0299 0.0649 

Second Hypothesis -0.05103* 0.01745 0.028 -0.0984 -0.0036 

 

Discussion 
In this work, we used a mathematical and computational 

model to investigate the neuropathological mechanisms 

in schizophrenia. Such a study lies within the fields of 

computational neuroscience and computational 

psychiatry and has been applied by many researchers in 

recent years to investigate the relationship between 

different pathological and phenomenological aspects of 

psychiatric disorders (26-30). Our model, based on the 

simple rules of cellular automata, was able to simulate 

the dynamics of a real neuronal population of the human 

brain. Our experiments and the results of this model 

showed that the reduction of neuronal stimulation 

thresholds does not lead to a significant change in the 

dynamics of the neuronal population and the complexity 

of neuronal function. Thus, previous evidence of deficits 

in glutamate levels and NMDA-R signaling associated 

with internalization of receptors involved in synaptic and 

extra-synaptic environments in both inhibitory and 

excitatory neurons may not possibly be the 

neuropathological mechanism underlying the dynamic 

change in brain neurons and the increased complexity of 

electrophysiology in schizophrenia (6). In addition, the 

experiments and the results of the model showed that 

increasing the ratio of excitation to inhibition in a 

neuronal population can cause substantial changes in its 

behavioral and dynamical pattern and lead to increased 

complexity of neuronal function in the schizophrenic 

brain. Therefore, decreased inhibitory neurotransmission 

may be the neuropathological mechanism underlying the 

dynamic change in brain neurons and, thus, the increased 

complexity of cortical electrophysiology in 

schizophrenia. Inhibitory neurotransmitter GABA is an 

important molecule in modulating neuronal firing, and 

previous studies have shown that schizophrenia is 

associated with impairments in GABAergic markers (31, 

32). One of the main functions of GABA is the 

synchronization of neuronal populations, which 

produces bursting or rhythmic neural activity, called 

brain oscillations. Appropriate oscillating firing activity 

in different brain regions, especially in the prefrontal 

cortex, is thought to be a neural mechanism of working 

memory (33, 34). Given that deficits in working memory 

have been suggested to underpin a variety of cognitive 

impairments in patients with schizophrenia, disturbance 

of brain oscillations can be involved in schizophrenia 

(35, 36). A reduction in the expression of the GAD67 

(GABA synthesizing enzyme) and an impairment in the 

parvalbumin-positive GABAergic interneurons (PVIs) 

within the prefrontal cortex are the strongest findings in 

postmortem schizophrenia studies (37, 38). Given that 

the expression of PVIs and GAD67 is dependent on the 

activity, GABAergic drive is decreased within the 

prefrontal cortex in schizophrenia (39). 

 

Limitation 
Like many other researches and studies, this study also 

suffers from some limitations. The results obtained in 

this study are based on a mathematical model and 

therefore their accuracy should be checked by animal 

models and studies. In addition, in this study, we 

examined only two neuropathological mechanisms 

reported in schizophrenia, while other neuropathological 

mechanisms such as the disconnection hypothesis of 

schizophrenia have been emphasized in many previous 

studies, which cannot be examined using the current 

model. 
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Conclusion 
Various neuropathological mechanisms may lead to 

distortion of neuronal activity and brain function, and 

consequently abnormal high-level behaviors associated 

with the disorder in diseases such as schizophrenia. 

These mechanisms may alter the dynamics of neuronal 

function in brain networks by affecting the regular firing 

pattern of different neurons and may be the source of 

abnormalities reported in schizophrenia. Our 

computational model suggests that imbalances in the 

excitation to inhibition ratio in the neural network are 

probably the source of abnormal neuronal firing patterns 

and thus the increased complexity of brain electrical 

activity in schizophrenia. In addition, this study showed 

that such a model can be used in the future to better 

understand the neuropathological mechanisms involved 

in other psychiatric and neurological disorders. 

However, findings of the present study should be 

interpreted with caution due to the nature of 

computational studies. Indeed, future in vivo and in vitro 

studies should confirm our theoretical findings. 
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